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ABSTRACT Membership attacks pose a major issue in terms of secure machine learning, especially in
cases in which real data are sensitive. Models tend to be overconfident in predicting labels from the training
set. Nevertheless, its application has traditionally been limited to supervised models, while in the case of
generative models we have found that there is a lack of theoretical foundations to bring this concept into the
scene. Hence, this article provides the theoretical background in the context of membership inference attacks
and their relationship to generative models, including the derivation of an evaluation metric. In addition,
the link between these types of attack and differential privacy is shown to be a particular case. Lastly, we
empirically show through simulations the intuition and application of the concepts derived.

INDEX TERMS Generative AI, computer security, machine learning, private machine learning, differential
privacy.

I. INTRODUCTION
Synthetic data generation is a topic that is attracting more
and more attention. Generative models have already shown
great applicability in fields where data is abundant, such as
language and vision [22], [30]. Furthermore, this trend has
successfully reached fields where data have confidential or
sensitive restrictions, in which synthetic data provide a valu-
able alternative for downstream applications [9], [14], and
even for data anonymisation [17].

However, the scarcity of data in some domains poses sev-
eral challenges in ensuring the quality and confidentiality
of synthetic samples [11]. Therefore, synthetic data should
be evaluated in terms of fidelity, privacy, and utility [19].
This work focusses on the security of synthetic data. The
broader concept of security in machine learning, based on the
taxonomy proposed in [4], involves three different types of
attack:

1) Attacks against integrity. The system malfunctions
without noticing.

2) Attacks against a system’s availability. The system does
not respond to requests from legitimate users.

3) Attacks against privacy and confidentiality. The at-
tacker’s objective is to obtain private information about
the system, its users, or data.

Based on this classification, the context for our work arises
around the latter, where privacy should be preserved while
guaranteeing the utility of synthetic data for downstream
tasks. From the privacy and confidentiality perspective (which
we will shorten as privacy from now on), the survey [23]
provides a comprehensive study. They define a threat model
that involves several actors and assets, including information
about the model and training data. Therefore, attacks can be
considered as black box, where the attacker has no knowl-
edge of the assets; and white box, where the adversary has
complete access to the victim’s model parameters or learning
updates [12]. Between these two, there is a wide range of
possibilities where the attacker does not have full access to
the assets, but rather knows partial information.
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In addition to classification in terms of adversary
knowledge, there are alternative typologies that focus on the
target of the attacker. Common attacks are membership infer-
ence attacks [24] and reconstruction attacks [25], which are
related to the joint distribution of training data. This work
focusses on the former, membership inference attacks (MIA),
which attempt to determine whether an input sample was used
to train a model. This type of attack can also be viewed from
the perspective of data audit to determine whether a sample
has been used without authorisation [20].

MIA has been used to disclose information for a wide
variety of machine learning models, including, but not lim-
ited to, traditional machine learning or deep learning models
used for classification and regression [16]. However, this work
focusses on its application to generative models, in which the
model can be seen as the probability distribution of the real
data. The need for a privacy analysis in generative models is
currently a topic of importance due to the abuse of existing
online data [10], used to train, among others, large language
models1. Privacy mechanisms could play a vital role in fu-
ture policies on massive models. In that regard, we propose
a unified theoretical framework to express MIA, which is
particularised for several well-established methods.

II. OBJECTIVES AND CONTRIBUTIONS
The goal of this article is to present a unified theoretical
framework, derived from Bayesian analysis, that encompasses
the definition of MIA and its relationship with several state-of-
the-art approaches. More specifically, this work presents the
following.
� A Bayesian derivation for an expression to evaluate MIA

risk. Note that this work extends the proof from [6] for
black-box attacks. This derivation includes the actual
metric we propose and the theoretical framework behind
the metric, which is missing in the state-of-the-art.

� The relationship between the metric proposed with sev-
eral particular cases from the state of the art whose aim
is to estimate MIA as well. For that, we demonstrate how
our metric provides a general common background from
which the rest of metrics can be derived.

� A novel definition of differential privacy (DP) in the
context of generative models and its relationship to MIA.
In contrast to other methods with no theoretical guar-
antees, we propose a theoretical framework for DP that
is directly linked to synthetic data. Differentially private
stochastic gradient descent is a well-known example in
which the DP framework is applied to the neural net-
work training algorithm but with no guarantee of DP
constraints on the output.

� A detailed study of the implications of the assets includ-
ing their impact on the metric by running simulations. In

1As an example, Meta has been sued for infringing on property
rights for downloading books with copyrights to train their models:
https://www.reuters.com/technology/artificial-intelligence/french-
publishers-authors-file-lawsuit-against-meta-ai-case-2025-03-12

TABLE 1. Summary of Mathematical Notation

this article, the term asset includes the prior information,
the reference set, the models, etc.

