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Abstract

Underwater vessel localization using passive magnetic anomaly sensing is a challenging
problem due to the variability in vessel magnetic signatures and operational conditions.
Data-based approaches may fail to generalize even to slightly different conditions. Thus,
we propose an Attentive Neural Process (ANP) approach, in order to take advantage of
its few-shot capabilities to generalize, for robust localization of underwater vessels based
on magnetic anomaly measurements. Our ANP models the mapping from multi-sensor
magnetic readings to position as a stochastic function: it cross-attends to a variable-size
set of context points and fuses these with a global latent code that captures trajectory-level
factors. The decoder outputs a Gaussian over coordinates, providing both point estimates
and well-calibrated predictive variance. We validate our approach using a comprehensive
dataset of magnetic disturbance fields, covering 64 distinct vessel configurations (com-
binations of varying hull sizes, submersion depths (water-column height over a seabed
array), and total numbers of available sensors). Six magnetometer sensors in a fixed circular
arrangement record the magnetic field perturbations as a vessel traverses sinusoidal trajec-
tories. We compare the ANP against baseline multilayer perceptron (MLP) models: (1) base
MLPs trained separately on each vessel configuration, and (2) a domain-randomized search
(DRS) MLP trained on the aggregate of all configurations to evaluate generalization across
domains. The results demonstrate that the ANP achieves superior generalization to new
vessel conditions, matching the accuracy of configuration-specific MLPs while providing
well-calibrated uncertainty quantification. This uncertainty-aware prediction capability is
crucial for real-world deployments, as it can inform adaptive sensing and decision-making.
Across various in-distribution scenarios, the ANP halves the mean absolute error versus
a domain-randomized MLP (0.43 m vs. 0.84 m). The model is even able to generalize
to out-of-distribution data, which means that our approach has the potential to facilitate
transferability from offline training to real-world conditions.

Keywords: underwater vessel localization; magnetic anomaly; geomagnetic navigation;
Attentive Neural Processes; few-shot learning; meta-learning; uncertainty quantification

1. Introduction

Accurate localization of marine vessels (such as ships, submarines, or autonomous
underwater vehicles) is critical for navigation and tracking in marine environments. Acous-
tic long-baseline (LBL) and short-baseline (SBL) systems achieve metre-level accuracy, but
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their beacons are expensive to deploy and suffer from multipath and Doppler distortion at
long range [1]. Global Navigation Satellite System (GNSS) fixes require surfacing, which is
often unacceptable for stealth assets. By contrast, passive magnetic-anomaly sensing is
attractive because tri-axial magnetometers are inexpensive, silent, and the geomagnetic
field penetrates seawater with negligible attenuation [2]. Recent data-driven frameworks
have even matched acoustic baselines using only magnetic cues [3]. In this study, we focus
on addressing off-board magnetic localization/tracking using a fixed seabed sensor array;
throughout, “depth” denotes the water-column height between the vessel and the sensor
plane (see Section 3).

Despite these advances, purely magnetic localization remains brittle. The induced
field depends non-linearly on hull geometry, orientation, and depth; sensor dropouts are
common in cluttered bays; and real trajectories rarely match the limited configurations
seen in training. Domain randomization (DR) mitigates the sim-to-real gap by perturbing
simulator parameters, yet deterministic models still extrapolate poorly and provide no
measure of confidence [4,5]. Safety-critical navigation, however, demands calibrated
uncertainty so planners can reason about risk.

Even so, fixed neural networks still struggle to generalize to unseen conditions and
cannot quantify their own confidence. This motivates meta-learning approaches that adapt
from limited data. Neural Processes (NPs) learn a distribution over functions and can
rapidly adapt by conditioning on small context sets. Attentive Neural Processes (ANPs)
refine NPs with attention, yielding more accurate and uncertainty-aware predictions [6].

We tackle these challenges with our main contributions: (i) a Neural-Process formula-
tion for passive magnetic-anomaly localization that combines cross-attention over context
with a global latent code to produce well-calibrated uncertainty and few-shot, gradient-free
adaptation to new hull/depth/sensor configurations; (ii) a sim-to-real oriented benchmark
with over 64 hull-depth-sensor configurations and with In Distribution/Out of Distribution
splits; (iii) robustness gains over domain-randomized MLPs and strong task-specialized
oracles across shifts in depth, hull size, and sensor availability; (iv) a deployment-friendly
design, no re-training at inference (conditioning only), that is suitable for low-compute
underwater platforms. To the best of our knowledge, this is the first application of Attentive
Neural Processes to magnetic-anomaly localization.

The remainder of this work is organized as follows: Section 2 surveys and reviews
related work in magnetic and acoustic localization, DR for sim-to-real transfer, meta-
learning for rapid adaptation, and uncertainty calibration. Section 3 describes dataset
generation, baselines, and metrics. Section 4 formalizes the magnetic forward model and
details the ANP architecture. Results are analyzed in Section 5, and Section 6 concludes the
paper and suggests directions for future work.

2. Related Work
2.1. Magnetic-Anomaly Localization and Tracking

Magnetic localization comprises two distinct families: (i) on-platform map-matching
(“geomagnetic navigation”) using a vehicle-borne magnetometer and a prior anomaly
map, and (ii) off-board localization/tracking from a fixed seabed array observing a passing
vessel. Our study concerns the latter. Early geomagnetic navigation relied on offline map
matching, restricting use to slowly varying trajectories, whereas modern off-board systems
optimize multi-sensor arrays [2] or train deep networks that learn end-to-end navigation
policies across large coastal grids [3]. Kalman filter hybrids integrate inertial cues but
still require vessel-specific retraining when hull dimensions change. Unlike fixed-weight
regressors, our ANP adapts on-the-fly to unseen hull sizes and depths while quantifying
epistemic uncertainty.
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2.2. Acoustic and Hybrid Underwater Positioning

LBL/SBL arrays remain the gold standard for long-range localization; recent work
compensates for Earth rotation and Doppler effects via robust Kalman filters [1]. Hybrid
magneto-acoustic schemes fuse magnetic cues with time-of-flight ranges, improving re-
silience but adding hardware costs. We focus on a pure magnetic solution that preserves
stealth and minimizes infrastructure.

2.3. Domain Randomization and Simulation-to-Real Transfer

Domain randomization (DR) exposes a learner to a wide distribution of simulated
environments so that real-world variations appear as draws from the same distribution [7].
DR has enabled simulation-to-real transfer in robotic manipulation, aerial vision, and sonar
perception; a recent survey details analogous successes and open challenges for underwater
Simultaneous Localization and Mapping (SLAM) [8]. Theoretical work bounds the excess
risk introduced by randomization under mild assumptions [4], while an extensive robotics
review catalogues DR applications across manipulation, locomotion, and vision [5]. In
magnetic navigation, our domain-randomized search (DRS) MLP baseline follows this
philosophy: a single network is trained on all desired scenarios, trading specialization for
cross-domain robustness. Nevertheless, DR networks still deliver only point estimates with
no notion of confidence, a drawback addressed by probabilistic meta-learners such as our
ANP, which couples specialization with calibrated uncertainty, a design materialized by
the synthetic dataset and DRS baselines introduced in Section 3.

