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A B S T R A C T

While synthetic tabular data generation using Deep Generative Models (DGMs) offers a compelling solution to 

data scarcity and privacy concerns, their effectiveness relies on the availability of substantial training data, often 

lacking in real-world scenarios. To overcome this limitation, we propose a novel methodology that explicitly 

integrates artificial inductive biases into the generative process to improve data quality in low-data regimes. Our 

framework leverages transfer learning and meta-learning techniques to construct and inject informative inductive 

biases into DGMs. We evaluate four approaches (pre-training, model averaging, Model-Agnostic Meta-Learning 

(MAML), and Domain Randomized Search (DRS)) and analyze their impact on the quality of the generated text. 

Experimental results show that incorporating inductive bias substantially improves performance, with transfer 

learning methods outperforming meta-learning, achieving up to 60 % gains in Jensen-Shannon divergence. The 

methodology is model-agnostic and especially relevant in domains such as healthcare and finance, where high-

quality synthetic data are essential, and data availability is often limited.

1. Introduction

Recent advances in Deep Learning (DL) have led to the develop-

ment of powerful Deep Generative Models (DGMs). These models excel 

at learning and representing complex, high-dimensional distributions, 

allowing them to sample new data points realistically. This capability 

has driven remarkable progress in various domains, including image 

generation [1], text generation [2], and video generation [3].

Tabular data has gained increasing interest within DGMs due to their 

structured format, making them fundamental for information storage 

and analysis across various fields. Researchers are actively investigat-

ing techniques for generating realistic and informative tabular data, as 

evidenced by the growing work in this area [4,5]. Since the introduc-

tion of Generative Adversarial Networks (GANs) [6], a wide range of 

GAN-based models have been proposed for generating synthetic tab-

ular data. Among them, CTGAN [7] is one of the most prominent 

and widely adopted models, as it introduces conditional generation 

mechanisms that allow it to handle the multimodal, imbalanced, and 

mixed-type nature of tabular data. Building on CTGAN, CTAB-GAN [8] 

further improves the generation of both categorical and continuous vari-

ables with complex distributions. GANBLR [9] proposes an interpretable

GAN-based generator tailored to categorical data, achieving strong per-

formance in both statistical similarity and downstream utility. Another 

notable architecture is TableGAN [10], which enhances vanilla GANs 

by incorporating classification and information loss objectives to im-

prove the semantic and statistical alignment between real and synthetic 

samples. However, TableGAN is less effective at handling categorical 

imbalances and lacks the conditional generation capabilities of CTGAN-

based models. In addition, the ACGAN [11] extends the discriminator to 

include an auxiliary classification task, enabling class-aware generation 

and improving semantic consistency. While originally designed for in-

distribution generation, ACGAN has served as the foundation for more 

recent frameworks that generalize beyond the training distribution. For 

instance, Jian et al. [12] propose an open-set domain generalization 

framework that extends ACGAN with dual-level weighting mechanisms 

to synthesize fault diagnosis data under unseen operating conditions. 

Similarly, Jian et al. [13] introduce a gradient-based meta-learning 

strategy that augments the source domain to improve single-domain 

generalization. These works operate in the out-of-distribution (OOD) 

setting, where the objective is to generate or adapt to novel data dis-

tributions not present during training. In contrast, our work focuses on
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generating high-quality in-distribution data under data scarcity condi-

tions. Rather than expanding beyond the original data distribution, we 

aim to faithfully reproduce it, particularly in critical domains such as 

healthcare and finance, where maintaining the statistical integrity of 

the data is essential.

Beyond GANs, Variational Autoencoders (VAEs) [14] have emerged 

as a robust alternative for generating tabular data. Models such as TVAE 

[7] are specifically designed to manage mixed data types, while HI-

VAE [15] focuses on handling heterogeneous and incomplete datasets. 

VAEM [16] extends this line by integrating imputation and generative 

modeling. More recently, the VAE-BGM [17] has integrated a Bayesian 

Gaussian Mixture (BGM) in the VAE architecture, replacing the standard 

isotropic Gaussian assumption in the latent space [18]. This modi-

fication enables the model to sample from a more expressive latent 

space, generating higher-quality data, particularly in situations with 

limited availability. Additionally, emerging approaches based on dif-

fusion models [19] and transformer architectures have shown promise 

in generating synthetic tabular data. Models such as STaSy [20] and 

TabSyn [21] apply score-based generative modeling with latent encod-

ing strategies. In contrast, TabDDPM [22] performs diffusion in both 

Gaussian and multinomial spaces to effectively model continuous and 

categorical features. These models benefit from improved training sta-

bility and are particularly effective in capturing complex inter-feature 

dependencies.

The importance of sufficient data for DGM training cannot be over-

stated. Studies using popular DGMs, such as CTGAN, utilize datasets 

ranging from 10, 000 to 481, 000 training instances. This contrasts starkly 

with the practices observed in numerous domains. For example, well-

established datasets used to evaluate rudimentary models include the 

Iris dataset, with 150 samples [23], and the Boston House Prices dataset, 

with 506 instances [24]. Even within the realm of medical research, valu-

able datasets such as the breast cancer dataset encompass only around 

300 patients [25]. Smaller datasets pose challenges for DGM training, 

including overfitting and difficulty in assessing the quality of generated 

data [26].

A critical challenge associated with using DGMs for generating 

tabular data lies in ensuring the quality and effectiveness of the syn-

thetic data. While standardized metrics exist for image [27,28] and 

text data [29,30], measuring the quality of synthetic tabular data 

presents unique challenges. Studies employ various metrics, including 

pairwise correlation difference, support coverage, likelihood fitness, 

and other statistics described in [31]. However, a consistent method 

for holistic evaluation is lacking. Divergences, which quantify the dis-

crepancy between probability distributions, offer a promising avenue 

for validation [26]. They can capture the overall differences between 

real and synthetic data by considering the joint distribution of all 

attributes. However, modeling joint distributions presents a trade-off 

between computational cost and accuracy. Large datasets, especially 

those with high dimensionality, require significant computational re-

sources. With sufficient resources, accurate results can be achieved. In 

contrast, smaller datasets, common in real-world applications, present 

a challenge to accuracy. Limited data may hinder the capture of com-

plex variable relationships, leading to models with poor generalization 

to unseen data. Consequently, even computationally efficient methods 

for joint distribution modeling can yield inaccurate results in small data 

settings.

The limitations of current validation techniques further compound 

the inherent limitations of small datasets. These techniques often focus 

on comparing synthetic data with real data used for training, failing to 

account for the limited scope of information on which the DGM was 

trained. This can lead to a false sense of security, where the synthetic 

data appear similar to the training data but may not generalize well. DL 

models with high parameter counts are susceptible to overfitting, too, es-

pecially on small datasets. Additionally, small datasets might not capture 

the full spectrum of real-world variations. Consequently, the synthetic

data generated may not accurately represent the underlying distribu-

tion, which can affect its effectiveness for various tasks. Furthermore, 

smaller datasets are more prone to the influence of noise (random er-

rors) and bias (systematic skews). These mislead DGMs into learning 

incorrect patterns, ultimately resulting in the generation of unrealistic 

synthetic data.

This work addresses the critical challenge of generating reliable syn-

thetic tabular data from limited datasets, a prevalent scenario in many 

real-world applications. Traditional divergence metrics often struggle in 

these situations, leading to inaccurate assessments of the quality of syn-

thetic data [26]. We propose a novel methodology specifically designed 

to address this issue by introducing a framework that leverages inductive 

biases to improve the performance of DGMs in small dataset environ-

ments. Inductive biases [32] are inherent preferences or assumptions 

built into a learning model. These biases can guide learning and improve 

model performance, particularly when data are scarce. Traditionally, 

inductive biases are introduced through domain knowledge or specific 

architectural choices. This work proposes an alternative approach that 

leverages the variability often found in the DGM training process to 

generate inductive biases through different learning techniques. For 

example, we use VAEs, as they exhibit inherent variability between 

training seeds, allowing them to capture various aspects of data dur-

ing training. Still, we note that our approach could be applied to other 

DGMs. We exploit this variability by employing various transfer learning 

and meta-learning techniques to generate the inductive bias, ultimately 

leading to improved synthetic data generation. Our key contribution is 

threefold:

• We propose a novel generation methodology for synthetic tabu-

lar data generated by DGMs in a small dataset environment. This 

methodology leverages inductive bias generation through transfer 

learning and meta-learning techniques to achieve a more reliable 

generation process.

• We propose four different techniques (pre-training, model averaging,

Model-Agnostic Meta-Learning (MAML), and Domain Randomized 

Search (DRS)) to generate the inductive bias. We demonstrate the ef-

ficacy of our proposal using a common DGM such as the VAE. We also 

assess the performance with a CTGAN architecture, another common 

DGM for the pre-training process.

• We conduct extensive experiments on benchmark datasets and eval-

uate the quality of the generated data using both divergence-based 

metrics, such as the Kullback-Leibler (KL) and Jensen-Shannon (JS) 

divergences, and a utility-based validation protocol. This latter vali-

dation involves training a downstream model on synthetic data and 

testing it on real data, thereby measuring the practical utility of the 

generated samples for predictive tasks.