III. MATHEMATICAL CONCEPTS AND NOTATION
This section provides an overview of all the mathematical con-
cepts included within the text. Table 1 collects these concepts
and provides a brief explanation of each.

Throughout this text, two key mathematical objects appear
frequently: the training set and the reference set. Both are
made up of real samples and are mutually exclusive subsets
of S. These sets play a crucial role in the contexts of MIA and
DP, as detailed below.

1) MIA context:
� The victim model, denoted by its parameters θv , is

trained using the training set.
� The reference model, denoted by its parameters θr , is

trained using the reference set.
� The reference model provides a baseline for the

attacker, allowing density comparisons between syn-
thetic and real data. High-density regions in the
synthetic domain must be calibrated, as they may
overlap with high-density regions in real data. Thus,
if high-density regions coincide in both domains,
there is no reason to suspect information leakage.

2) DP context:
� DP builds on the MIA framework by refining the

definition of the reference set.
� Specifically, the reference model θr is redefined as
θv′ , the model trained on S−q (i.e., the training set
excluding a query sample xq).

� This formulation expresses DP as a special case
of MIA, where the reference set is a neighbouring
dataset, i.e. two datasets are neighbouring if they
differ in a single sample. In this case, the difference is
established so that the reference set omits one sample
from the training set, that is, the query.
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IV. METHODOLOGY
A. PROBLEM STATEMENT AND ANALYSIS
MIA can be defined as the inference problem of estimating
the boolean membership of a given sample, usually denoted
as a query, given the knowledge an attacker has of the envi-
ronment. This inference problem (I) is stated in (1), where M
represents the knowledge that the attacker has about the victim
model, and St refers to the data set used to train the model.
The term knowledge is expressed through the parameters of
the model constructed by the attacker, θv . In that equation,
the subindex q denotes the query; hence xq is the sample and
mq ∈ {0, 1} is the membership boolean.

I (θv, xq ) = p(xq ∈ St |M) = p(mq = 1|θv, xq ) (1)

Let us define the following sets that will be used subse-
quently, being S−q ⊂ St ⊂ S.

S = (xi,mi )
N
i=1

St = {xi ∈ S|mi = 1}
S−q = {si ∈ St |i �= q}

These sets denote, respectively, all real data (where N de-
notes the total number of samples), the real data used for
training (i.e., those with mi = 1), and the training set used
for training except for a single query sample (i.e., St except
the query xq). Hence, the membership probability can be ex-
pressed as

p(mq = 1|θv, xq ) =
∫

p(mq = 1, S−q|θv, xq )dS−q

=
∫

p(mq = 1|θv, xq, S−q )p(S−q )dS−q

(2)

This expression can be manipulated using Bayes’ theorem
(see Appendix A) to obtain the canonical equation for the
MIA problem (3), in which σ is the sigmoid function.

p(mq = 1|θv, xq )

=
∫
σ

(
ln

p(θv|mq = 1, xq, S−q )p(mq = 1)

p(θv|mq = 0, xq, S−q )p(mq = 0)

)

p(S−q )dS−q (3)

Let us assume that the posterior distribution of θv is pro-
portional to the exponential function, while the prior over
θv is uniform in its domain, then we can derive (4) (see
Appendix B).

p(mq = 1|θv, xq )

=
∫
σ

[ (−d (xq, θv )
)

− ln
∫

exp
(−d (xq, φv )

)
p(φv|S−q)dφv

+ ln
p(mq = 1)

p(mq = 0)

]
p(S−q )dS−q (4)

Given a well-known approximation for the expression
within the integral (delta approximation), we can further sim-
plify the equation to obtain the desired metric for MIA (5) (see
Appendix C for details).

I (θv, xq ) ≈ σ

[
ln

p(xq|θv )

p(xq|θr )
+ ln

p(mq = 1)

p(mq = 0)

]
(5)

In this equation, p(xq|θ ) represents the likelihood of xq with
respect to the victim model θv or with respect to the reference
model θr . As we treat estimates as actual probabilities, the
final expression must be transformed into the interval [0, 1],
so that both the estimate and the error are bounded.

Furthermore, the transformation σ [ln(·)] can be gener-
alised to other monotonic transformations f . However, since
I (θv, xq ) is an actual probability, f must satisfy that it is
bounded in the interval [0, 1]. Lastly, note that the last term
of the final expression can be cancelled out in the case of an
uninformative uniform prior, that is,

f

⎛
⎝ p(xq|θv )

p(xq|θr )�������1
p(mq = 1)

p(mq = 0)

⎞
⎠ = f

(
p(xq|θv )

p(xq|θr )

)

B. EXISTENT APPROACHES AS PARTICULARISATONS
In the state of the art, there are several approaches to estimate
MIA that are particular cases of our metric. This section links
our general framework to each of them.