It is important to note that source-only Domain Generalization (DG) typically pur-
sues robustness via feature alignment, invariant predictors, or worst-group optimization.
Domain-adversarial methods like DANN further assume access to (un)labeled target data.
Our setting is source-only regression on magnetic fields with no re-training, where we
consider Domain Randomization as the prevailing baseline for sim-to-real transfer. In
contrast, ANP handles the shift by conditioning on a small context at test time (no gradient
updates), making it suitable for low-compute deployments.

2.4. Meta-Learning for Rapid Adaptation

Meta-learning trains models to adapt from few examples. Bayesian Active Meta-
Learning demodulates 16-QAM radio frames with calibrated confidence after only four
pilots [9]. MetaGraphLoc applies graph neural networks and episodic meta-training to
indoor RF localization, reducing calibration effort across buildings [10]. Visual SLAM
research adopts meta-learned keypoint detectors that adapt at deployment without retrain-
ing. Our work is the first to bring Attentive Neural Processes [6] to magnetic navigation,
unifying meta-learning and uncertainty quantification.

2.5. Stochastic-Process Families.

Neural Processes (NPs) learn a distribution over functions conditioned on variable-
sized context sets, merging the data-efficiency of Gaussian processes with the scalability
of neural networks [11]. Attentive Neural Processes (ANPs) replace global aggregation
with cross-attention, markedly improving fidelity and mitigating underfitting [6]. Several
extensions refine inductive biases: Conv-CNPs introduce translation-equivariant kernels
for spatial data [12], and hybrid Bayesian Active Meta-Learning combines ANPs with
sequential task selection to boost sample efficiency and reliability in wireless demodula-
tion [9]. To the best of our knowledge, the present study is the first to deploy ANPs for
magnetic-anomaly localization, coupling their calibrated predictive variance with domain-
randomized training for robust underwater navigation.
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2.6. Uncertainty-Aware Localization and Calibration

Navigation stacks must reason about pose uncertainty. A 2023 framework propagates
measurement and pose noise into acoustic occupancy maps for wave-disturbed vessel
missions [13]. Deep networks are notoriously overconfident; a recent survey reviews
calibration techniques from temperature scaling to Bayesian ensembles [14]. Vision-based
depth networks now estimate aleatoric uncertainty to improve SLAM robustness [15]. Our
ANP produces intrinsically calibrated variances by construction, minimizing the need for
post-hoc correction.

3. Data and Benchmark Design

Building on the motivations outlined in Section 2, this section outlines the magnetic-
field simulator, the learning dataset, and the three localization models evaluated in this
study. Implementation details, exact simulator inputs, preprocessing scripts, and full
hyper-parameter grids are collected in Appendix A for reproducibility without interrupting
the flow. We also publish our code in order to facilitate reproducibility and usage by
the community.

3.1. Dataset Generation and Task Definition
From AMPERES Output to Trajectory CSVs:

The AMPERES solver, as explained in [16] exports each hull-depth combination as
a plain-text file containing the perturbed vertical component AB;(x,y), where B is the
magnetic field and x, y are the vessel coordinates, on a regular grid, for a total of 16 different
configurations, i.e., different hull sizes and sensor depths (sensors are deployed on the
seabed, and that “depth” denotes the water-column height).

We use the magnetic field outputs to create a set of sinusoidal 2D trajectories mimicking
vessel trips, which are our main dataset for the rest of the work. This approach adopts the
same simulator data family as Pérez et al. [16] to enable a direct comparison to their MLP
baseline, consuming the vertical component AB;(x,y) at the sensor plane.

The dataset fixes the geomagnetic background magnitude and does not vary Earth-
field inclination/declination; latitude/dip effects are out of the scope for this study and are
slated for future work.

Magnetic-field transform:

Because AB, spans four orders of magnitude, we apply the signed-log mapping
bscaled = — sign(b) log(|b| + ¢) (Appendix A) before interpolation; this stabilizes the dy-
namic range presented to the networks without losing polarity information (see also
Appendix A.5 for per-configuration min/max values).

Sensor configuration:

Unless otherwise stated, we emulate N; = 6 tri-axial fluxgates placed on a radius-50 m
ring centred at the world origin (Figure Al). To study robustness against sensor dropout,
we derive additional data by column deletion: we sequentially eliminate sensors, obtaining
five- and four-sensor variants with an identical trajectory footprint. In future works we
can assess whether using multi-component magnetic inputs (B, By, B;) further improves
performance relative to the current AB,-only inputs.

Trajectory set:

For each of the 16 different field configurations, we generate 100 sinusoidal tracks,
totalling 1600 simulated trajectories. Each time point in each trajectory contains the position
of the vessel (the corresponding x, y coordinates), as well as a corresponding magnetic field
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measurement for each sensor. We do not inject sensor, installation, or sea-state noise in
these simulations; results therefore reflect the noiseless AMPERES fields.

3.2. Task Taxonomy:

We cast vessel localization as a task family 7 = 7zlepth U Tsize U Tsensors- Each task
corresponds to a training—testing split. Since we have four different possible values for each
of the main parameters, Depth (in Meters) = {7.5, 10, 20, 30}, Vessel Size (in Meters) =
{2 x1,4 x 2,8 x 4,20 x 10}, and Number of sensors = {3,4,5,6}, that would yield
64 possible sets of combinations. In order to focus the scope of the project, we decided to
center on the following combinations of parameters to define our In-Distribution Tasks and
our Out-of-Distribution Tasks:

*  Depth tasks (721epth)1 To define this task, we decided to fix the hull size at 8 x 4 m, and
the number of available sensors to Ns; = 4, then we took the corresponding datasets
with depths of {7.5, 10, 20} m which define our in-distribution (ID) for the Tyep, task;
a 30 m depth constitutes the out-of-distribution (OOD) probe.

e Size tasks (7size): In this second task, we fixed the depth as 20 m, and the num-
ber of sensors as Ny = 4 sensors, taking the corresponding datasets of hull sizes
{2 x 1,4 x 2,8 x4} m for the ID data; 20 x 10 m is the OOD probe.

*  Sensor-drop tasks (7sensors): For the last task we tested, we fixed the vessel size as
8 X 4 m and depth as 20 m; our sensor subsets were four, five, and six sensors, and the
extreme three-sensor case is our OOD data for this task. The order of sensor dropping
wasas follows: first drop sensor 1, then sensor 3, and lastly sensor 5. It was carried out
this way to retain as much triangulation capabilities as possible (see Figure A1).

We defined In Distribution and Out of Distribution in this way in order to test the
capabilities of the approaches we test to generalize to data it has not seen before for that
task. The resulting benchmark therefore challenges a model along three orthogonal factors:
environmental variation (depth), target signature (size) and sensor availability, while
guaranteeing a clean separation between adaptation (ID) and extrapolation (OOD) regimes.
Note that OOD specifically denotes tasks that have never been seen during training, and
hence, we use them to validate the generalization abilities of every method in this paper to
previously unseen conditions.