2. Methodology: generating artificial inductive bias

𝑁
Assuming a tabular dataset composed of 𝑁 entries {𝑥𝑖𝑟 } ,𝑖=1  where 

𝑁 represents the number of samples available and each entry 𝑥𝑖 

𝑟 has a

dimensionality of 𝐶 features. In other words, 𝐶 represents the number 

of attributes associated with each data point. Let us also define a DGM 

as a high-dimensional probability distribution 𝑝𝜃  

, where 𝜃 represents the 

learnable parameters of the model. The objective of the DGM is to learn 

a representation, 𝑝  

 

, that closely approximates the𝜃  true underlying data 

distribution, denoted by 𝑝(𝑥  

 

). Once trained, the DGM𝑟   can generate new 

synthetic samples 𝑥 𝑔 

by drawing from its learned distribution:

𝑥 𝑔 

∼ 𝑝 𝜃 

. (1)

Ideally, a well-trained DGM should produce synthetic data 𝑥 𝑔 

that are

statistically indistinguishable from real data 𝑥 𝑟 

.

In the prevalent big data setting, characterized by a large number 

of training samples (𝑁 ≫ 𝐶), DGMs with sufficient complexity can 

effectively capture the underlying data distribution 𝑝(𝑥 𝑟 

). This is evi-

denced by the impressive results achieved in recent research, where
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Fig. 1. Block diagram of the proposed architecture. In standard big-data set-

tings, the first generative model 𝑝 𝜃 

generates samples. However, when data are 

scarce (𝑁 is limited), we use its output to create an artificial inductive bias, 

providing initial weights 𝜃 0 

for a second DGM 𝑝𝜃̂ 

. This second model is then 

trained on real data 𝑥 𝑟, producing higher-quality synthetic data 𝑥̂ 𝑔 

than the

initial synthetic samples 𝑥 𝑔 

.

high-dimensional synthetic samples are generated using vast amounts 

of training data [1–3,7]. However, for scenarios with limited training 

data, which is common in tabular domains, DGMs struggle to accu-

rately represent the complex inter-feature relationships. Consequently, 

the synthetic samples generated 𝑥 𝑔 

deviate significantly from the true 

data distribution 𝑝(𝑥 𝑟 

), leading to high KL and JS divergences between

real and synthetic data.

We propose an approach that uses artificially generated inductive bi-

ases to address this challenge. Fig. 1 illustrates the overall architecture. 

In the standard big data setting, a DGM 𝑝𝜃 is directly trained using real 

data 𝑥 , high-quality𝑟  generating   

 

synthetic data 𝑥𝑔 ∼ 𝑝𝜃  

. However, when

the number of real samples 𝑁 is limited, the quality of the generated 

data 𝑥 𝑔 

deteriorates. To mitigate this issue, we introduce an artificial in

ductive bias generator. This module inputs the initial synthetic data 𝑥𝑔 
and outputs an initial set of weights 𝜃0 . These weights  

 

are then used as 

the inductive bias to train a second DGM 𝑝 𝜃̂ 

using real data 𝑥𝑟  

. This sec

ond DGM generates a new set of synthetic samples, 𝑥̂ . the𝑔  Notably,   

 

only

distinction between 𝑝𝜃 and 𝑝 lies𝜃̂  in the initial  

 
 

weights: 𝑝𝜃̂ 

leverages the 

inductive bias encoded in 𝜃0  

to potentially achieve faster convergence

to a distribution that better resembles 𝑝(𝑥 𝑟 

). At the same time, 𝑝𝜃  

begins

training with random weights. As our simulations will demonstrate, this 

seemingly minor difference translates into significant improvements in 

the quality of the generated synthetic data.

-

-

The proposed approach hinges on two key concepts: the importance 

of inductive biases and the feasibility of generating them artificially. 

The importance of inductive biases in supervised learning is well es-

tablished. The no-free-lunch theorems state that a universally optimal 

learner does not exist. Consequently, specific learning biases can lead to 

substantial performance gains for particular problem domains (see [33] 

and the references therein). Convolutional Neural Networks (CNNs) ex-

emplify this principle. Their inherent inductive bias, which is the fact 

that the image information possesses spatial correlation, makes them 

the preferred architecture for image processing tasks. Similarly, as high-

lighted in [32], using inductive biases is a cornerstone of DL’s success. 

In scenarios with limited training data, regularizers are commonly em-

ployed as inductive biases to prevent overfitting. This underscores the 

dual role of inductive biases: not only do they contribute to DL’s ef-

fectiveness, but they are also crucial in avoiding overfitting. However, 

effective use of inductive biases is often contingent on having specific 

knowledge about the problem. In the aforementioned example of CNNs, 

we inherently understand spatial correlation in images. However, in 

tabular data, this domain-specific knowledge is often scarce. Recent 

efforts have focused on designing large models trained on artificially 

generated data as inductive biases to address this challenge. The under-

lying hope is that the actual problem to be solved exhibits similarities 

to those encountered during training of the large model (e.g., [34] 

and [35]).

Therefore, our proposed approach departs from existing methods 

for incorporating inductive biases in synthetic tabular data genera-

tion. Unlike the brute-force approach employed in [35], we use data 

generated by a potentially low-quality DGM 𝑝 𝜃 

. This strategy aims to ob-

tain an initial set of weights 𝜃 0 

, which act as an inductive bias. Ideally, 

these weights should guide the model to a region of the parameter space 

that facilitates convergence towards a high-quality solution.

In particular, we assess our ideas using a state-of-the-art VAE archi-

tecture for the DGM, although we hypothesize that similar results could 

be achieved with other DGM architectures. Due to its demonstrated 

superiority against other leading models, we will use the architecture 

proposed in [17]. VAEs are known to be sensitive to the initial ran-

dom conditions (seeds) used during training. This dependence on seeds 

requires training with multiple seeds and selecting the one (or more) 

that exhibits the best performance based on a chosen metric, such as 

the minimum validation loss. The remaining runs, often discarded, may 

still contain valuable problem-specific information despite not achiev-

ing optimal solutions using traditional metrics. Our key idea lies in 

exploiting the potentially informative data from discarded VAE runs to 

create an artificial inductive bias for the final DGM, which is trained 

with real data. In addition to its demonstrated empirical performance, 

this VAE-based model incorporates architectural elements that inher-

ently discourage overfitting and sample memorization, an important 

consideration in data-scarce regimes. Specifically, the model introduces 

a two-stage sampling process: first, latent representations are sampled 

from the encoder’s posterior distribution; then, instead of decoding di-

rectly from these individual latent points, a BGM is fitted over the latent 

means, from which a second sample is drawn before decoding. This 

structure increases diversity in the generated samples and reduces the 

likelihood of memorizing specific training records. Moreover, the VAE 

formulation enforces a KL divergence regularization between the ap-

proximate posterior and the prior, further penalizing overly confident 

or localized representations that could lead to overfitting. These design 

choices serve as strong inductive biases that favor generalization over 

replication, complementing our overall strategy.

The following sections explore two distinct paradigms for generat-

ing the initial set of weights, 𝜃 0 

: transfer learning and meta-learning. 

Transfer learning techniques encompass pre-training and model aver-

aging, while meta-learning techniques include MAML and DRS. Pre-

training offers a versatile approach applicable to any DGM architecture, 

regardless of its inherent characteristics. In contrast, model averag-

ing and meta-learning techniques are particularly well-suited for VAEs 

trained with multiple seeds due to their intrinsic variability in learned 

representations. Consequently, we will evaluate the latter two methods 

within the chosen VAE architecture. Additionally, to assess the efficacy 

of pre-training across different DGM architectures, we will compare its 

performance on the CTGAN.

2.1. Transfer learning

Transfer learning is a machine learning paradigm that leverages 

knowledge acquired from a context domain (also called the source do-

main) to enhance learning performance in a new target domain [36]. 

This approach aims to improve the learning process in the target do-

main by leveraging knowledge gained from solving related tasks in the 

context domain. This technique has demonstrated its efficacy in fields 

where data scarcity is a common challenge, such as the medical field 

[37]. 

Formally, based on the definition in [36], we can define a domain

 by a feature space  and a marginal probability distribution 𝑝(𝑥 𝑟 

). 

Two domains are considered distinct if their feature spaces 1  

,2  

or 

marginal probability distributions 𝑝(𝑥1  

), 𝑝(𝑥2  

) differ, i.e., if 1  

≠  2 

or 

𝑝(𝑥1 ) ≠ 𝑝(𝑥2  

). The core objective of transfer learning is to leverage the 

knowledge learned in a context domain 𝑐 to ve𝑜𝑛𝑡𝑒𝑥𝑡  impro   

 

learning in 

a target domain 𝑡𝑎𝑟𝑔 . en𝑒𝑡  This is typically achieved wh   

 

the context and 

target domains differ, i.e., 𝑐 𝑜𝑛𝑡𝑒𝑥𝑡 

≠  𝑡𝑎𝑟𝑔𝑒𝑡 

.
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Our work focuses on a scenario where the context domain  𝑐𝑜𝑛𝑡𝑒𝑥𝑡 

consists of data 𝑥 generated other𝑔  by a DGM. On the   

 

hand, the target

domain  

 

consists of 𝑥 

 

. Our approach𝑡𝑎𝑟𝑔𝑒𝑡 𝑟   leverages the representa

tional power learned by the DGM 𝑝 on𝜃   

 

𝑥 𝑔  

 

to provide a strong starting

point for learning in the target domain with real data 𝑥𝑟  

. This knowl

edge transfer is achieved by initializing the model weights for the target 

domain with the weights learned from the DGM model trained on the 

generated data.

-

-

Transfer learning can be categorized into homogeneous and het

erogeneous settings based on the feature spaces of the domains [38]. 

Homogeneous transfer learning applies when the context and target 

domains share the same feature space 1 =  2, while heterogeneous 

 

transfer learning deals with scenarios where feature spaces differ  1 ≠ 

 2. This work focuses on homogeneous transfer learning, where the con

text domain is an augmented version of the target domain. The key 

difference between the domains in our case lies in the number of sam

ples, leading to situations where the empirical distributions of the data 

differ, i.e., 𝑝 

  

Within homogeneous transfer learning, various methodologies ex

ist to improve target task performance by leveraging knowledge from 

a related source domain. These techniques encompass instance-based 

[

(𝑥 ) ≠ 𝑝(𝑥 ). 