An initial exploration of the topic is given in [15], where
they approximated MIA with the expression

f

(
p(xq|θv )

p(xq|θr )

)
≈ p(xq|θv )

1
≈ 1

Nh

n∑
i=1

K

(
xq − gi

h

)

where they denoted gi as each synthetic sample obtained from
the generative model. Note that this approach employs a ker-
nel (K) to build a density estimate (kernel density estimate)
to compute the density for the victim model. In addition, they
ignored the effect of the denominator, as the density for the
reference model was not treated in their analysis. In contrast,
we take into account the effect of the denominator through a
reference set.

Moreover, in [13], the approximation was driven by a clas-
sifier/discriminator such that

f

(
p(xq|θv )

p(xq|θr )

)
≈ p(xq|θv )

p(xq|θr )
= r(xq ) ≈ rψ (xq )

where r(x) is the density ratio evaluated at xq, which is ap-
proximated with the parameters ψ as can be seen in [26]. In
this way, they parameterized a complex density by relying on
a neural network to approximate it. In contrast to our metric,
they did not provide an actual probability, which limits the
expressiveness of their metric.

Furthermore, [6] and [7] expressed the dependency with
respect to the parameters via the data itself, that is,

f

(
p(xq|θv )

p(xq|θr )

)
≈ − ln

(
exp

(−d (xq, θv )
)

exp
(−d (xq, θr )

)
)

VOLUME 6, 2025 803



GALENDE ET AL.: MEMBERSHIP INFERENCE ATTACKS AND DIFFERENTIAL PRIVACY: A STUDY WITHIN THE CONTEXT OF GENERATIVE MODELS

= d (xq, θv ) − d (xq, θr )

≈ min
xv

{d (xq, xv )|xv ∈ Sv}

− min
xr

{d (xq, xr )|xr ∈ Sr}
where Sv and Sr denote, respectively, a data set produced
with the victim model and a data set produced by a reference
model, and where we assume that the normalisation constant
ratio is approximately one. In this case, they proposed a quan-
tile to summarise the whole distribution, which may limit the
expressiveness of their analysis.

Lastly, [27] expressed the inference problem as [13], that is,
with the ratio of densities. The main difference between both
is that in this case they estimated this ratio by first estimating
both densities either through a kernel density estimate or via
normalising flows.

Hence, the approaches [27] and [13] are similar to ours.
However, several key elements are missing in the previous
work:
� A unified theoretical approach derived through Bayesian

analysis to obtain the metric.
� A probabilistic perspective such that f is well known.

Indeed, within our Bayesian framework, we propose the
sigmoid function.

� Related to the previous point, the effect of the prior is not
considered.

C. RELATION TO DIFFERENTIAL PRIVACY
DP, as established in [8], is a framework originally developed
in the context of statistical databases to quantify and control
the loss of privacy resulting from the release of data derived
from such databases. In a statistical database, users query
aggregated information rather than access individual records
directly.

The concept of ε-Differential Privacy (ε-DP) formalises
this framework by introducing a parameter ε (epsilon) to
quantify privacy loss. A mechanism satisfies ε-DP if the in-
clusion or exclusion of a single database entry causes only
a slight change in the probability distribution of the output.
Specifically, for all possible pairs of datasets differing in one
entry, and for all possible outputs, the probability that the
mechanism produces a given output differs by at most a factor
of eε .

This ensures that any single individual’s data point has a
minimal impact on the overall output, preventing significant
information leakage even if an attacker gains access to the
results of differentially private queries. Originally coined for
databases, ε-DP has evolved to encompass machine learning
models, providing a well-known framework for privacy eval-
uation in various data-driven fields [18].

The mathematical definition of ε-DP [8] is

p(A(D1) ∈ Q)

p(A(D2) ∈ Q)
≤ eε

where A denotes a randomised algorithm applied on a data set
Dn, D1 is a neighbour data set with respect to D2, and Q is the

image of A. In the context of generative models, we can use
the following properties to propose a new definition.
� A generative model M is a randomised algorithm as

its behaviour depends on a random variable commonly
expressed as Z , as in the case of the latent space of a
variational autoencoder, or the input noise for a genera-
tive adversarial network.

� A different M is learnt from each data set, so we know
that M(D1) �= M(D2) if these two sets are different. We
can define D1 = St and D2 = S−q as these two data sets
are neighbouring.

� We are no longer interested in the original definition of
membership with respect to the image Q, but in member-
ship with respect to the training set.