Train/validation partition:

Within every task, trajectories are shuffled and separated 80/20 at the trajectory level
so that validation tracks remain unseen during training. OOD datasets are never presented
during training; they are reserved for the evaluation and generalization tests reported
in Section 5.

4. Methods
4.1. Task-Specific MLP Baselines

Multilayer Perceptron Basics.

A multilayer perceptron (MLP) is a feed-forward neural network that stacks affine
transforms and pointwise non-linearities. Its lineage traces to Rosenblatt’s single-layer
perceptron [17]; practical multilayer training became feasible with the back-propagation
algorithm introduced by Rumelhart et al. [18]. Theoretical work later showed that a
feed-forward network with at least one hidden layer and non-polynomial activation is
a universal approximator on compact domains [19]. Modern implementations benefit
from rectifier-aware initialization schemes such as He (Kaiming) initialization [20], high-
performing activations like GELU [21], and adaptive optimizers such as Adam [22].
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Our baseline architecture.

Figure 1 illustrates the 6-128-128-2 MLP used as the base template in all deterministic
baselines. Only high-level layer blocks are drawn; each layer is fully connected. A more
detailed explanation of the MLP architecture can be seen in Appendix B.

Input Layer 1 Layer 2 Output

6-dim Hidden Hidden 2-dim
input 128 GELU 128 GELU output

Figure 1. Baseline multilayer perceptron: Two hidden layers of 128 GELU units translate six magnetometer
channels (AB, measured by each tri-axial sensor in the seabed array) into a 2D position estimate.

Specialisation strategy.

To reveal the cost of over-specialising to a narrow operating regime, we train separate
MLPs that each optimise along a single factor (depth, hull size, or number of active sensors).
Each network sees data only from its designated parameter value; consequently, it can fit
that regime well yet has no incentive to generalise. The three groups are as follows:

(a) Depth MLPs: fixed hull of 8 x 4m and Ns = 4 sensors, with one model per depth in
{7.5,10,20} m.

(b) Size MLPs: fixed depth of 20m and Ns = 4 sensors, with one model per hull size in
{2x1,4%x2,8x4}m.

(c) Sensor MLPs: fixed hull of 8 x 4m at 20 m depth, with one model per active-sensor
countin {6,5,4}.

These specialised MLPs allow us to (i) measure an upper-bound oracle performance
within each narrow regime and (ii) perform cross-scenario stress tests by evaluating a
model outside the conditions it was trained on (e.g., the 7.5 m depth model at 20 m), thereby
quantifying brittleness.

Table 1 enumerates the models and training trajectory counts. A complementary
domain-randomized alternative that aggregates data across settings is introduced in
Section 4.2.

Table 1. Task-specific MLP baselines and their training data. The sample count lists trajectories after
the 80/20 split at the trajectory level.

Group Model Name Depth [m] Hull [m] Sensors [#] #Traj
MLP_7-5m 7.5 8 x4 4s 100
Depth MLP_10 m 10 8 x4 4s 100
MLP_20 m 20 8 x4 4s 100
MLP_2 x 1m 20 2x1 4s 100
Size MLP_4 x2m 20 4 x2 4s 100
MLP_8 x4 m 20 8 x4 4s 100
MLP_6s 20 8 x4 6s 100
Sensors MLP_5s 20 8 x4 5s 100
MLP_4s 20 8 x4 4s 100

Inference use cases.

We employ these specialised MLPs in two complementary roles:

1.  Upper-bound oracle: Within their own scenario, they approximate the best MAE attain-
able with a lightweight feed-forward regressor (no uncertainty; no meta-adaptation).

2. Cross-scenario stress test: When evaluated outside their training regime, they expose
the brittleness of deterministic, over-specialised models, providing a stringent foil for
the ANP’s meta-generalisation (Section 5).
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Limitations of the MLP baseline and how the ANP addresses them.

The reference baseline [16] is a feed-forward MLP trained on simulated magnetic fields
from a fixed seabed array. As formulated, it (i) is scenario-specific and typically requires
retraining when sensor positions or scenario parameters change (hindering portability
across hull/depth conditions), (ii) yields deterministic point predictions with no predictive
uncertainty, and (iii) provides no mechanism to adapt at test time under domain shift. In
contrast, our ANP casts localization as stochastic function regression: it cross-attends to a
variable-size context of sensor-pose pairs and fuses this with a global latent code, enabling
few-shot, gradient-free adaptation at inference and a Gaussian predictive distribution
(mean and well-calibrated variance) [6,11]. These properties remove the need for on-device
retraining, naturally accommodate variable sensor subsets, and improve the robustness
under shift by conditioning on a handful of in situ context observations.

4.2. Domain-Randomized MLP Baselines (DRS)

A straightforward hedge against covariate shift is to expose a single regressor to the
range of conditions it may encounter at test time, the domain randomization paradigm [7].
Rather than training separate networks per setting (Section 4.1), we therefore construct
domain-randomized search baselines that pool data across multiple parameter values. We
consider two granularity levels:

Task-aggregated DRS models. Three models each aggregate the in-distribution (ID) trajec-
tories for a single factor:

e DRS_depth: depths {7.5,10,20} m; hull 8 x 4m; N; = 4 sensors.
e DRS_size: hulls {2 x 1,4 x 2,8 x 4} m; depth 20m; N, = 4.
. DRS_sensors: sensor counts {6, 5, 4} ;hull 8 X 4m; depth 20m.

Each sees 300 trajectories (the union of the three specialised datasets in its group as seen in
Table 2).

Global DRS-general model. One model ingests the entire ID corpus spanning all
nine scenario combinations defined in Section 3.2: depths {7.5,10,20} m x hulls
{2 x 1,4 x 2,8 x4} m x sensor counts {6,5,4} channels. This totals 2700 trajecto-
ries (= 2.7 x 10° input-target pairs), an order of magnitude more data than any single
specialised model.

Architecture.

All DRS variants reuse the baseline MLP of Figure 1 (6-128-128-2 with GELU activa-
tions). No architectural changes are made; only the training corpus differs.

Training protocol.

For each DRS model we aggregate the relevant ID trajectories, shuffle (at the sample
level) within the training split, and apply the same 80/20% trajectory-level split used for
the specialised models to prevent temporal leakage. Training hyper-parameters (optimizer,
learning rate schedule, early stopping criterion) are held constant across all MLP baselines
to isolate the impact of dataset breadth.

Table 2. Domain-randomized search (DRS) MLP baselines. Each task-aggregated model pools its three
specialised counterparts; the DRS-general model pools all nine in-distribution scenario combinations.

Model Name Depth [m] Hull [m] Sensors [#] #Traj
DRS-depth {7.5, 10, 20} 8 x4 4s 300
DRS-size 20 {2 x1,4x2,8 x 4} 4s 300
DRS-sensors 20 8 x4 {6s,5s,45s} 300

DRS-general {7.5, 10, 20} {2x1,4x2,8x 4} {6s,5s,45s} 2700
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4.3. Attentive Neural Process

For one trajectory, we observe a time-ordered set D = {(x;,y:,B;)}L;, where
xt,yt € R? are the corresponding vessel position coordinates and B; € Rl is the vec-
tor magnetic measurements coming from the sensors (L is the number of sensors). During
meta-training, a random split C C D of |C| = M context points is disclosed; the learner
must infer the target set 7 = D\ C. At test time, the operator is free to choose M, e.g., the
first 30% of a track. This percentage used as context is always selected from the beginning
of the trajectory, trying to mimic how real data from a marine vessel would be received and
used. Other options of using context for these kinds of models suggest sampling randomly
along the whole trajectory, but in our case, that would not be a realistic scenario.