-

-

-

𝜃 𝑔 𝑟
-

39], relational knowledge transfer [40], feature-based [41], and, as 

employed in this work, parameter-based [42] transfer through shared

model parameters or hyperparameter distributions. This study lever

ages a two-stage parameter-based transfer learning approach. The first 

stage involves pre-training or model averaging, followed by fine-tuning 

in the second stage. Subsequent sections will delve deeper into both 

pre-training and model averaging techniques. Upon completing one of 

these initial phases, fine-tuning refines the model parameters, ultimately 

achieving optimal adaptation for the target domain.

 

-

2.1.1. Pre-training

Pre-training is a frequently adopted strategy for introducing an in

ductive bias into a model. By leveraging a pre-trained model on a

context domain, the target model gains generalizable features that en

hance its performance on a target domain. However, while pre-training 

is a standard in computer vision and natural language processing, 

achieving similar success with tabular data remains challenging. This 

disparity arises from the inherent heterogeneity of the features in 

the tables, which creates substantial shifts in feature space between 

pre-training and downstream datasets, hindering effective knowledge 

transfer. Despite these challenges, efforts such as [

-

 

-

43] and [44] have 

explored tabular transfer learning with promising results. Although 

these studies demonstrate potential, achieving comprehensive param

eter transfer in tabular data requires further research to establish 

best practices and fully leverage the potential of pre-training in this 

domain.

-

In this work, pre-training involves the following steps. First, we train 

a separate DGM 𝑝 using𝜃𝑝𝑡  synthetic data 𝑥 as𝑔  training data. Since 𝑥𝑔  

 

is

sampled from the initial DGM, 𝑥 

 

∼ 𝑝  

 

, we can generate a vast amou𝑔 𝜃  nt

of synthetic data. This abundance circumvents the limitations associated 

with training on small datasets, such as overfitting. Then, the optimal
∗weights 𝜃 from DGM are used as initial weights to train the 𝑝𝑡   𝑝 𝜃𝑝𝑡      𝜃0    

 

generative model 𝑝𝜃̂ 

(see Fig. 1). 

In essence, our approach aligns with the well-established concept 

of data augmentation. We generate synthetic data 𝑥 𝑔 

, which may not 

perfectly capture the intricacies of the original data 𝑥 𝑟 

. However, we 

use these synthetic data to train another DGM 𝑝 .𝜃𝑝𝑡  Although 𝑝𝜃 𝑝𝑡 

might generate lower-quality synthetic samples, our objective is to ex-

ploit the information encoded within this DGM to establish an initial 

set of weights for the DGM that will eventually be trained on 𝑥 𝑟 

. 

In other words, we exploit the knowledge of the generative model

𝑝 𝜃       better generative model , 

𝑝𝑡 

, the context domain, to obtain a 𝑝 ̂
 

which is our target domain. 

𝜃
Fig. 2 visually represents this pre-training 

procedure.

Fig. 2. Block diagram for the pre-training case. The inductive bias is intro

duced by training a DGM 𝑝 on a large samples.𝜃    collection of 𝑥𝑔  The weights
𝑝𝑡  

learned from this training process with abundant samples serve as the initial

parameters 𝜃̂ 

 for the fine-tuning process using the real data 𝑥𝑟 to obtain 𝑝𝜃̂ 

.

-

Fig. 3. Block diagram for the model averaging case. The inductive bias is 

introduced by training a DGM 𝑝 on𝜃  𝑥𝑟 using 𝑆 different seeds. The average 

  

of

the weights learned from these training processes serves as the initial parameters

𝜃̂ 

 for the fine-tuning process using the real data 𝑥 𝑟 

to obtain 𝑝𝜃̂ 

.

2.1.2. Model averaging

The concept of model averaging emerged in the 1960s, primarily 

within the field of economics [45,46]. Traditional empirical research 

often selects a single “best” model after searching a wide space of 

possibilities. However, this approach can underestimate the real un

certainty, leading to overly confident conclusions. Model averaging

offers a compelling alternative. By combining multiple models, the 

resulting ensemble can outperform any individual model. This ap

proach aligns with the core principles of statistical modeling, which 

involve maximizing information use while balancing flexibility with 

the risk of overfitting. In essence, model averaging extends the con

cept of model selection by leveraging insights from all the models 

considered.

-

 

-

-

While pre-training can be incorporated with any DGM, our approach 

focuses on models where the training process is sensitive to initial con

ditions, such as VAEs. In such cases, it is common to train the DGM 𝑝𝜃  

with multiple initial conditions (seeds) and potentially discard “bad” 

seeds based on a specific metric. We propose using these discarded 

seeds to create an artificial inductive bias. The simplest implementa

tion involves averaging the model parameters. In this case, our context 

domains are the different results obtained from each seed, and the tar

get domain is obtained by averaging across these context domains. If

we train 𝑆 different seeds for 𝑝  

 

, resulting in 𝑆 models with parame𝜃
ters 𝜃  

 

, we propose using the average𝑠   of these weights as the inductive

bias:

-

-

-

-

𝜃 0 = 

1
𝑆

𝑆
∑ 

𝑠=1
𝜃 𝑠 (2)

This straightforward approach is computationally efficient, requiring 

only the calculation of the average across the precomputed weights. It 

assumes that the average model may capture a robust inductive bias, 

leading to improved performance. Fig. 3 summarizes this process.
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2.2. Meta-learning

Traditional machine learning models often rely on large volumes of 

data to achieve optimal performance in specific tasks. In contrast, meta-

learning introduces a distinct paradigm by training algorithms that can 

“learn to learn” [47], enabling them to rapidly adapt to new tasks with 

minimal data. This departure from the conventional requirement of ex-

tensive datasets for each new task allows meta-learning algorithms to 

leverage knowledge by addressing numerous related tasks. Through in-

trospective analysis of past experiences, these models dynamically adjust 

their learning strategies when confronted with novel situations, making 

them more efficient learners and requiring less data to perform well on 

tasks with similar characteristics.

In this work, we exploit the multi-seed training configuration of cer-

tain DGMs. We construct a meta-learning framework by treating each 𝑆 

different seeds obtained after training the DGM as a distinct task.

2.2.1. MAML

MAML is a prevalent approach within the field of meta-learning [48]. 

It identifies the initial set of weights denoted by 𝜃 𝑀𝐴𝑀𝐿 

by leveraging 

various tasks, enabling rapid and data-efficient adaptation to new tasks. 

This efficiency comes from fine-tuning the 𝜃 𝑀𝐴𝑀𝐿 

with minimal data for 

each new task. However, the successful application of MAML requires 

access to diverse tasks for effective learning.

Formally, we can frame the problem by starting with a common 

single-task learning scenario and transforming it into a meta-learning 

framework. Consider a task  that consists of an input 𝑥 sampled from 

a probability distribution . For simplicity, we define a task instance  

as a tuple comprising a dataset  and its corresponding loss function . 

To solve the task  , we need to obtain an optimal model parameterized 

by a task-specific parameter 𝜔 

∗ , which minimizes a loss function  on 

the data of the task as follows:

𝜔 

∗ = arg min
𝜔

E
𝑥∼

[

(;𝜔)
]

. (3)

In single-task learning, hyperparameter optimization is achieved by 

splitting the dataset  into two disjoint subsets  =  

(𝑡) ∪  

(𝑣), which 

are the training and validation sets, respectively. The meta-learning set-

ting aims to develop a general-purpose learning algorithm that excels 

across a distribution of tasks represented by 𝑝( ) [49]. The objective is 

to use training tasks to train a meta-learning model 𝜃 𝑀𝐴𝑀𝐿 

that can be 

fine-tuned to obtain 𝜔 to perform well on unseen tasks sampled from 

the same task environment 𝑝( ). Meta-learning methods utilize meta-

parameters to model the common latent structure of the task distribution 

𝑝( ). Therefore, we consider meta-learning an extension of hyperparam-

eter optimization, where the hyperparameter of interest – often referred 

to as a meta-parameter – is shared across multiple tasks.

In this work, the distribution of tasks is defined by the set of 𝑆 train-

ing seeds obtained after training the DGM. Given a set of 𝑆 training

seeds following 𝑝( ), each task  ∼ 𝑝( ) is therefore formalized as

 = {, }. Each dataset  consists of synthetic data points 𝑥 

𝑠
𝑔 drawn

from the model for the different training seeds. The loss function  cor-

responds to the DGM loss function. The specific  form depends on the 

chosen DGM. If the chosen DGM is a VAE, the loss function  would 

be the negative of the Evidence Lower BOund (ELBO) [14]. In contrast, 

if a GAN is used, the loss function  would be the minimax loss func-

tion arising from the interplay between the generator and discriminator 

networks [6]. It is essential to note that both VAEs and GANs em-

ploy two neural networks within their architecture, which differs from 

the single network architectures commonly found in state-of-the-art 

applications [50,51].