Let us now try to find a relationship between the proposed
metric for MIA and ε-DP. For that, we can start by setting an
upper threshold in the MIA metric I (θv, xq ) ≤ ω, where ω is a
probability; then we rearrange the terms so that we can derive
an expression for ε, which is the main driver for DP.

I (θv, xq ) = σ

[
ln

p(xq|θv )p(mq = 1)

p(xq|θr )p(mq = 0)

]
≤ ω

ln
p(xq|θv )p(mq = 1)

p(xq|θr )p(mq = 0)
≤ σ−1(ω) = ln

ω

1 − ω

p(xq|θv )p(mq = 1)

p(xq|θr )p(mq = 0)
≤ ω

1 − ω
= exp

(
ln

ω

1 − ω

)

We now omit the influence of the prior ratio and assume that
θr = θ ′

v , meaning that the reference model has been trained
with S−q. Hence, there is a strong relationship with respect
to MIA analysis, but in this case the reference model learns
from the training set except for the query sample S−q. Thus,
we have

p(xq|θv )

p(xq|θ ′
v )

≤ exp

(
ln

ω

1 − ω

)
= eε (6)

Therefore, we can derive an expression for ε in the context
of DP based on the concept of MIA given two neighbouring
data sets for the victim and reference sets.

ε = ln
ω

1 − ω

This relationship shows how DP can be considered as a
particular case of MIA in the case of a generative model.
Hence, its estimation is related to the estimation of the bound
in terms of MIA.

V. RESULTS
This section provides insights and evidence from the vari-
ous perspectives of theoretical analysis by examining several
simulations. First, we examine the modelling problem con-
sistent of a prior and posterior Gaussian mixture, being the
trained model subject to overfitting up to some degree; sec-
ond, we demonstrate that any prior belief could boost the
attacker’s performance; third, we show the relationship be-
tween overfitting and DP through particularising MIA; fourth,
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FIGURE 1. Kernel density of the proposed Gaussian mixture used as
example.

we hypothesise about a more likely situation in which real
data is not achievable but the attacker possesses a synthetic
data set similar to the real data; lastly, we show a real-world
application through image generation.

A. MODELING PROBLEM
Consider the mixture of two Gaussian distributions, with the
components’ distribution being {π1 = 0.7, ˜π2 = 0.3}, means
at μ1 = [1, 1] and μ2 = [−1,−1], and both having the same
covariance matrix given by

	 =
(

1.0 0.2

0.2 1.0

)

The density plot of this distribution is shown in Fig. 1,
where the colour indicates the density approximated through
kernel density estimation at that coordinates.

We approximate this distribution by fitting another Gaus-
sian mixture via the expectation maximisation (EM) algo-
rithm. The degree of overfitting can be controlled through
the number of components of the learnt distribution, which
is a hyperparameter of EM. The learnt distribution serves to
demonstrate the effect of overfitting.

B. EFFECT OF THE PRIOR IN THE METRIC
The final expression after the derivation, (5), expresses the
inference problem as a product between the likelihood ra-
tio and the prior ratio. Prior belief is an important topic in
Bayesian analysis, but it is normally problem-dependent and
poses several challenges, the most important being the domain
knowledge of the data and the physical processes involved in
the context of those data.

A situation in which the priors can make a difference occurs
when an attacker possesses a data set that could have been
used to train a model and knows that a subset of it was
likely used during the training phase. Hence, the relationship
between the sets can be expressed as A ⊆ St ⊂ S, where A is
the subset that was likely used for training.

As the size of A increases, the attacker knows more about
St , which, at the limit A = St , produces an almost perfect
membership attack (“perfect” depends on the strength of the
belief: the prior).

FIGURE 2. Results for privacy attacks based on our metric. Each subfigure
illustrates different aspects of the attack’s performance. These subfigures
demonstrate that prior belief can determine the effectiveness of an attack
even in non-overfitting cases.

One widely used metric in the context of MIA is the area
under the curve ROC (AUCROC), which fits in this problem
because it resembles a traditional classification task. Another
widely used metric with potential benefits is the true positive
rate at a low false positive rate (TPR@0.1FPR) [5]. Fig. 2
shows how TPR and AUCROC vary depending on the number
of training samples in which the attacker has a prior belief,
expressed as a ratio over the total number of samples, with
respect to the cardinality of all training samples ( |A|

|St | ). The
aforementioned ratio has an impact on the MIA estimates,
where MIA’s success becomes more likely as this ratio gets
closer to 1.0. In contrast, the curve with a null ratio (0.0)
denotes the situation in which the prior has no effect and the
attack is less effective. Note that in the case of TPR, the curve
exhibits a peak in a model with low overfitting (small number
of components). This could lead to potential leakages in cases
where an attacker takes advantage of prior information.