The ANP models the unknown mapping f : B — (x,y) as a stochastic process
conditioned on the context; its key components appear in Figure 2, and are detailed next.

(x1,y1,B1) \\l

(x2,2, B2)

(x3,y3, B)

D deterministic path latent path

Figure 2. Information flow in the ANP. Context sensor/position pairs are processed by two
encoders: a deterministic self-attention block ¢ and a latent self-attention block w. The la-
tent embeddings are pooled into a global random vector z, while deterministic embeddings
serve as keys/values in a query-specific cross-attention module. The decoder combines z, the
query By, and the attended representation r, to output a Gaussian estimate £, 7. of the ves-
sel position. The query B: is the set of magnetic measurements whose position we want
to estimate.

(i) Deterministic encoder

The encoder first embeds the context pairs and then lets each query point B, € RL
attend to C to predict (x4, y4):

1, = MHA(Q = W(B,, K = WxB, V= Wy[B,P]) € RY, (1)

where [+, | denotes concatenation and MHA is multi-head attention with H hidden units
and P¢ = (x¢, y¢). Intuitively, r, summarizes which context sensors carry information most
similar to the current reading B;. Let M = |C| be the number of context points. With L
magnetometer channels and a hidden size H, the tensors involved in the cross-attention
block of Equation (1) have the following dimensions:

WoeR¥H W, Wy eREXH K € RMxH
Bp — Q, Be ’ MxH
, ~— ~~ VeR
RL RI1xH RMxL

The multi-head attention (MHA) module maps (Q, K, V) —r, with r; € R¥™H which we
subsequently treat as a length-H row vector (r; € R as written in (1)). In previous works,
the attention mechanism of the Attentive Neural Process model has been explained as a
general estimator [23].
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(ii) Latent encoder

Context alone seldom reveals the vessel identity or environmental bias. For every
context index i € {1,..., M}, a two-layer MLP wy outputs a pair of D,-dimensional
vectors (p;,log 0?). The sub-script i labels the i-th context point. Their averages across i
(following the methods used by Kim et al. [6]) yield the parameters f1, 7> € RP= used in the
Gaussian posterior:

q6(z | C) = N(@,diage?),  z e RP=

The latent variable z acts as a compact code “fingerprint” of the current vessel-environment
combination and is shared by all queries.

(iii) Decoder

Given 1, the raw query (the L-dimensional vector B, of magnetic values from which
we want to predict the position) and a sample z ~ gy, the decoder produces a Gaussian
over the unknown position:

(yq,log 0’5) = 9o ([By, 1q,2]), Po(xXq,Yq | By, C) = /\/(yq,diag ‘73)/ )

where B, € Rl is the target-point magnetometer snapshot, r, € R is the deterministic
attention summary for By, z € RP= is the global latent code for the current trajectory,
[By, 14, 2] is the concatenated decoder input, p, € R? is the predicted mean position (£,7),
aé € R? is the element-wise variance estimates and multi-head attention that thus handles
local alignment, and N (+) indicates Gaussian (normal) distribution. z injects global context,
yielding both accuracy and calibrated uncertainty.

The main reasoning is that the encoder is able to extract information about the task,
which is then used by the decoder to adapt to this task. The decoder 1y maps its input
to the mean and (log-)variance of a 2D Gaussian, and the predictive distribution over the
unknown position (x,, y4) is exactly that Gaussian.

(iv) Training objective-evidence lower bound.

For a single trajectory, we maximize the ELBO,

1
Lanp = 7 Y log po(xg,yq | By, C,2) + KL[ge(z | D) [| po(z | C)], 3)
qeT

and the KL regulariser follows the conditional-VAE formulation of Neural-Process
models [6,24], pushing the posterior g4(z | D) towards the context-dependent prior
pe(z | C); this ensures that z captures only the residual information that is absent from the
deterministic (attention) path, as already argued, sometimes implicitly, in those works and
in the original VAE derivation [25].

(v) Context-target sampling and batching.

At each optimization step, we draw context points uniformly from 10% to 50%
(M ~ U{10,...,50}) out of the total T = 100 points each trajectory has to build C.

The resulting ANP combines (i) few-shot adaptability via z, (ii) context-aware match-
ing via cross-attention, and (iii) probabilistic outputs for downstream risk-aware planning.

5. Results

This section quantifies the localization performance of the proposed Attentive Neural
Process against the strongest deterministic baseline, the domain-randomized search feed-
forward network (DRS-general), and various sets of specialized MLP models tested in
different experiments. We try to always focus on the most demanding setting, cross-
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configuration generalization, by comparing the MAE per scenario. We remark that ANP
and DRS-general were trained once and validated under different scenarios, contrary to
single-task MLPs, where we train a single MLP per task.

5.1. Statistical Analysis

To judge whether the performance gaps reported in the following sections are merely
due to chance, we adopt the two-stage, rank-based procedure recommended by Demsar [26]
and summarised in the survey of Rainio et al. [27]. All tests are carried out on the MAE
scores for every (model, dataset) pair inside each task family (depth, size, and sensors).

Step 1—omnibus test.

For every task, we first apply the Friedman-Iman-Davenport test: each method is
replaced by its rank on each dataset (lower MAE = better rank), and the resulting rank
matrix is fed to the Friedman statistic, with the Iman-Davenport F correction to account
for the modest number of datasets. If the null hypothesis of “equal performance” is not
rejected at the « = 0.05 level, no further comparisons are made.

Step 2—pairwise follow-up.

Whenever the omnibus test is significant, we perform paired Wilcoxon signed-rank
tests that compare every competitor against the model that attains the best average rank.
Because multiple pairwise tests inflate the family-wise error rate, the resulting p-values
are adjusted with the Holm step-down procedure; only adjusted values below « are de-
clared significant.

This two-stage, fully non-parametric protocol (i) requires no distributional assump-
tions on the MAE scores, (ii) controls the overall probability of Type-I errors, and (iii) follows
the best-practice guidelines put forward by Demsar [26] and Rainio et al. [27].

5.2. ANP vs. DRS-General on ID and OOD Tasks

We first want to compare the two models that are trained only once on all tasks,
namely, ANP and DRS-general, in order to compare their performance. We evaluated these
models in the validation split of the 9 scenarios that were seen during training. These are
composed of the 2700 trajectories from all the possible combinations of the in-distribution
data of the tasks described in Section 3.2.

Quantitative results

Table 3 presents the results in terms of the mean MAE obtained by each of the models
in that specific dataset. We also provide color-coded heat maps in Figure A2 (Appendix C.1)
that contain the same information.