Solving this problem using the MAML approach requires access to a 

collection of 𝐵 tasks sampled from 𝑝( ). We denote this set of tasks  𝑏

= {( (𝑡) (𝑣))}
𝐵

used for training as 𝑏  𝑏 , ,𝑏 𝑏=1  where each task 𝑏 has dedi

cated meta-training and meta-validation data, respectively. The goal of 

meta-training is to find the optimal 𝜔 

∗ for a given task 𝑏 given .𝑏  𝜃𝑀 𝐴𝑀𝐿  

This 𝜃 

 

essentially captures𝑀𝐴𝑀𝐿   the ability to learn effectively from new

-

Fig. 4. Block diagram for the MAML case. The inductive bias is introduced 

by training a DGM 𝑝 on𝜃  𝑥𝑟 using 𝑆 different  

  

seeds. The synthetic dataset 𝑥𝑠𝑔 
generated by each seed serves as a task for MAML. The starting point to fine-tune 

using the real data 𝑥𝑟 and obtain 𝑝𝜃̂ 

is the MAML solution obtained, 𝜃 𝑀𝐴𝑀𝐿 

.

data. In this context, the task-related parameter 𝜔 𝑏 refers to the task-

specific parameters of the two networks that comprise the VAE, namely, 

the encoder and decoder. After meta-training, the learned 𝜔 

∗ 

𝑏 is used 

to guide the training of a base model 𝜃 𝑀𝐴𝑀𝐿 

. This procedure is called 

meta-testing. This essentially means that the model leverages the knowl-

edge gained from previous tasks to improve the efficiency of learning on 

new tasks. This can be viewed as a bi-level optimization problem [52]:

min 

𝜃 𝑀𝐴𝑀𝐿
E

 𝑏 

∼𝑝( ) 

⎡ 

⎢ 

⎢ 

⎣

E
𝑥 

(𝑣)
𝑔 𝑏 ∼ 

(𝑣)
𝑏

[ 

 𝑏 

((𝑣)
𝑏 ;𝜔∗

𝑏 (𝜃 𝑀𝐴𝑀𝐿))
] 

⎤

⎥ 

⎥ 

⎦

s.t: 𝜔 

∗
𝑏 (𝜃 𝑀𝐴𝑀𝐿) = arg min

𝜔 𝑏
E

𝑥 

(𝑡)
𝑔 𝑏∼ 

(𝑡)
𝑏

[ 

 𝑏(
(𝑡)
𝑏 ;𝜔 𝑏 

(𝜃 𝑀𝐴𝑀𝐿))
]

. (4)

This equation minimizes the expected loss across all tasks on the 

meta-validation sets, subject to the constraint that the task-specific pa-

rameter 𝜔 is optimized on the corresponding meta-training data for each 

task.

Since in our work, we are upgrading the parameters using gradient 

descent, we can reformulate Eq. (4) as follows:

𝜔 𝑏 

← 𝜃 − 𝛼∇ 𝜔𝑏 

 𝑏(
(𝑡)
𝑏 ;𝜔 𝑏 

) (5)

𝜃 𝑀𝐴𝑀𝐿 

← 𝜃 𝑀𝐴𝑀𝐿 − 𝛾∇𝜃𝑀𝐴𝑀𝐿

𝐵
∑ 

𝑏=1
 𝑏(

(𝑣)
𝑏 ; 𝜃 𝑀𝐴𝑀𝐿 

). (6)

Here, 𝛼 and 𝛾 represent the learning rates for the inner and outer 

loops, respectively. The inner loop updates the task-specific parameters 

𝜔 for each task 𝑏 using the gradient of the loss function  𝑏 

in the meta-

training data. The outer loop updates the meta-parameters 𝜃 𝑀𝐴𝑀𝐿 

based 

on the accumulated meta-validation loss across all tasks.

Fig. 4 illustrates the integration of the MAML procedure within the 

framework of our proposed methodology. In this context, the task space 

denoted by 𝑝( ) corresponds to the various seeds 𝑆 obtained during 

the training process. Essentially, the task space encompasses the dif-

ferent probability distributions 𝑝 𝜃 𝑠 

associated with each training seed.

Ultimately, the meta-training steps lead to identifying the desired pa-

rameters, denoted by 𝜃 𝑀𝐴𝑀𝐿. Note that 𝜃 𝑀𝐴𝑀𝐿 

represents a set of 

parameters that adapt fast to new data; in our case, it means that the 

DGM initial parameters are chosen so that they adapt quickly to generate 

real data.

2.2.2. DRS

Although MAML offers the potential to leverage the underlying struc-

ture of learning problems through a powerful optimization framework, it 

introduces a significant computational cost. Therefore, while we should 

seek a trade-off between accuracy and computational efficiency, there is 

currently no approach to managing this trade-off. An understanding of 

the domain-specific characteristics inherent to the meta-problem itself 

is needed.
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Fig. 5. Block diagram for the DRS case. The inductive bias is introduced by 

training a DGM 𝑝 𝜃 

on 𝑥 𝑟 

using 𝑆 different seeds. The synthetic dataset 𝑥 𝑔 

contains 

data generated by each seed and serves as input to DRS. The starting point for 

fine-tuning using the real data 𝑥 𝑟 

and obtaining 𝑝𝜃̂ 

is the DRS solution, 𝜃 𝐷𝑅𝑆 

.

DRS presents an alternative meta-learning approach that circum-

vents the computational burden of bilevel optimization problems. Unlike 

MAML, DRS trains a model on the combined data from all tasks. This 

eliminates the need for the complex optimization procedures present in 

MAML, leading to a more computationally efficient solution. However, 

it is important to acknowledge that DRS approximates the ideal solution 

[53]. 

Formally, DRS focuses on the meta-information, denoted by 𝜃 𝑚𝑒𝑡𝑎 

, 

as the initialization of an iterative optimizer used in a new meta-testing 

task,  𝑆 

. In this context of meta-learning initialization, a straightforward 

alternative involves solving the following pseudo-meta problem:

𝜃 𝐷𝑅𝑆 

= arg min
𝜔

E
 ∼𝑝( ) 

( 

∗ ; 𝜔). (7)

In this context,  

∗ represents the aggregated synthetic data collec-

tion, 𝑥 𝑔 

, obtained across all training seeds 𝑆. We refer to this approach as 

Domain-Randomized Search due to its alignment with the domain ran-

domization method presented in [54] and its core principle of directly 

searching over a distribution of domains (tasks).

Fig. 5 shows the application of the DRS procedure within the frame-

work of our proposed methodology. Like the MAML case, 𝜃 𝐷𝑅𝑆 

is the 

initialization weights we aim to identify as 𝜃 0 

.

Both MAML and DRS offer complementary approaches with a trade-

off between modeling complexity and optimization cost [53]. DRS 

delivers an approximate solution with lower computational demands, 

while MAML offers higher precision at the expense of greater computa-

tional resources. ‘DRS’ is also advantageous when dealing with a limited 

number of learning tasks. In our case, where data generated by each 

seed (𝑠 = 1, 2, … , 𝑆) is considered a task, and 𝑆 typically takes val-

ues around 10, DRS is expected to provide better solutions than MAML, 

aligning with the findings of [53]. Finally, note that DRS is similar to 

the pre-training approach. While both techniques aim to improve model 

performance, they utilize data differently. Pre-training leverages data 

from the best VAE seed, whereas DRS capitalizes on data from all VAE 

seeds. This distinction reflects the core principle of DRS: exploring a 

wider range of possibilities by searching across a distribution of domains 

(tasks) represented by the various seed variations.

2.3. Summary and comparison of techniques

To clarify the overall methodology, we provide a high-level step-by-

step summary of the artificial inductive bias generation process. (1) First, 

a DGM is trained using the limited real data 𝑥 𝑟 

or large synthetic data 𝑥 𝑔 

(sampled from a previously trained model), depending on the technique. 

(2) Then, an artificial inductive bias is constructed by either extracting 

weights (pre-training), averaging multiple trained models (model aver-

aging), or applying a meta-learning algorithm across multiple training 

seeds (MAML or DRS). (3) These bias-derived weights 𝜃 0 

are then used 

to initialize a second DGM, which is finally fine-tuned on the real data 

𝑥 𝑟 

to obtain improved synthetic samples 𝑥̂ 𝑔 

. This two-phase process en-

ables the model to start learning from a more informative point in the

parameter space, helping to mitigate overfitting or collapse in low-data 

regimes.

Each technique integrates this framework differently. Pre-training 

mitigates data scarcity by simulating a high-data regime with syn-

thetically generated samples, while model averaging consolidates in-

formation from multiple VAE training seeds to create a more robust 

initialization. MAML optimizes an initialization that adapts quickly to 

new tasks, using the diversity of seed-generated data as a proxy for 

task variability. DRS simplifies this by combining all seeds into a single 

learning task, offering a trade-off between accuracy and computational 

burden. While pre-training is flexible and compatible with any architec-

ture, it may transfer suboptimal representations if synthetic data quality 

is poor. Model averaging is simple and effective for VAEs, but it assumes 

that the mean of the parameter space corresponds to a good initializa-

tion. MAML can yield precise adaptations but may require more task 

diversity than is available in low-seed settings. DRS is more robust under 

these conditions but offers a less principled optimization. Our approach 

addresses these limitations by leveraging the strengths of each tech-

nique within the VAE framework and evaluating them under consistent 

conditions. Limitations such as the architecture dependence of certain 

techniques and the impact of seed variability are discussed further in 

the results and conclusions.

3. Experiments 

3.1. Data

The experiments were conducted on three public datasets, one from 

the SDV environment [55]–which also provides the CTGAN implemen-

tation used in this study–and the other two additional datasets from 

external repositories. We selected datasets with sufficient samples to al-

low multiple training and validation splits, ensuring a comprehensive 

evaluation of our method under different parameter settings.

• Adult: The Adult Census Income dataset [56] contains 32,561 sam-

ples with 14 mixed-type features (integer, categorical, binary). It 

is used to predict whether an individual’s annual income exceeds 

$50, 000. The dataset has 13 % missing values, concentrated in “work 

class” and “occupation.”

• King: The King County House Sales dataset contains 21,613 house

sale records from King County, Washington, including Seattle, be-

tween May 2014 and May 2015. It includes 20 numerical and 

categorical features relevant to house pricing. 