C. EPSILON AS AN UPPER THRESHOLD
The relationship between overfitting and DP can be studied
within the context of our problem to show how loss of privacy,
measured through ε, increases as the number of components
increases.
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FIGURE 3. Epsilon estimates based on the definition from (6) where the
value is given by the upper threshold from all different selections of xq

from St . The number of components, which is an indicator for overfitting,
determines privacy risk through epsilon. Note that higher epsilons denote
less privacy.

TABLE 2. ε Estimated by Adding a Gaussian Noise to the Training Data
With the Standard Deviation Presented in the First Row in a Setting of 100
Training Samples and 60 Components

The value of ε, interpreted as an upper bound, can be
estimated by iterating over the samples of a dataset and com-
puting the ratio defined in (6). In this ratio, the numerator
corresponds to the density obtained from a model trained with
a data set that includes xq (that is, St ), while the denominator
represents the density of a model trained without xq (that is,
S−q).

The dependence of ε on the degree of overfitting is direct.
Fig. 3 shows how ε increases with the number of components
of the Gaussian mixture of the problem.

Based on previous work [21] along with ours, the concrete
epsilon values may differ, but the trend in Fig. 3 is as expected,
with a higher epsilon, that is, less privacy, as the overfitting
increases due to the growing number of components.

D. EFFECT OF NOISE ON DP
Current research trend focusses on adding a perturbation step
within the training process of generative models [2], [21],
[28]. Overall, this procedure adds noise that frequently comes
from a Laplacian or a Gaussian distribution to the learnt pa-
rameters (or gradients).

To mimic this behaviour, the EM algorithm can be per-
turbed by adding Gaussian noise to the training data. So,
rather than introducing a bias over the parameters directly,
this is indirectly done as these parameters will not model
the original data but a modified version. In this way, we can
observe how DP evolves depending on the magnitude of the
perturbation, as presented in Table 2, where higher magni-
tudes, determined by the scale, imply lower epsilon values.
Thus, increasing the overfitting produces an increase in ε.

E. REFERENCE MODEL VS REFERENCE DATA
The expression derived to estimate the probability of MIA
for a point involves the ratio of the probability of the query
given the parameters of the victim model with respect to the
probability of the query given the parameters of the reference
model. Previous works have paid little attention to how the
latter term can affect the estimation as they have assumed that
there exists a reference set to which the attacker has access.

However, this assumption may not hold, or at least does
not seem to be realistic given that an attacker may not easily
obtain real data. There are several reasons that support this
statement.
� Data are scarce when it comes to sensitive information.

Note that privacy leakages are closely related to the
cardinality of the training data set, so it would not be
unusual that a single dataset exists or at least a single
dataset is possessed by the attacker.

� Distribution shifting could easily lead to errors. Gener-
ative models learn the correlations driving some phe-
nomenon. The variability of data based on their location
or other circumstances could potentially lead to different
correlations, which would make the analysis unsolvable.

� Raw or pseudonimised data seem to be hardly exposed,
while synthetic or anonymous data seem more likely to
be disclosed.

Therefore, for all the reasons exposed, the MIA analysis
may be affected by the definition of Sr and p(xq|θr ). In gen-
eral, previous work has considered two cases (see Section
III.IV-B), the first being the assumption that p(xq|θr ) can be
ignored, while the second being the assumption that p(xq|θr )
indeed emanates from the exact same distribution as St and
not from a learnt probability p̂(X ).

This section proposes an alternative approach, where we
assume that p(xq|θr ) should be treated as another generative
model, which is very similar to the victim model in architec-
ture, but sees different data. Fig. 4 shows the results when a
“shadow” generative model with the exact same architecture
and training algorithm is considered. This result indicates a
performance improvement and stabilisation in terms of AU-
CROC. Additionally, the TPR suggests the presence of a
region where overfitting could lead to membership leakage.

F. CASE STUDY: FASHION-MNIST
Once intuition is clear through white-box simulations, a more
realistic scenario is presented in this section to illustrate the
applicability of this framework in the field of image gener-
ation. Refer to the Github repository in https://github.com/
BorjaArroyo/mia-theoretical-foundations to check the actual
implementation.

The experimental setup is based on a previously pub-
lished generative model [3], evaluated under varying lev-
els of privacy—quantified by the parameter χ2—in the
context of differentially private stochastic gradient descent

2We use χ to avoid confusion with σ , which denotes the sigmoid transfor-
mation.
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FIGURE 4. Variation of classification scores based on our metric due to the
cardinality of the training set for the cases with and without a shadow
model. Each subfigure illustrates different aspects of the attack’s
performance. These results indicate how a synthetic reference set is able
to provide even better results compared to a real reference set.