Table 3. Per-scenario MAE (m) on the in-distribution validation set. Lower is better, bold denotes the
best result per scenario. Note that ANP consistently outperforms DRS-general.

Validation Scenario ANP DRS-General
I0m-2m X 1m 0.35 0.59
I0m—4m x 2m 0.36 0.65
10m-8m x 4m 0.45 0.72
20m—2m X 1m 0.52 1.40
20m—4m X 2m 0.42 1.26
20m-8m X 4m 0.56 0.86
75m-2m x 1m 0.36 0.70
75m—-4m x 2m 0.40 0.64

75m-8m x 4m 0.51 0.78
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We can clearly see that our proposed ANP model is significantly better than DRS-
general. This is statistically backed by checking the corrected Wilcoxon p-values in Table 4.
From Tables 3 and 4, we also see that our ANP approach almost halves the error rate in
many of the scenarios tested.

Table 4. Wilcoxon and Friedman corrected tests between ANP and DRS-general on the nine
in-distribution scenarios. Bold p-values remain significant after Holm’s step-down adjustment
(x = 0.05).

Method Wilcoxon poim Friedman pyoim Mean MAE (m)
ANP 1 0.5 0.435
DRS-general 0.0039 0.0027 0.844

5.3. Depth Ablation

We now proceed to a more detailed ablation for each of the task dimensions of our
experiments (depth, hull size, and number of sensors), as well as testing the generalization
capabilities of our models by using the OOD data, never seen during training, for validation.
We start with the submersion depth that determines the vertical stand-off between the
ferromagnetic hull and the seabed sensor plane; the larger that distance is, the weaker and
smoother the magnetic anomaly becomes. Vessels can transition from shallow littoral waters
down to deeper layers, so a deployable localiser must compensate for signal attenuation
without site-specific re-training. To isolate this factor in this test, we keep (i) the hull
dimensions fixed at 8 x 4 meters and (ii) use the four-sensor configuration, then carve four
depth-specific subsets:

e 75m,10m,20m — in-distribution: depths seen during training.
¢ 30m — out-of-distribution: an extrapolation stress-test never shown to the models.

Models under test

Three single-depth MLPs (MLP_7-5m, MLP_10m, and MLP_20m) are trained only on
their respective ID subset (100 trajectories). DRS_depth is trained on the union of the three
(300 trajectories), which represents a domain-randomized model specialized in this
task, while DRS_general and the proposed ANP are the same global models trained in
Section 5.2.

Quantitative results

Table 5 reports the mean absolute error (in meters) for every model-depth pair; the best
entry per column is bold-faced. Table 6 provides Wilcoxon and Friedman-Holm statistics
against the ANP baseline. A color heat-map is shown in Appendix C.2, Figure A4, for
visual comparison.

Table 5. MAE (m) on the depth validation split. Columns 7.5-20 m are in-distribution; 30 m is
OOD. Lower is better. Bold denotes the best performing model in each split. Note that ANP clearly
outperforms all other methods.

Model 7.5m 10 m 20 m 30 m (OOD)
MLP_7-5m 0.62 1.74 5.54 8.86
MLP_10m 1.85 0.75 4.62 8.01
MLP_20m 6.15 4.66 0.77 4.14
DRS_depth 0.84 0.84 1.19 3.82
DRS_general 0.93 0.98 1.04 4.36

ANP 0.46 0.38 0.48 2.62
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Table 6. Pair-wise statistical comparison with the ANP on the depth tasks. Columns report the
Holm-corrected Wilcoxon signed-rank p and the Holm-corrected Friedman post-hoc p (Demsar’s pro-
cedure). Bold indicates the best performing model, while an asterisk marks p-values with significant
worse performance.

Model Mean MAE (m) Wilcoxon proim Friedman pyjoim
MLP_7-5m 3.99 0.375 0.0138*
MLP_10m 3.68 0.375 0.0350 *
MLP_20m 3.97 0.375 0.0467 *
DRS_depth 1.83 0.375 0.0890
DRS_general 1.83 0.375 0.0565
ANP 0.99 1.000 0.500

The single-depth MLPs illustrate the classic bias-variance trade-off: each is highly
accurate in its native depth (0.62 m at 7.5 m, 0.75 m at 10 m, 0.77 m at 20 m) but their MAE
grows up to 13x when evaluated outside that band. DRS_depth, trained on mixed depths,
is more robust yet still trails the ANP in all four columns of Table 5. The ANP not only
attains the lowest error across the three ID depths but also preserves around a 32% margin
over the best deterministic alternative in the unseen 30m case. Table 6 confirms statistical
significance: all single-depth MLPs are inferior to the ANP after Holm correction (p < 0.05),
whereas the gap between DRS_depth and the ANP is not significant, likely due to having
only four datasets in the test, although the p-value is nonetheless low (<0.1 in all cases).

5.4. Hull-Size Ablation

The vessel’s volume, approximated here by its length x width rectangle, directly scales
the dipole moment that perturbs the ambient field. A localiser tuned to a small vessel
may therefore saturate or mis-scale when confronted with a larger hull, and vice versa. To
isolate this factor, we lock the depth at 20 m and took the corresponding four-sensor ring
datasets, then create three in-distribution subsets with increasing hull sizes:

e 2mXx1m(SMALL),4m X 2m (MEDIUM), 8 m X 4 m (LARGE),

and an out-of-distribution subset 20 m x 10 m that represents the magnetic signature
of a larger vessel.

Models under test

Three single-size MLPs (MLP_2 x 1 m, MLP_4 x 2 m,and MLP_8 x 4 m) are special-
ized to their respective ID subset; DRS_size is trained on the union of the three. DRS_general
and the proposed ANP are the same global models evaluated previously.

Quantitative results

Again we presented the results in Table 7 which reports the MAE in meters for every
model-size pair, and Table 8 which summarizes Wilcoxon/Friedman significance tests
against the ANP baseline. The color heat-map is provided in Appendix C.3, Figure A5.

Each single-size MLP attains sub-1m accuracy on its training hull (Table 7) but col-
lapses by two orders of magnitude when confronted with a different magnetic cross-section
(e.g., from 0.68 m to 319 m moving 2 x 1 m — 8 x 4 m). Task-specialized domain random-
ization (DRS_size) mitigates the worst failures but still lags behind the ANP by ~2x on
the OOD 20 x 10 m hull. For the Friedman p-value in Table 8, the consistent column-wise
wins and the ANP’s lower mean error (1.16 m) indicate superior robustness to unseen mag-
netic amplitudes. Again, this suggests that an ANP-based localiser would require fewer
re-calibration samples when commissioning a vehicle class outside the original training
envelope. In general, we again observe low p-values (<0.1).
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Table 7. MAE (m) on the Size validation split. Columns 2 x 1-8 x 4 m are in-distribution; 20 x 10 m is
OOD. Lower is better. Bold denotes the best performing model in each split. Note that ANP clearly
outperforms all other methods.