1

• Letter: The Letter Recognition dataset [57] includes 20,000 samples

and 16 numerical features extracted from raster images of capital 

letters. The task is to classify each sample into one of 26 possi-

ble alphabet letters, making it a challenging multiclass classification 

problem. This dataset was obtained from the UCI Machine Learning 

Repository. 

2

This selection of datasets with varying sample sizes, feature dimen-

sions, and task types (regression, binary, and multiclass classification) 

allows us to assess the performance and generalizability of the proposed 

method in diverse data scenarios. As will be demonstrated in the follow-

ing sections, the proposed method is effective in generating synthetic 

data that retain the key characteristics of the original datasets across 

a wide range of applications. Additional datasets used for extended 

validation are described in Appendix B.

3.2. Validation metrics

To evaluate the effectiveness of our proposed method in capturing 

the real data distribution, we follow the validation approach from Ref.

1 Source: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction 

Accessed January 30th, 2025.
2 Source: https://archive.ics.uci.edu/dataset/59/letter+recognition Accessed 

June 17th, 2025.
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Fig. 6. General scheme of the proposed approach. Overall scheme of the 

approach and its validation process from Ref. [26]. This last one consists of a 

discriminator and a divergence estimator. The number of samples used from 

each distribution for each step is also highlighted: 𝑁 to generate samples, 𝑀 to 

train the discriminator, and 𝐿 to estimate the divergences.

[26]. This method uses a probabilistic classifier (discriminator) to esti-

mate the ratio of probability densities between real and synthetic data, 

enabling the calculation of KL and JS divergences. Unlike traditional 

validation methods that focus on individual features, this approach 

considers the entire data distribution, including complex relationships 

between features. Divergences provide robustness to noise and clear in-

terpretability, making them ideal for assessing the similarity between 

real data 𝑝(𝑥 𝑟 

) and synthetic data 𝑝 𝜃 

.

The discriminator network is key to the validation process, trained 

to distinguish between real and synthetic data. It receives two sets of 

𝑀 samples: one from the real data distribution 𝑝(𝑥 𝑟) (labeled as class

1) and another from the synthetic data distribution 𝑝 𝜃 

or 𝑝 𝜃̂ 

(labeled as

class 0), depending on 𝑁 , the dataset size. The discriminator learns a 

decision boundary during training, capturing differences between real 

and synthetic distributions. Once trained, it estimates KL and JS di-

vergences by processing 𝐿 new samples from each distribution. The 

output probabilities of these samples are then used to compute the 

divergence metrics, providing a quantitative measure of distributional 

similarity.

Fig. 6 illustrates this process, highlighting the inductive bias genera-

tor, discriminator-based validation, and the different sample sizes used 

(𝑁 for generation, 𝑀 for training, and 𝐿 for divergence estimation). 

As stated in [26], 𝑀 and 𝐿 must be large enough to ensure reliable 

divergence estimates, which we consider in our experiments.

In addition to this divergence-based evaluation, we incorporate a 

utility-based validation protocol (also referred to as machine learning 

efficacy in the literature (e.g., [7]). This approach assesses the utility of 

synthetic data in downstream predictive tasks by training machine learn-

ing models with synthetic samples and evaluating their performance on 

real data. Specifically, we define two configurations:

• Real metric: The model is trained and validated using real data. This

provides an upper-bound reference for predictive performance.

• Synthetic metric: The model is trained on synthetic data and evalu-

ated on real data. This reflects how well the synthetic data preserve 

task-relevant structure.

Higher classification metrics or lower regression errors in the 

Synthetic configuration indicate that the generated data maintain high 

utility for downstream tasks. In classification tasks, the utility metric 

corresponds to accuracy, while in regression tasks it corresponds to the 

MSE. Together, both divergence-based and utility-based evaluations pro-

vide a more comprehensive view of the quality and applicability of the 

synthetic data.

3.3. Experimental design

To evaluate the proposed methodology, we designed a compre-

hensive experimental pipeline including both divergence-based and 

utility-based validation. As described in the methodology section, we use

the state-of-the-art VAE architecture [17] and train 10 different seeds per 

experiment to account for stochastic variability and to enable the appli-

cation of meta-learning and averaging techniques. We also evaluate the 

pre-training strategy using CTGAN, a well-established conditional GAN 

model for generating tabular data.

The VAE used in our experiments is based on a VAE with a BGM 

[17], which replaces the standard Gaussian latent assumption with a 

learned mixture model, enabling more flexible and expressive latent 

representations. Both encoder and decoder are fully connected neural 

networks with ReLU activations, a hidden layer of 256 neurons, and 

dataset-specific latent dimensions: 10 for Adult, Intrusion, Letter, and 

PenDigits; 15 for King; and 20 for News. The model is trained using 

the standard ELBO loss, which includes a KL divergence regularizer 

and employs early stopping to prevent overfitting. All training is con-

ducted on the CPU with a batch size of 256 and a default learning rate of 

1 × 10 

−3. 

The CTGAN model [7] is implemented using the SDV library’s default 

configuration [55], with 1000 training epochs and GPU acceleration en-

abled. It employs a conditional generator and a discriminator trained 

adversarially and includes a conditional vector strategy to handle 

categorical imbalance and mode-specific normalization for numerical 

features.

We use 5-fold cross-validation throughout all experiments, consis-

tently splitting the real data into training and validation folds. For both 

divergence and utility validations, we define two configurations: a reli-

able setting with 𝑀 = 7500 and 𝐿 = 1000 samples and a more realistic 

low-resource setting with 𝑀 = 𝐿 = 100. The sample size 𝑁 for training 

the generative model is fixed based on the scenario being simulated and 

is not manipulated.

Utility-based evaluation is conducted across classification and regres-

sion tasks, depending on the dataset. In each case:

• Classificationuses a custom neural network with three hidden layers

(256–64–32) batch normalization dropout and LeakyReLU activa-

tions. Training runs for 10000 epochs with early stopping

• Regression employs a single-layer linear model trained for 2000
epochs using Mean Squared Error (MSE) loss and Adam optimizer. 

The experimental results are grouped into the following scenarios:

1. ‘Big data’: First, we present the optimistic scenario with a suffi-

cient 𝑁 of 10, 000 samples, where no methodology is needed to 

calculate the inductive bias. While we acknowledge that the term 

‘big data’ is typically associated with datasets containing hundreds 

of thousands or even millions of records, in this experimental de-

sign, we use it in a relative sense to contrast this setting with the 

data-scarce scenarios that are the primary focus of our study. This 

configuration provides divergence results that serve as an “upper 

bound” or reference for the best possible outcome. For 𝑀 and 𝐿, 

we maintain high values for the validation samples, 7500 and 1000, 

respectively.

2. ‘Low data’: Next, we show results for a realistic scenario with few

samples (𝑁 = 300) without applying our methodology. This al-

lows us to quantify the gain using the method and determine its 

benefits. For this case, we use two configurations for parameters 

𝑀 and 𝐿: [𝑀 = 7500, 𝐿 = 1000] and [𝑀 = 100, 𝐿 = 100]. The sec-

ond configuration is more realistic for few-data scenarios. When 

limited training data are available, there is also a limitation on the 

amount of data that can be effectively used for validation. The first 

configuration, with much larger values for 𝑀 and 𝐿, serves as a 

rigorous evaluation of the impact of our methodology. However, 

it is acknowledged that using small values for 𝑀 and 𝐿 can lead 

to unreliable metric estimations [26].

3. ‘Pre-train’: In this case, we apply the proposed methodology using

the pre-training technique. Results are presented for both CTGAN 

and VAE. The parameter configurations chosen are: [𝑁 = 300, 

𝑀 = 7500, 𝐿 = 1000] and [𝑁 = 300, 𝑀 = 100, 𝐿 = 100].
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4. ‘AVG,’ ‘MAML,’ ‘DRS’: These scenarios apply the model average

(‘AVG’) and the meta-learning techniques (‘MAML,’ ‘DRS’). We 

solely utilize the VAE architecture for multiple training runs. The 

following parameter configurations will be presented: [𝑁 = 300, 

𝑀 = 7500, 𝐿 = 1000] and [𝑁 = 300, 𝑀 = 100, 𝐿 = 100].

This setup aims to thoroughly evaluate the performance and robust-

ness of the proposed methodologies in various data availability scenarios 

and parameter configurations. Hardware and software specifications are 

detailed in Appendix C.

3.4. Results

In this section, we present the experimental results, focusing on sce-

narios with higher values of 𝑀 and 𝐿, which promote more reliable 

divergence estimation. Additional results for other datasets and the low-

resource configuration (𝑀 = 100, 𝐿 = 100) are provided in Appendix A 

for completeness. For each database, we summarize the outcomes across 

all scenarios using both divergence-based and utility-based validation 

protocols. Divergence metrics include JS and KL divergences. Utility 

metrics reflect the performance of a downstream model trained with 

synthetic data. Specifically, we consider two setups: training and vali-

dating with real data (Real metric) and training with synthetic data and 

validating on real data (Synth metric). For classification tasks, the met-

ric used is accuracy; for regression tasks, the metric used is the MSE. All 

results are reported as mean (standard deviation) across 10 independent 

runs with different random seeds.

The code to replicate our results, along with the data used, can be 

found in our repository. Additionally, Appendix C presents a compara-

tive summary of the computational costs associated with each method, 

including training times and hardware and software configurations. 

This analysis supports practitioners in evaluating trade-offs between 

performance and resource requirements when selecting a technique.