(DPSGD) [1]. The model is trained on the Fashion-MNIST
data set [29], with the goal of analysing how different values
of χ affect the proposed metric. It is important to note that
our aim is to demonstrate the application of our framework to
an existing approach, specifically the one available at https:
//github.com/alexbie98/dpgan-revisit.

The way in which privacy risk concerns are analysed em-
anates from the causal relationship between overfitting and
DP. As is subsequently mentioned, the generative model sees
just a single example from one of the classes of Fashion-
MNIST. The model tends to generate samples very close to
that unique sample when conditional sampling is applied on
its label. Therefore, we suppose that the most extreme case in
which the density ratio may increase is around that specific
sample. Hence, we pick that unique sample as the query, and
we compute the density ratio at that point. We then assume
that this ratio is a tight estimate of ε as it reflects a suitable
upper bound in terms of density differences.

The simulation process, due to the slow convergence of the
GAN models, is pragmatic in several ways.
� Gradient noise, χ , is defined as the set {0.0, 0.5, 1.0,

1.5, 2.0}.
� The query always belongs to the first class of the fashion-

MNIST data set (T-shirt/top).
� We consider a victim model trained on samples from all

classes except the query class but including the query
sample.

FIGURE 5. Lineplot of the ε values estimated through the approach
described in the text. Overall, the trend demonstrates a decrease in ε, that
is, increasing the privacy guarantees, which can be induced by increasing
the perturbation in DPSGD. These results align with previous results.

� We consider a reference model trained on samples from
all classes but the query class.

� We choose a sufficiently small number of samples per
class: Ni = 50. Hence, the total number of samples for
the victim model is

∑9
i=1 Ni + 1 = 451. Therefore, the

total number of samples for the reference model is 450.
� Density estimation is performed via cascading principal

component analysis and kernel density estimation.
� Several seeds are run to compute an upper threshold of

the metric. We select the maximum value of the ratios
obtained in the process.

Once the modelling problem and its context are understood,
the stages to estimate ε for a specific χ and seed are as follows.

1) The query is selected as the first sample within the first
class. Neighbouring data sets are created by following
the criteria described above. Samples from a class are
included in order until the Ni = 50 threshold is reached.

2) The victim and reference models are trained on their
respective neighbouring dataset. The training process
follows the ideas considered in [3] in which a sched-
uler decides at each iteration what model component
(generator or discriminator) is updated. In contrast to
the repository referenced, we use a conditional GAN to
generate samples of the desired class.

3) For each model, a sufficiently large amount of synthetic
samples is generated with equal representation of each
class, including the query class.

4) A density estimation model is trained for each of these
sets of synthetic samples.

5) Density estimation is performed on the query to evaluate
its likelihood given each synthetic set.

6) The ratio is estimated.
Fig. 5 shows the results obtained through this process in

terms of the upper threshold estimation with respect to various
χ values. The trend of this curve is concordant with the trend
denoted for the Gaussian mixture simulation. Note that the
epsilon rapidly decreases as the perturbation increases.

In addition to these results, we provide some sample images
to demonstrate the effect of the magnitude of DPSGD on the
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FIGURE 6. Table with figures generated from models trained with different
values of χ. From left to right: real images,
χ = [0.0, 0.5, 1.0, 1.5, 2.0, 5.0, 10.0]. Synthetic images are selected to be
the closest to the real case.

resulting synthetic images in Fig. 6. The trend from left to
right shows a clear impoverishment in terms of image quality
in such a way that the sharpness and edges of the samples
worsen, which aligns with the trend in terms of DP described
in the previous figure.

VI. DISCUSSION
Several key insights are provided through the results that de-
note the importance of our work.
� The prior has a great influence on the behaviour of

the metric. Through the simulations, we have illustrated
how the attacker’s belief could boost MIA effectiveness
largely to reach an AUCROC of almost a perfect clas-
sifier (see the uppermost curve in Fig. 2). This scenario
poses a challenge that could lead to data leakage in any
case, so it is of utmost importance not to allow this belief
to exist. Moreover, given the results shown in Fig. 2
with regards to the TPR, it seems that even with scarce
overfitting the risk of leakage rises.

� Overfitting has a high correlation with data leakage. By
varying the degree of overfitting through the number
of components in the Gaussian mixture, we have found
a link between the degree of overfitting and the value
of ε (see Fig. 3). The trend shown, which denotes a
direct relationship between these two factors, shows how
the traditional measure of privacy (ε) increases expo-
nentially up to a certain threshold (in Fig. 3 roughly
20 components), while after this threshold it exhibits
a much lower slope. This result offers two related in-
sights: (1) the complexity of a model, which is one of
the main promoters of overfitting, could lead to a greater

prevalence of information leakage; and (2) the influence
of overfitting has a large impact, especially in the early
stages (exponential behaviour), on the risk of MIA.