Model 2x1m 4x2m 8x4m 20 x 10 m (OOD)
MLP_2x1m 0.68 11.80 319.15 320.90
MLP_4x2m 11.68 1.07 132.66 133.53
MLP_8x4m 221.09 196.39 0.48 7.89
DRS_size 1.19 1.08 0.69 7.90
DRS_general 2.11 2.04 1.04 4.80

ANP 0.37 0.30 0.41 3.56

Table 8. Pair-wise statistical comparison with the ANP on the size tasks. Columns report the Holm-
corrected Wilcoxon signed-rank p and the Holm-corrected Friedman post-hoc p. Bold indicates the
best performing model, while an asterisk marks p-values with significant worse performance.

Model Mean MAE (m) Wilcoxon pyoim Friedman pyoim
MLP_2x1m 163.13 0.375 0.0138 *
MLP_4x2m 69.74 0.375 0.0350 *
MLP_8x4m 106.46 0.375 0.0350 *
DRS_size 2.72 0.375 0.0890
DRS_general 2.50 0.375 0.0882
ANP 1.16 1.000 0.500

5.5. Sensor Count Ablation

Sea-going magnetic arrays may be affected by axis dropouts due to various factors:
salt-water ingress, connector corrosion, or fluxgate saturation can disable one or more
channels during a mission. A localization model that relies on a fixed, full set of inputs
may therefore fail abruptly when a single sensor goes offline. To quantify robustness, we
hold both hull size (8 m x 4 m) and depth (20 m) constant and vary only the number of
active magnetometers:

. 65, 5s, 4 s—three in-distribution subsets in which zero, one, or two sensors are disabled
at the same time;

*  3s—an out-of-distribution subset that removes a third channel, emulating a more
severe hardware failure.

Models under test

Each ID subset receives its own lightweight perceptron (MLP_6s, MLP_5s, or MLP_4s).
DRS_sensors pools the three ID datasets. The global DRS_general and our ANP are reused
without re-training.

Quantitative results

Table 9 presents the corresponding obtained MAE in meters; Table 10 lists Wilcoxon/
Friedman statistics. Appendix C.4, Figure A6, visualizes the same data as a heat map.

As seen in the previous tests, each single-count MLP excels only when presented with
the exact sensor layout it was trained on, but its MAE explodes, by up to two orders of
magnitude, whenever channels are missing. In-domain aggregation (DRS_sensors) yields
the best overall accuracy for 6-4 sensors and still degrades gracefully at 3 s (69 m MAE). The
ANP is competitive with DRS_sensors on every ID column and, crucially, maintains sub-
75 m error in the extreme three-sensor OOD case despite never having seen so few inputs.
Although the Friedman test lacks power with just four datasets, the Wilcoxon comparison
flags MLP_6s as significantly worse than the ANP (prjoim = 0.0245), illustrating how brittle
a deterministic, sensor-specific pipeline can be.
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Table 9. MAE (m) on the sensor validation split. Columns 6—4 s are in-distribution; the 3 s column is
OOD. Lower is better. Bold denotes the best performing model in each split. Note that in this case,
there is not a single model that is the best in all cases.

Model 6s 5s 4s 3s (0O0D)
MLP_6s 0.52 101.09 143.31 77.02
MLP_5s 38.93 0.50 58.92 63.31
MLP_4s 77.24 51.71 0.68 61.39
DRS_sensors 0.29 0.23 0.25 69.48
DRS_general 0.68 0.73 1.04 139.10
ANP 0.44 0.34 0.39 72.42

Table 10. Pair-wise statistical comparison with the ANP on the sensors tasks. Columns report the
Holm-corrected Wilcoxon signed-rank p and the Holm-corrected Friedman post-hoc p. Bold indicates
the best performing model, while an asterisk marks p-values with significant worse performance.

Model Mean MAE (m) Wilcoxon proim Friedman pyoim
MLP_6s 80.48 0.375 0.0245 *
MLP_5s 40.41 0.5625 0.1779
MLP_4s 47.76 0.5625 0.1779
DRS_sensors 17.56 1.000 0.500
DRS_general 35.39 0.375 0.0584
ANP 18.90 0.375 0.4497

Overall, the ANP’s encoder-decoder design appears to learn an implicit “missing-
channel” prior, enabling robust localization even under severe hardware degradation, and
despite not being the outright best, a large p-value of 0.45 (Table 10) indicates that it is close
in performance to the best model.

5.6. Unified Cross-Task Benchmark

The previous ablation studies evaluated each generative factor (depth, hull size,
sensor count) in isolation. In a real deployment, however, the learning system may have to
contend with simultaneous variation along all three axes. We therefore ran a final holistic
benchmark that loads all available models, the nine task-specialised MLPs, the three task-
specific domain-randomized networks, the global DRS_general, and the proposed ANP,
and tests them on the complete set of twelve trajectory collections (3 x depthip + 3 X sizeip
+ 3 X sensorsyp + 3 OOD probes).

The resulting 14 x 12 MAE matrix (shown as a Table A2 in Appendix C.5) condenses
14 models x 12 datasets =168 evaluations executed with the common harness described
previously. We include the summary of the statistics obtained in Table 11.

Four clear patterns emerge: 1. ANP dominates across all contexts. Its average
error (6.6 m) is roughly half that of the next best competitor (DRS-general, 13.2 m) and
an order of magnitude below most single-scenario MLPs. 2. Statistical significance is
strong. Holm-corrected Wilcoxon tests reject every alternative model versus the ANP
(p <0.025), and Friedman post-hoc confirms the ranking (p < 0.05) for all but two cases.
3. Over-specialised MLPs collapse out-of-domain. Models such as MLP_10m soar from
0.66 m — 840 m MAE when depth changes (Table 11), inflating their mean error to >200 m.
4. Domain randomization helps but is insufficient. The three task-specific DRS baselines
improve stability but still trail the ANP by factors of 2-10x, illustrating that set-conditional
adaptation is crucial.
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Table 11. Friedman/Wilcoxon comparison on the unified benchmark. p-values are Holm-corrected.
Bold denotes the best performing model in each split. notice how the ANP has the overall best mean
MAE by a large margin, meaning is the best performing model overall. This is backed-up statistically
since no other method has a p-value larger than 0.05.

Method Mean MAE (m) Wilcoxon pyoim Friedman pyoim
ANP 6.58 1.00 0.50
DRS_general 13.24 0.0034 0.0327
DRS_depth 139.63 0.0244 0.0029
DRS_size 32.55 0.0034 0.0102
DRS_sensors 63.58 0.0244 0.0327
MLP_7-5m 52.69 0.0034 0.0043
MLP_10m 202.90 0.0034 0.0001
MLP_20m 48.36 0.0034 0.0294
MLP_2x1m 289.45 0.0034 <0.0001
MLP_4x2m 134.53 0.0034 <0.0001
MLP_8x4m 73.80 0.0034 0.0053
MLP_6s 132.12 0.0034 <0.0001
MLP_5s 88.33 0.0037 0.0001
MLP_4s 56.28 0.0244 0.0135

5.7. Trajectory-Level Extrapolation: ANP vs. DRS-General

To illustrate the extrapolation capability of the AND, this trajectory experiment isolates
a single held-out track from the 20 m depth, 8 x 4 m hull, four-sensor setting and splits it
20%/80% in time. The first fifth of the samples (M = 20) are supplied to each model as
context; the remainder must be predicted. We compare the stochastic ANP, which returns a
mean path u and per-frame standard deviation ¢, and the deterministic DRS-general MLP.