Subtable (a) in Table 1 shows the validation results obtained for the 

Adult dataset. Regarding the divergence estimations, we focus primar-

ily on the JS divergence due to its interpretability as a bounded metric 

(ranging from 0 to 1). The table shows the upper and lower bounds used

to assess the efficacy of the proposed methodology in the reliable case of 

higher validation samples (𝑀 = 7500 and 𝐿 = 1000). These bounds are 

0.115 (upper) and 0.420 (lower), highlighting a significant gap and room 

for improvement in the base VAE model (without any techniques ap-

plied). A consistent decrease in divergence is observed when examining 

the JS divergence results for the application of different proposed tech-

niques. The worst improvement is obtained for ‘MAML’ (0.358) and the 

best for ‘AVG’ (0.163). This implies that improvement is always present 

and, in the best cases, significantly high in JS for VAE. A similar pat-

tern is observed for KL divergence in VAE: better divergence results 

are obtained for transfer learning cases, but improvements are always 

achieved. For the CTGAN model (where only pre-training results are 

available), we also observe a significant improvement in both JS and 

KL divergence despite the generation process appearing to be less accu-

rate in terms of divergence estimation compared to the VAE. Regarding 

the utility validation, training with synthetic data generated by the VAE 

in the ‘Big data’ scenario yields accuracy levels close to those obtained 

with real data. In the ‘Low data’ case, the accuracy drops when using syn-

thetic data but increases again when any of the proposed techniques are 

applied, validating the utility of these strategies. However, no improve-

ment is observed in utility metrics when applying the CTGAN-based pre-

training, suggesting that while divergence metrics may improve, they do 

not necessarily translate into enhanced downstream performance for this 

model.

Subtable (b) in Table 1 further reinforces the efficacy of the pro-

posed methodologies on the King dataset. The VAE model consistently 

improves upon the lower bounds established for the JS divergence across 

all techniques. In terms of KL divergence, the most notable improvement 

is observed with the ‘AVG’ technique, which significantly reduces the KL 

value from 5.963 to 3.322. In contrast, CTGAN results are less favorable, 

with divergences that remain close to or above the baseline (‘Low data’) 

and offer little gain in the presence of pre-training. These results sug-

gest that CTGAN is less robust in modeling the complex structure of 

regression data in small-sample regimes. The utility validation, as mea-

sured by MSE, mirrors the trends observed in the divergence results for 

both generative models. The synthetic data generated by the VAE under

Table 1 

JS and KL results for each scenario. ‘Big data’ represents the ideal case with ample samples (𝑁 = 10, 000) for reliable synthetic data generation. In contrast, 

‘Low data’ simulates a more constrained setting (𝑁 = 300). The next rows compare divergences and utility validation metrics obtained with different methodologies 

(pre-training, model averaging, MAML, and DRS) in the ‘Low data’ setting. Results are shown as mean (std). For divergence metrics (JS, KL), lower values indicate 

better performance. For utility metrics, the interpretation depends on the task: for classification tasks (accuracy), higher values are better; for regression tasks (MSE), 

lower values are better. Bold values denote improvements due to the technique.

Scenario N Divergence validation Utility validation

VAE JS CTGAN JS VAE KL CTGAN KL Real Acc VAE Synth Acc CTGAN Synth Acc

(a) Adult dataset

Big data 10000 0.115 (0.002) 0.136 (0.002) 0.272 (0.014) 0.385 (0.025) 0.777 (0.001) 0.748 (0.002) 0.739 (0.006)

Low data 300 0.420 (0.003) 0.742 (0.003) 1.014 (0.036) 2.454 (0.027) 0.775 (0.005) 0.673 (0.006) 0.682 (0.014)

Pre-train 300 0.182 (0.002) 0.565 (0.002) 0.413 (0.008) 1.665 (0.025) N/A 0.731 (0.005) 0.689 (0.003)

AVG 300 0.163 (0.003) N/A 0.391 (0.030) N/A N/A 0.728 (0.004) N/A

MAML 300 0.358 (0.004) N/A 0.876 (0.041) N/A N/A 0.702 (0.006) N/A

DRS 300 0.180 (0.002) N/A 0.463 (0.037) N/A N/A 0.721 (0.007) N/A

(b) King dataset

Big data 10000 0.742 (0.005) 0.746 (0.004) 3.243 (0.152) 2.920 (0.099) 0.325 (0.005) 0.383 (0.020) 0.369 (0.001)

Low data 300 0.919 (0.002) 0.916 (0.003) 5.963 (0.135) 6.751 (0.394) 0.329 (0.006) 0.516 (0.011) 0.756 (0.029)

Pre-train 300 0.877 (0.002) 0.948 (0.003) 6.215 (0.350) 8.394 (0.328) N/A 0.451 (0.012) 0.767 (0.015)

AVG 300 0.724 (0.002) N/A 3.322 (0.235) N/A N/A 0.366 (0.012) N/A

MAML 300 0.899 (0.002) N/A 10.912 (0.472) N/A N/A 0.686 (0.065) N/A

DRS 300 0.871 (0.007) N/A 6.118 (0.710) N/A N/A 0.457 (0.025) N/A

(c) Letter dataset

Big data 10000 0.395 (0.004) 0.635 (0.005) 0.911 (0.027) 1.678 (0.059) 0.815 (0.007) 0.651 (0.005) 0.075 (0.006)

Low data 300 0.654 (0.007) 0.977 (0.003) 1.988 (0.029) 10.965 (0.705) 0.815 (0.005) 0.410 (0.008) 0.039 (0.010)

Pre-train 300 0.585 (0.005) 0.978 (0.001) 1.694 (0.035) 8.728 (0.650) N/A 0.394 (0.010) 0.032 (0.006)

AVG 300 0.581 (0.007) N/A 1.744 (0.063) N/A N/A 0.385 (0.005) N/A

MAML 300 0.669 (0.005) N/A 2.001 (0.056) N/A N/A 0.318 (0.010) N/A

DRS 300 0.608 (0.005) N/A 1.635 (0.061) N/A N/A 0.437 (0.012) N/A
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Table 2 

Gains using the proposed methodology for the VAE. Gains are represented in the following format: absolute gain (relative gain). The methodology achieves relative 

gains of up to 60 % in JS and KL divergences. Bold values indicate positive gain. Higher is better.

Dataset Pre-train gain AVG gain MAML Gain DRS Gain

JS KL JS KL JS KL JS KL

Adult 0.238 (0.567) 0.601 (0.593) 0.257 (0.612) 0.624 (0.615) 0.062 (0.149) 0.138 (0.136) 0.240 (0.572) 0.551 (0.544)

King 0.043 (0.046) −0.252 (−0.042) 0.195 (0.212) 2.641 (0.443) 0.020 (0.022) −4.949 (−0.830) 0.048 (0.052) −0.155 (−0.026)

Letter 0.069 (0.106) 0.294 (0.148) 0.073 (0.112) 0.243 (0.122) −0.015 (−0.023) −0.013 (−0.007) 0.046 (0.070) 0.352 (0.177)

Average 0.117 (0.227) 0.214 (0.233) 0.175 (0.312) 1.169 (0.393) 0.023 (0.049) −1.608 (−0.234) 0.111 (0.231) 0.249 (0.232)

‘Low data’ conditions shows a substantial increase in MSE compared to 

the real-data baseline, indicating reduced predictive utility. However, 

applying techniques such as ‘AVG,’ ‘Pre-train,’ or ‘DRS’ significantly re-

duces the MSE, bringing it closer to the values obtained in the ‘Big data’ 

scenario. This validates the practical benefits of introducing inductive 

biases even in regression contexts. The technique ‘MAML,’ in this case, 

appears less effective in terms of utility, likely due to the higher sensi-

tivity of regression tasks to noise and instability during meta-learning 

optimization.

Ultimately, subtable (c) in Table 1 presents the results obtained for 

the Letter dataset, which involves a challenging multiclass classification 

task with 26 output classes. Regarding the divergence metrics, the appli-

cation of the proposed techniques consistently improves JS divergence 

for the VAE model, except for ‘MAML,’ which yields no improvement 

over the baseline scenario. A similar trend is observed in KL diver-

gence: while most techniques achieve a notable reduction, ‘MAML’ again 

fails to improve over the baseline, possibly due to optimization instabil-

ity or suboptimal adaptation in this high-class-cardinality setting. For 

the CTGAN model, we observe no improvement in JS divergence but 

a significant reduction in KL divergence. In terms of utility validation, 

measured via accuracy, the only meaningful improvement over the ‘Low 

data’ baseline is observed with the ‘DRS’ technique. All other meth-

ods yield marginal gains or similar performance, indicating that despite 

improvements in distributional similarity, they do not translate into en-

hanced classification performance for this dataset. This may be due to 

the complexity of the classification task or the need for more targeted 

biasing strategies to better capture high-granularity class structures 

better.

Table 2 reports the gains obtained when applying the proposed 

methodologies to the VAE model, measured as the absolute and rela-

tive improvement in JS and KL divergence compared to the baseline 

‘Low data’ scenario. The results show consistent improvements across 

most methods and datasets, with the most significant and robust gains 

achieved using the ‘AVG’ strategy. While the ‘Pre-train’ and ‘DRS’ tech-

niques also show positive and consistent gains in both divergence 

metrics, the performance of ‘MAML’ is notably weaker and less sta-

ble. Although ‘MAML’ yields some improvement in the Adult dataset, 

it fails to generalize across others and, in some cases, degrades KL 

divergence (e.g., King). This limited performance may stem from the 

nature of ‘MAML,’ which requires a diverse set of tasks for effec-

tive meta-learning—something not fully met with only 10 training 

seeds per dataset. Overall, these findings confirm that the proposed 

inductive bias strategies enhance the fidelity of synthetic data gener-

ation, with ‘AVG,’ ‘Pre-train,’ and ‘DRS’ emerging as the most effective 

techniques.