� Additive noise decreases ε. Although overfitting pro-
motes information leakage, we can regularise the degree
of overfitting by adding noise to the training process (see
Table 2). In our experiment with 100 training samples
and 60 components in the Gaussian mixture, we show
how sensitive ε is to additive noise, reducing its value
from roughly 12 (see Fig. 3), to 8.31, or even 3.33, with
a tiny perturbation over the training data (scales 0.01 and
0.1 respectively). Although we have added noise directly
to the input data, there are other approaches that directly
perturb the parameters during the training process. This
is the case of one of the most established techniques,
DP-SGD (differentially private stochastic gradient de-
scent) [1]. Any of these techniques are mechanisms in
the context of DP, but still pose privacy risks: the output
of the generative model that is trained using DP does not
guarantee that it is inmune to attacks. Practical risks such
as MIA can still arise when ε is large enough or model
overfitting occurs, even under DP training Therefore, we
should consider additive noise as one of the regularisa-
tion techniques that can be used in our toolkit to prevent
data leakage. Hence, the selection of a regularisation
technique along with its own parameters is one of the
hyperparameters to decide in order to maximise fidelity
and utility while preserving privacy guarantees.

� A reference model is enough to disclose information.
One of the main limitations of our method is that it de-
pends on a reference data set which, for several reasons,
could be unattainable. Nevertheless, we have shown how
the performance in terms of AUCROC and TPR is risky
in cases in which the attacker can only rely on a reference
generative model. Of course, the success of this attack is
influenced by the similarity of the architecture and train-
ing process of the victim and reference models, and the
similarity of the victim data with respect to the reference
data used to train that model. In the case of high similar-
ities, Fig. 4 illustrates the AUCROC and TPR given this
two settings, starting from a performant attack (in terms
of AUCROC) with a real set used as reference, compared
to the case in which a synthetic set is used as reference.
Therefore, MIA could offer a superior performance in a
setting in which the attacker has a reference model.

� Epsilon estimation is coherent in the image domain.
Training a conditional GAN via DPSGD with adaptative
scheduling results in good quality images with better
privacy guarantees, as denoted in Fig. 5.

VII. CONCLUSION AND FUTURE LINES
The notion of MIA seems to be extensible to generative mod-
els, where its definition emanates from a Bayesian treatment
of the problem. We have found that
� Prior belief can lead to significant improvements on the

attacker’s side.
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� The quotient of probabilities seems to be the most valid
magnitude to quantify the MIA risk.

Furthermore, we have found that there is a relationship
between MIA and ε-DP based on the definition of the latter
in the context of generative models. More importantly, ε-DP,
in generative models, is a particular case of MIA where the
reference set is a neighbour data set of the original data set.

Moreover, besides all the theoretical formulations of the
problem, we have demonstrated that the intuition behind these
ideas applies to reality with several simulation examples in
which we have used a Gaussian mixture model to evaluate
our derivations.

Our work could be extended in various pathways, starting
from the consolidation of our approach regarding differential
privacy in generative models, a comparison in terms of the
effectiveness of differential privacy and other regularisation
techniques with respect to ε, and the application of our metric
to generative models in general.

APPENDIX A
CANONICAL EQUATION FOR MIA
From Bayes theorem

p(mq = 1|θv, xq, S−q ) = p(θv|mq = 1, xq, S−q )p(mq = 1)

p(θv|xq, S−q )

= p(θv|mq = 1, xq, S−q )p(mq = 1)∑
y∈{0,1} p(θv|mq = y, xq, S−q )p(mq = y)

= 1

1 + p(θv |mq=0,xq,S−q )p(mq=0)
p(θv |mq=1,xq,S−q )p(mq=1)

= 1

1 + exp
(

ln p(θv |mq=1,xq,S−q )p(mq=1)
p(θv |mq=0,xq,S−q )p(mq=0)

)

= σ

(
ln

p(θv|mq = 1, xq, S−q )p(mq = 1)

p(θv|mq = 0, xq, S−q )p(mq = 0)

)

Therefore, substituting in the original expression, we have

p(mq = 1|θv, xq )

=
∫
σ

(
ln

p(θv|mq = 1, xq, S−q )p(mq = 1)

p(θv|mq = 0, xq, S−q )p(mq = 0)

)

p(S−q )dS−q

APPENDIX B
DEFINING THE PRIOR AND POSTERIOR
Let us assume that the posterior distribution of θv is propor-
tional to the exponential function, while the prior over θv is

uniform in its domain; then we have

p(θ |S) ∝
∏

i

p(xi|mi = 1, θv )p(θv )

∝
∏

i

exp (−d (xi, θv )mi )

= exp

(
−
∑

i

d (xi, θv )mi

)