Figure 3 reveals three key behaviours: (i) Faithful continuation: After the context
window, the ANP mean (red) follows the ground-truth sinusoid almost perfectly in both
the monotonic x component and the oscillatory ¥ component. The DRS-general curve
(green) begins to drift after the first crest and undershoots subsequent peaks. (ii) Calibrated
confidence: The ANP’s £30 band widens exactly where curvature is largest (tops and
troughs of the sine wave) and narrows over the linear sections, matching intuitive signal
difficulty. In every frame, the blue trace remains inside the pink envelope, indicating well-
calibrated uncertainty. DRS-general, being deterministic, offers no such measure. (ii) Error
containment: The maximum absolute deviation of ANP from ground truth is never too large
in y; DRS-general accumulates a larger error by the end of the trajectory.

X coordinate Y coordinate
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Figure 3. Prediction on trajectory from the 20 m, 8 m x 4 m, 4-sensor dataset. Blue : ground-truth
(x,y). Red dots: context points (first 20%). Red line: ANP posterior mean; shaded band: +3¢
uncertainty. Green line: DRS-general prediction. (Left): x-coordinate. (Right): y-coordinate. Both
predict well, but the ANP clearly has an edge over DRS. Notice how at around the 50 sample mark in
the Y coordinate, the ANP correctly detects the section as a bigger uncertainty zone, which indicates
how well calibrated the model is.
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These observations corroborate the aggregate statistics of Sections 5.3-5.5: the latent-
variable and cross-attention design not only lowers MAE on average but also delivers
actionable per-sample credibility estimates, enabling downstream planners to hedge when
the positional error distribution broadens.

5.8. Results Discussion
The experiments reported in this section lead to three main conclusions:

(a) ANP consistently achieves the lowest MAE across all settings. In every in-
distribution scenario (Table 3), the ANP improves over the deterministic baseline
DRS-general by nearly 50% on average (0.43 m vs. 0.84 m MAE). It also retains a
clear advantage in all out-of-distribution tests. The difference of the ANP against all
other methods is statistically very significative, as seen in Table 11. Also, the fact
that this approach provides uncertainty o values, gives us the important advantage
of having an interval to perform our localization.

(b)  Task-specific MLPs excel only in their training domain. As shown in the depth,
size, and sensor ablation studies (Tables 5-9), each specialized MLP performs well
on its target dataset but fails to generalize, often showing errors one to two orders
of magnitude higher in other settings (e.g., hull-size extrapolation).

(c) Domain randomization is not sufficient. While DRS-general is more robust than
single-task MLPs, it still lags behind ANP by roughly 2 x in some ID scenarios and
over 3x in some OOD scenarios. Conditioning on a small, trajectory-specific context
at test time, as ANP does, proves to be substantially more effective than a global set
of weights alone.

The statistical tests in Tables 6, 8 and 10 reinforce these observations: whenever
the Friedman test rejects the null hypothesis, the Holm-corrected Wilcoxon post-hoc test
confirms the ANP’s superiority. While differences in the size and sensor ablation tasks
follow the same pattern, their limited number of tasks prevents achieving strong statistical
significance. This was solved in the experiment in Section 5.6, where the combination of all
tasks and methods provided us with a sample size big enough to back up the statistical
significance of our results.

From a practical deployment perspective, our ANP also presents some advantages:

(i) Few-shot adaptability: The ANP matches and even surpasses the accuracy of
oracle-like MLPs with only a handful of labelled samples, avoiding costly re-
training cycles.

(ii) Robustness to sensor failure: In the three-sensor OOD test, the ANP maintains errors
around 70 m MAE (Table 9), comparable to specialized single-task MLP and
DRS_sensors.

(iii) Low inference latency: A single forward pass of the ANP (20 context points + 80
targets, B = 1) takes approximately 3.8 ms on an RTX 2080 Ti (FP32). Scaled
estimates suggest about 38 ms in FP32 or 9 ms in FP16/TensorRT on Jetson Xavier
NX, and 110 ms in FP32 on Jetson Nano Appendix D), which means that our
procedure could be implemented in real-time estimation applications with low-
cost hardware.

6. Conclusions and Future Work

This study introduces, for the first time, Attentive Neural Processes as a meta-learning
framework for passive magnetic-anomaly localization. By viewing the mapping from
six tri-axial magnetometer readings to a horizontal position as a family of functions that
depends on the vessel signature, sensor layout, and environmental context, the ANP can
adapt to a previously unseen configuration after observing only a handful of context points,
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without any test-time back-propagation. When trained on a richly domain-randomized
simulator, the proposed model attains the same accuracy as highly specialized multilayer
perceptrons within their calibration domains and reduces mean absolute error by up to 50%
when forced to extrapolate across hull sizes, depths, or sensor dropouts. In addition, the
predictive variance produced by the ANP is well calibrated, enabling downstream planners
to reason about localization confidence in real time.

We remark that we train our ANP model once, and then validate over an extensive set
of benchmarks, where its adaptability is shown to be superior to the rest of the methods
tested, even to conditions unseen during training.

These results point to Neural-Process meta-learning as a practical and scalable route
towards confidence-aware magnetic navigation systems that must cope with heterogeneous
vessel signatures, intermittent sensor failures, and non-stationary operating conditions. The
combination of zero-gradient adaptation, principled uncertainty, and millisecond inference
time makes ANPs an appealing alternative to both classical Bayesian filters and fixed
neural networks.

Future Work

Despite these encouraging findings, three avenues remain open: (i) synthetic-to-real
transfer, Earth-field orientation, and multi-component sensing. The present study relies ex-
clusively on simulated magnetic fields; real-world seawater disturbances, soft-iron bias,
and sensor drift were not modeled. A natural next step is to design a small sea trial and
curate field datasets that capture geomagnetic inclination/declination (e.g., via the World
Magnetic Model [28]), installation offsets, wave-induced motion, and electromagnetic
interference. Within this setting we will (a) quantify how many context points the ANP
needs for in situ commissioning, (b) evaluate multi-component magnetic inputs (B, By, B;)
versus the current AB, channel, and (c) study sim-to-real strategies that preserve our
no-retraining-at-deploy time constraint, such as domain randomization augmented with
adversarial domain adaptation [29,30] and small, offline fine-tuning prior to deployment.
(ii) Three-dimensional sensor constellations. All experiments assumed a planar ring of flux-
gates. Extending the architecture to irregular 3D arrays, such as towed gradiometers or
hull-mounted clusters, will require positional encodings that respect full spatial geometry
and may benefit from graph-based message passing. (iii) Multi-target and cluttered scenes.
The current pipeline tracks a single vessel against a geomagnetically “clean” background.
Real deployments must disentangle multiple, possibly overlapping signatures amid crustal
anomalies and anthropogenic noise. Hierarchical or multi-output Neural Processes [31,32],
combined with sequential data association, offer a promising research direction to segment
and track several dipoles simultaneously.