Interestingly, the accuracy achieved when training with a limited 

number of real samples closely approaches that obtained under the 

‘Big data’ configuration. This suggests that a small subset of the data 

may retain the most critical discriminative information required for the 

task. Furthermore, even in scenarios where divergence metrics indi-

cate substantial discrepancies in the joint distribution, the utility metric 

(measured via accuracy) remains high. This observation implies that

the generative model is effectively capturing and reproducing key in-

formative features, which are sufficient for maintaining classification 

performance despite broader distributional misalignments.

Finally, it is important to acknowledge the varying computational de-

mands of the compared methods. Model averaging is the most efficient 

approach, as inductive bias generation only involves calculating a mean, 

resulting in minimal computational overhead. In contrast, ‘MAML’ 

exhibits the highest computational load due to its intricate optimiza-

tion procedure. ‘Pre-train’ and ‘DRS’ fall between these two extremes, 

both requiring the training of a DGM to establish the inductive bias. 

Considering these findings alongside the results presented in Table 2, 

we recommend against using ‘MAML.’ It offers minimal performance 

gains with significant computational costs. The other methods, on the 

other hand, provide a more favorable trade-off between computational 

efficiency and performance. Furthermore, as detailed in Appendix A, 

reliably quantifying the benefits of our methodology in a realistic, 

limited-data setting is challenging. This implies that validation with a 

large number of samples is necessary to definitively assess which of our 

proposed inductive bias techniques yield superior results for a specific 

dataset. However, the experimental results strongly suggest potential 

gains that warrant further exploration.

4. Conclusions

This research proposed a novel approach to generate synthetic tab-

ular data using DGMs in the context of limited datasets. Our approach 

leverages four distinct techniques to artificially introduce an inductive 

bias that guides the DGM toward generating more realistic and informa-

tive synthetic data samples. These techniques encompass two transfer 

learning approaches — pre-training and model averaging — and two 

meta-learning approaches: MAML and DRS. To facilitate the applica-

tion of model averaging, MAML, and DRS, we employ the VAE model 

from [17] and train multiple instances with different random seeds. 

This enables us to leverage the ensemble properties of the VAE mod-

els for techniques such as model averaging and further facilitates the 

application of meta-learning algorithms like MAML and DRS. We also 

utilized the CTGAN [7] to evaluate pre-training and compare it with 

other well-known models’ architectures for generating synthetic tabu-

lar data. Our approach offers several advantages over existing methods. 

Firstly, it effectively addresses the challenge of generating realistic syn-

thetic data from small datasets, a common limitation in many real-world 

applications. Secondly, the use of transfer learning and meta-learning 

techniques enhances the inductive bias of the DGM, leading to more 

meaningful and informative synthetic data samples. However, it is also 

important to acknowledge the trade-offs associated with our method-

ology. Training VAEs with these techniques requires training multiple 

VAE models with different random seeds. This can lead to a signifi-

cant increase in computational cost compared to simpler DGM training 

methods. While divergence metrics provide a valuable measure of dis-

tributional similarity, their ability to reliably assess the improvement 

in synthetic data quality for specific downstream tasks can be limited, 

especially with small datasets, as detailed in Appendix A.
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In conclusion, our approach offers a promising solution for generat-

ing high-quality synthetic tabular data from small datasets, particularly 

when VAEs apply transfer learning techniques. This work contributes 

to the generation of synthetic data and machine-learning applications 

that rely on limited data. Building on this foundation, future research 

should extend our methodology to other DGMs, such as diffusion mod-

els or normalizing flows, which may require adapting the bias injection 

techniques to new architectures. It would also be beneficial to inte-

grate domain-specific priors or structural knowledge, especially in fields 

such as medicine or engineering, where expert information can enhance 

the fidelity of the generated results. Improving evaluation strategies be-

yond distributional metrics (particularly under low validation budgets) 

remains a key challenge, and incorporating task-aware or uncertainty-

aware metrics could be a promising direction. Lastly, automating hyper-

parameter tuning and seed selection through meta-configuration tools or 

Bayesian optimization could reduce manual intervention and improve 

reproducibility. Overall, our work presents a general and extensible 

framework for enhancing synthetic data generation in low-resource tab-

ular settings, offering a practical solution for real-world applications that 

require privacy-preserving and high-fidelity data synthesis.

Altogether, our methodology offers a flexible and extensible solution 

for generating high-fidelity synthetic data under small-sample con-

straints. By combining principled inductive bias strategies with scalable 

generative modeling, we lay the groundwork for future developments 

in privacy-preserving, data-efficient machine learning across domains 

where real data are scarce or sensitive.
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Appendix A. Additional experiments under constrained validation

settings

To assess the impact of sample size on divergence metrics, we con-

ducted additional validation using reduced samples for 𝑀 and 𝐿, setting 

𝑀 = 100 and 𝐿 = 100 to simulate a low-data scenario. As high-

lighted in [26], sufficient samples are crucial for accurate distribution 

comparisons, so we expected less reliable divergence results in this 

setting.

Table A.3 shows that, under constrained validation conditions (𝑀 = 

100, 𝐿 = 100), the improvements observed with our proposed techniques 

are less consistent across datasets. Divergence values, particularly for 

JS, remain artificially low, suggesting that small validation sets lack the 

statistical power to capture meaningful distributional differences. This 

can lead to misleading conclusions about the similarity between real and 

synthetic distributions. In contrast, utility validation remains relatively 

stable across most cases, showing similar trends to those observed with 

larger 𝑀 and 𝐿 values. This indicates that the generative models are 

able to capture the key informative features needed for classification 

or regression, even when the global distributional alignment cannot be 

reliably assessed due to sample scarcity.

Appendix B. Additional datasets

In addition to the three main datasets described in Section 3.1, we 

also evaluated our methodology on two supplementary public datasets. 

These additional datasets provide further evidence of the generaliz-

ability of our approach across diverse domains and data modalities. 

Their inclusion reinforces the robustness of our findings beyond the core 

evaluation set. Below, we describe each of them:

• News: The News Popularity Prediction dataset [58] includes 39,644

samples and 58 features from articles published on the Mashable 

news blog. It is a multivariate dataset with continuous and categor-

ical variables that predict article popularity based on social media 

shares.

• Intrusion: The KDD Cup 1999 Data [59] consists of 494,021 sam-

ples and 39 features for classifying connections in a military network 

environment. It contains categorical, integer, and binary attributes 

and was used in The Third Knowledge Discovery and Data Mining 

Competition.

These datasets were selected to diversify the experimental setting in 

terms of sample size, number of features, and classification difficulty. As 

with the primary datasets, they were used to test both divergence-based 

and utility-based evaluations under different data scarcity scenarios. 

Results for these datasets can be found in Table B.4.

Table B.4 confirms the generalizability of our findings across the 

additional News and Intrusion datasets. Consistent with the main exper-

imental results, the VAE model outperforms CTGAN in both divergence 

and utility metrics across most scenarios. Furthermore, the proposed 

techniques—particularly ‘Pre-train,’ ‘AVG,’ and ‘DRS’—consistently im-

prove over the baseline (‘Low data’) in terms of JS and KL divergence, 

as well as downstream performance (accuracy). The only exception
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Table A.3 

Additional results for each scenario. ‘Big data’ represents the ideal case with ample samples (𝑁 = 10, 000) for reliable synthetic data generation, while ‘Low data’ 

simulates a more constrained setting (𝑁 = 300). The ‘Low data’ rows reflect a less reliable validation case (𝑀 = 100, 𝐿 = 100). The next rows compare metrics obtained 

with different methodologies (‘Pre-train’, ‘AVG’, ‘MAML’, and ‘DRS’) in the ‘Low data’ setting. Results are shown as mean (std), where lower values indicate better 

performance. For divergence metrics (JS, KL), lower values indicate better performance. For utility metrics, the interpretation depends on the task: for classification 

tasks (accuracy), higher values are better; for regression tasks (MSE), lower values are better. Bold values denote improvements due to the technique. A slightly 

negative divergence value close to zero is acceptable, as it reflects an estimation error from the divergence approximation.

Scenario N M L Divergence validation Utility validation

VAE JS CTGAN JS VAE KL CTGAN KL Real Acc VAE Synth Acc CTGAN Synth Acc

(a) Adult dataset

Big data 10000 7500 1000 0.115 (0.002) 0.136 (0.002) 0.272 (0.014) 0.385 (0.025) 0.777 (0.001) 0.748 (0.002) 0.739 (0.006)

Low data 300 100 100 0.113 (0.009) 0.515 (0.011) 0.773 (0.181) 2.694 (0.381) 0.726 (0.006) 0.669 (0.004) 0.675 (0.007)

Pre-train 300 100 100 0.001 (0.001) 0.282 (0.017) 0.037 (0.139) 1.115 (0.265) N/A 0.727 (0.003) 0.692 (0.004)

AVG 300 100 100 0.003 (0.004) N/A 0.085 (0.076) N/A N/A 0.729 (0.004) N/A

MAML 300 100 100 0.105 (0.004) N/A 0.474 (0.099) N/A N/A 0.699 (0.005) N/A

DRS 300 100 100 0.001 (0.001) N/A −0.020 (0.109) N/A N/A 0.726 (0.004) N/A

(b) King dataset

Big data 10000 7500 1000 0.742 (0.005) 0.746 (0.004) 3.243 (0.152) 2.920 (0.099) 0.325 (0.002) 0.375 (0.000) 0.369 (0.000)

Low data 300 100 100 0.158 (0.060) 0.580 (0.042) 1.171 (0.270) 4.526 (0.699) 0.371 (0.022) 0.520 (0.000) 0.691 (0.000)