The expression d (·, ·) will be defined as a proper metric or
distance later. According to the last assumption, we have

p(θv|mq = 1, xq, S−q ) =

exp

(
−
∑

i

d (xi, θv )mi

)
∫

exp

(
−
∑

i

d (xi, φv )mi

)
dφv

p(θv|mq = 0, xq, S−q ) =

exp

⎛
⎝−

∑
i �=q

d (xi, θv )mi

⎞
⎠

∫
exp

⎛
⎝−

∑
i �=q

d (xi, ωv )mi

⎞
⎠ dωv

Substituting these expressions into the odd ratio of the orig-
inal expression we have

p(θv|mq = 1, xq, S−q )

p(θv|mq = 0, xq, S−q )

=

exp

(
−
∑

i

d (xi, θv )mi

)
∫

exp

(
−
∑

i

d (xi, φv )mi

)
dφv

exp

⎛
⎝−

∑
i �=q

d (xi, θv )mi

⎞
⎠

∫
exp

⎛
⎝−

∑
i �=q

d (xi, ωv )mi

⎞
⎠ dωv

= exp
(−d (xq, θv )

)
∫

exp

(
−
∑

i

d (xi, φv )mi

)
dφv

∫
exp

⎛
⎝−

∑
i �=q

d (xi, ωv )mi

⎞
⎠ dωv
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= exp
(−d (xq, θv )

)

∫
exp

(−d (xq, φv )
) exp

⎛
⎝−

∑
i �=q

d (xi, φv )mi

⎞
⎠

∫
exp

⎛
⎝−

∑
i �=q

d (xi, ωv )mi

⎞
⎠ dωv

dφv

The quotient in the denominator can be simplified as

exp

⎛
⎝−

∑
i �=q

d (xi, φv )mi

⎞
⎠

∫
exp

⎛
⎝−

∑
i �=q

d (xi, ωv )mi

⎞
⎠ dωv

= p(φv|S−q)

Therefore, the above expression can be rewritten as

p(θv|mq = 1, xq, S−q )

p(θv|mq = 0, xq, S−q )

= exp
(−d (xq, θv )

)∫
exp

(−d (xq, φv )
)

p(φv|S−q)dφv

Introducing this result into the original expression, we have

p(mq = 1|θv, xq )

=
∫
σ

[
ln

exp
(−d (xq, θv )

)∫
exp

(−d (xq, φv )
)

p(φv|S−q )dφv

+ ln
p(mq = 1)

p(mq = 0)

]
p(S−q )dS−q

=
∫
σ

[ (−d (xq, θv )
)

− ln
∫

exp
(−d (xq, φv )

)
p(φv|S−q)dφv

+ ln
p(mq = 1)

p(mq = 0)

]
p(S−q )dS−q

APPENDIX C
DERIVATION OF THE METRIC
We will focus on the second term within the sigmoid transfor-
mation, as its integral is intractable. As S−q remains unknown,
we alternatively consider a reference model trained over a ref-
erence set Sr such that (xq,mq ) /∈ Sr by definition. In addition,
assume that

p(φv|S−q ) ≈ p(φv|Sr ) ≈ δ(φv − θr )

because the set Sr has a sufficient amount of samples to con-
sider that the posterior is very narrow around the parameters
of the model trained with Sr (θr). Under these simplifications,

the log of the integral can be rewritten as

− ln
∫

exp
(−d (xq, φv )

)
p(φv|S−q )dφv

≈ − ln
(
exp

(−d (xq, θr )
))

= d (xq, θr )

Therefore, we have the membership probability as

p(mq = 1|θv, xq ) ≈
∫
σ

[
d (xq, θr ) − d (xq, θv )

+ ln
p(mq = 1)

p(mq = 0)

]
p(S−q )dS−q

where the dependence with respect to S−q does not anymore
exist, obtaining

σ

(
d (xq, θr ) − d (xq, θv ) + ln

p(mq = 1)

p(mq = 0)

)

Thus, we can reformulate the inference problem as

I (θv, xq )

= p(mq = 1|θv, xq )

= σ

[
d (xq, θr ) − d (xq, θv ) + ln

p(mq = 1)

p(mq = 0)

]

= σ

[
− ln

(
exp

(−d (xq, θr )
) )

+ ln

(
exp

(−d (xq, θv )
) )

+ ln
p(mq = 1)

p(mq = 0)

]

= σ

[
ln

exp
(−d (xq, θv )

)
exp

(−d (xq, θr )
) + ln

p(mq = 1)

p(mq = 0)

]

≈ σ

[
ln

p(xq|θv )

p(xq|θr )
+ ln

p(mq = 1)

p(mq = 0)

]

≈ f

(
p(xq|θv )p(mq = 1)

p(xq|θr )p(mq = 0)

)
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