Pre-train 300 100 100 0.269 (0.037) 0.694 (0.008) 0.908 (0.065) 2.958 (0.230) N/A 0.446 (0.000) 0.536 (0.000)

AVG 300 100 100 −0.001 (0.008) N/A 0.006 (0.080) N/A N/A 0.363 (0.000) N/A

MAML 300 100 100 0.495 (0.051) N/A 2.516 (0.390) N/A N/A 0.765 (0.000) N/A

DRS 300 100 100 0.250 (0.032) N/A 0.944 (0.209) N/A N/A 0.442 (0.000) N/A

(c) Letter dataset

Big data 10000 7500 1000 0.395 (0.004) 0.635 (0.005) 0.911 (0.027) 1.678 (0.059) 0.861 (0.003) 0.672 (0.007) 0.066 (0.013)

Low data 300 100 100 0.055 (0.035) 0.826 (0.004) 0.978 (0.241) 7.528 (1.065) 0.609 (0.027) 0.401 (0.007) 0.038 (0.004)

Pre-train 300 100 100 0.049 (0.005) 0.619 (0.022) 0.297 (0.101) 4.856 (0.431) N/A 0.392 (0.005) 0.040 (0.013)

AVG 300 100 100 −0.020 (0.017) N/A 0.322 (0.100) N/A N/A 0.405 (0.006) N/A

MAML 300 100 100 0.014 (0.045) N/A 0.845 (0.286) N/A N/A 0.302 (0.008) N/A

DRS 300 100 100 0.007 (0.032) N/A 0.360 (0.090) N/A N/A 0.429 (0.006) N/A

Table B.4 

Results for additional datasets in each scenario. ‘Big data’ represents the ideal case with ample samples (𝑁 = 10, 000) for reliable synthetic data generation, while 

‘Low data’ simulates a more constrained setting (𝑁 = 300). Two ‘Low data’ rows reflect different validation sample sizes: a more reliable case (𝑀 = 7500, 𝐿 = 1000) 

and a less reliable case (𝑀 = 100, 𝐿 = 100), which apply to the following rows. The next rows compare metrics obtained with different methodologies (‘Pre-train,’ 

‘AVG,’ ‘MAML,’ and ‘DRS’) in the ‘Low data’ setting. Results are shown as mean (std), where lower values indicate better performance. For divergence metrics (JS, 

KL), lower values indicate better performance. For utility metrics, the interpretation depends on the task: for classification tasks (accuracy), higher values are better; 

for regression tasks (MSE), lower values are better. Bold values denote improvements due to the technique. A slightly negative divergence value close to zero is 

acceptable, as it reflects an estimation error from the divergence approximation.

Scenario N M L Divergence validation Utility validation

VAE JS CTGAN JS VAE KL CTGAN KL Real Acc VAE Synth Acc CTGAN Synth Acc

(a) News dataset

Big data 10000 7500 1000 0.223 (0.002) 0.484 (0.010) 0.525 (0.025) 1.432 (0.066) 0.699 (0.007) 0.622 (0.002) 0.616 (0.008)

Low data 300 7500 1000 0.831 (0.004) 0.966 (0.002) 4.301 (0.114) 10.961 (0.317) 0.696 (0.009) 0.564 (0.016) 0.470 (0.030)

Low data 300 100 100 0.182 (0.022) 0.864 (0.017) 0.460 (0.120) 5.673 (0.546) 0.555 (0.043) 0.576 (0.009) 0.512 (0.028)

Pre-train 300 7500 1000 0.734 (0.005) 0.935 (0.001) 3.403 (0.098) 10.441 (0.544) N/A 0.596 (0.003) 0.525 (0.015)

Pre-train 300 100 100 0.009 (0.009) 0.701 (0.010) 0.060 (0.088) 3.868 (0.570) N/A 0.595 (0.004) 0.513 (0.023)

AVG 300 7500 1000 0.618 (0.003) N/A 2.542 (0.054) N/A N/A 0.588 (0.002) N/A

AVG 300 100 100 −0.001 (0.004) N/A −0.101 (0.114) N/A N/A 0.587 (0.002) N/A

MAML 300 7500 1000 0.831 (0.008) N/A 4.381 (0.129) N/A N/A 0.577 (0.008) N/A

MAML 300 100 100 0.002 (0.003) N/A 0.101 (0.132) N/A N/A 0.580 (0.006) N/A

DRS 300 7500 1000 0.603 (0.015) N/A 2.467 (0.050) N/A N/A 0.605 (0.011) N/A

DRS 300 100 100 0.026 (0.006) N/A 0.034 (0.120) N/A N/A 0.609 (0.010) N/A

(b) Intrusion dataset

Big data 10000 7500 1000 0.795 (0.014) 0.459 (0.002) 3.094 (0.113) 1.724 (0.106) 0.742 (0.369) 0.330 (0.178) 0.590 (0.096)

Low data 300 7500 1000 0.936 (0.003) 0.969 (0.004) 8.297 (0.516) 9.877 (0.770) 0.844 (0.173) 0.567 (0.107) 0.733 (0.008)

Low data 300 100 100 0.228 (0.033) 0.506 (0.021) 1.600 (1.133) 4.353 (0.610) 0.917 (0.010) 0.575 (0.036) 0.735 (0.025)

Pre-train 300 7500 1000 0.797 (0.008) 0.965 (0.001) 4.103 (0.243) 8.409 (0.842) N/A 0.756 (0.022) 0.755 (0.016)

Pre-train 300 100 100 0.066 (0.014) 0.502 (0.044) 0.236 (0.076) 3.680 (0.333) N/A 0.780 (0.011) 0.759 (0.013)

AVG 300 7500 1000 0.850 (0.002) N/A 4.934 (0.134) N/A N/A 0.801 (0.007) N/A

AVG 300 100 100 0.058 (0.003) N/A 0.330 (0.114) N/A N/A 0.798 (0.006) N/A

MAML 300 7500 1000 0.945 (0.005) N/A 8.046 (0.457) N/A N/A 0.652 (0.061) N/A

MAML 300 100 100 0.368 (0.023) N/A 3.131 (0.555) N/A N/A 0.532 (0.145) N/A

DRS 300 7500 1000 0.844 (0.015) N/A 5.613 (0.435) N/A N/A 0.544 (0.242) N/A

DRS 300 100 100 0.043 (0.011) N/A 0.289 (0.187) N/A N/A 0.585 (0.121) N/A

remains ‘MAML,’ which shows less stable behavior and, in several 

cases, fails to provide improvements. These results reinforce the ro-

bustness of our methodology and its applicability to diverse tabular 

domains.

Appendix C. Computational resources and training time analysis

All experiments were conducted on a prosumer-grade workstation 

equipped with an AMD Ryzen Threadripper PRO 5975WX processor fea-

turing 32 cores and 64 threads. This CPU operates at a base frequency of
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Table C.5 

Average execution times (in seconds) across 10 runs with different random seeds for the various scenarios and datasets.

Dataset Big data Low data Pre-train AVG MAML DRS

VAE CTGAN VAE CTGAN VAE CTGAN VAE CTGAN VAE CTGAN VAE CTGAN

Adult 1893.25 382.356 61.6617 19.0268 1367.84 402.089 145.509 – 125.314 – 463.661 –

News 7248.41 532.651 115.353 27.1911 4593.78 558.03 139.851 – 534.483 – 386.022 –

King 1282.78 393.782 70.4384 20.6333 567.242 416.421 75.209 – 204.017 – 133.523 –

Intrusion 1651.26 570.559 82.2507 29.3055 4909.34 604.459 187.802 – 234.104 – 923.386 –

Letter 821.65 299.236 96.9268 16.5833 776.11 323.648 84.3122 – 193.772 – 210.785 –

Average 2579.87 435.317 85.3269 22.94798 2442.06 460.929 126.537 – 258.338 – 423.875 –

3.6 GHz with a boost up to 4.5 GHz, offering substantial parallel comput-

ing capacity. The machine was configured with 128 GB of DDR4 RAM 

and a 1 TB NVMe SSD for fast data access, along with additional storage 

on dual 4 TB HDDs. Although the workstation included an NVIDIA RTX 

4090 graphics card, GPU acceleration was not required for training the 

VAE-based model, as all experiments involving the VAE were performed 

on the CPU. On the other hand, the CTGAN implementation used in this 

work utilizes GPU acceleration by default.

Despite the added complexity introduced by some of the proposed 

techniques, training times remained practical for both models. Table C.5 

summarizes the average training durations for each dataset and method-

ology over 10 runs using different random seeds. The VAE, although 

trained with 10 different seeds, achieved competitive training times. 

Even in the most demanding scenario (‘Big data’), the average train-

ing time across datasets remained below 37 min (2198 s), and no single 

experiment exceeded one hour. CTGAN experiments were significantly 

faster, especially due to GPU usage, yet both architectures can be consid-

ered efficient and lightweight in practice. Importantly, for both models, 

applying the proposed methodologies in the low-data regime, such as 

‘Pre-train,’ ‘AVG,’ ‘MAML,’ and ‘DRS,’ results in only moderate increases 

in training time compared to the baseline ‘Low data’ scenario. This 

demonstrates the practicality and scalability of our approach: the ben-

efits of inductive bias integration are achieved with minimal additional 

computational cost, making the methods suitable for real-world settings 

where time and resources are constrained.

Overall, this analysis demonstrates that the benefits provided by in-

ductive bias techniques come at a relatively low computational cost. 

Even when training multiple VAE instances or applying more com-

plex optimization procedures, the observed increases in runtime remain 

within practical limits. This reinforces the applicability of our methods 

in real-world, resource-constrained environments and supports their use 

in privacy-sensitive domains where synthetic data are needed, but GPU 

availability may be limited.

Data availability

I have shared the link in the manuscript. 
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