Addressing these challenges will further close the gap between simulation and practice
and could establish ANPs as the backbone for future passive localization suites in marine
robotics and naval surveillance.
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Appendix A. Dataset Construction
Appendix A.1. Sensor Geometry

To emulate a realistic magnetic array, we place six virtual flux-gate magnetometers
on a circle of radius R = 50 m. Their Cartesian coordinates are (£R,0) and (0, £R),
that is, the four cardinal directions, plus the two diagonal points (R /V2, R /ﬁ) and
(—=R/v/2, —R/v/2). All sensors lie on the same horizontal plane as the synthetic field map,
so variations in the vertical component AB, are purely due to the simulated vessel rather
than sensor height differences (physically, this plane represents a fixed seabed array).

Appendix A.2. Trajectory Generator

Each vessel path is a gently meandering line: the x-coordinate follows a sinusoid,
while the y-coordinate grows linearly with time. Formally, for t € [O, 100] S,

x(t) = xp + Asin(wt), y(t) =yo+ot.
The four trajectory parameters are drawn independently for every run:
A ~U(1,10) m, w ~ U(0.04, 0.07) rad/s,
v~ U(0.05,0.15) m/s, xo, yo ~U(—5,5)m.

Sampling 100 distinct trajectories for each of the 16 hull-depth scenarios produce a bench-
mark suite of 1600 synthetic tracks.

Appendix A.3. Measurement Transform

Raw anomalies AB; span several orders of magnitude, so we stabilize their dynamic
range with a signed-logarithmic map:

bscaled = Sign(b) 10g(|b| + €>,

where ¢ is a small constant that preserves numerical stability near zero. The transform is
applied to every sensor reading before the values are written to the CSV files that feed the
learning pipeline.
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Appendix A.4. Sensor Configuration
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Figure A1. Example of the disposition of the sensor array in the trajectory space

Appendix A.5. Absolute AB Ranges

For each hull-depth configuration, we report the absolute minimum and maximum
values of the AMPERES AB grid at the sensor plane. These values substantiate the state-
ment in Section 3.1 that AB spans multiple orders of magnitude. Table A1 lists min/max
per configuration.

Table Al. Absolute AB ranges at the sensor plane for all hull-depth configurations. Values are
reported in nT (raw simulator units are Tesla).

Depth (m) Hull (m) N ABmin ABmax |AB|p1 |AB|p50 |AB|p99 |AB|max
7.5 20 x 10 6328 —277.10 277.10 0.0482 0.5022 147.20 277.10
7.5 2x1 6328 —169.00 169.00 0.0113 0.1005 56.892 169.00
7.5 4x2 6328 —246.70 246.70 0.0174 0.1550 87.140 246.70
7.5 8 x4 6328 —1015.0 1015.0 0.0780 0.6977 398.89 1015.0
10.0 20 x 10 6328 —156.10 156.10 0.0683 0.6481 101.32 156.10
10.0 2x1 6328 —72.920 72.920 0.0149 0.1303 37.363 72.920
10.0 4x2 6328 —109.50 109.50 0.0230 0.2010 56.766 109.50
10.0 8 x4 6328 —468.70 468.70 0.1031 0.9022 255.42 468.70
20.0 20 x 10 6328 —32.320 32.320 0.1095 1.032 27.710 32.320
20.0 2x1 6328 —2.528 2.528 7.055 x 103 0.0582 2.081 2.528
20.0 4x2 6328 —14.240 14.240 0.0388 0.3293 11.764 14.240
20.0 8 x4 6328 —63.110 63.110 0.1753 1.484 52.232 63.110
30.0 20 x 10 6328 —11.290 11.290 0.1082 1.109 10.442 11.290
30.0 2x1 6328 —0.7535 0.7535 6.885 x 103 0.0638 0.6910 0.7535
30.0 4x2 6328 —4.256 4.256 0.0382 0.3604 3.906 4.256
30.0 8 x4 6328 —18.980 18.980 0.1724 1.620 17.446 18.980

Percentiles are computed on |AB|. Units are nT; raw simulator units are Tesla.
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Appendix B. Baseline MLP Architecture
Appendix B.1. Forward Mapping

Given sensor vector s = (s N,SE,Ss, SW), the network computes
hD = gWWs +50), 1@ = WD +5@), p=WOn@ 450,
where ¢(-) = max(0,-) and p = (£, 7).

Appendix B.2. Loss and Optimization

The network minimises Ly p = ||p — plli with Adam (7 = 5 x 1073; see Appendix B.3
for all hyper-parameters).

Appendix B.3. MLP Baseline Hyper-Parameters

e Architecture: 6-128-128-2 with GELU activations; He uniform initialization.
e  optimizer: Adam, 7 =5 x 1073, B1, = (0.9,0.999).

¢ Batch size: 500 samples.

¢  Early stopping: patience 1000 on validation MAE; max 10,000 epochs.

¢ Base MLPs: one model per scenario (100 samples each).

*  DRS MLP: same capacity, trained on concatenated 300 samples.

Appendix C. Evaluation Results
Appendix C.1. Heatmaps ANP vs. DRS-General

ANP 1.25
1.00 €
<
0.75 s

DRS_general 0.50

Figure A2. Per-scenario MAE heat-map for in-distribution validation set.

200
ANP 18.01 57.81 57.83 70.10 15.54 60.66 58.30 69.50 20.35 18.42 20.89 19.41 20.46 57.41 57.21
150 ¢
100 ¥
=
DRS_generaI 32.65 203.99 200.85 28.61 212.39 196.97 59.87 69.95 38.13 37.90 206.67 202.31 50

Figure A3. Per-scenario MAE heat-map for out-of-distribution set.
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Appendix C.2. Heatmaps Task: Depth

MLP_7-5m
MLP_10m 8
MLP_20m °E

4 g

DRS_depth s

DRS_general 2
ANP
IS $ S S
& $ S s

Figure A4. Color-coded MAE heat-map for the depth experiment.

Appendix C.3. Heatmaps Task: Size
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Figure A5. MAE heat-map for the size experiment.

Appendix C.4. Heatmaps Task: Sensors
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Figure A6. MAE heat-map for the sensor experiment.

Appendix C.5. Complete MAE Matrix for the Unified Benchmark

Table A2 lists the 14 x 12 = 168 mean absolute errors obtained when every model
is evaluated on every dataset (three x depth, three x hull size, three x sensor count, plus
the three OOD probes). These are the raw numbers underlying the statistical analysis in
Section 5.6.
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Table A2. Mean Absolute Error (m) of all 14 models on each of the 12 trajectory collections. Lower is

better; best values per column are highlighted in bold.

Depth-7-5m depth-10m depth-20m depth-30m size-2x1m size-4x2m size-8x4m size-20x10m sens-6s sens-5s sens-4s sens-3s

ANP 0.42 0.34 0.38 2.67 0.33 0.24 038 391 035 0.34 038  69.66
DRS-general 093 0.98 1.04 436 211 2.04 1.04 480 0.68 073 104 13910
MLP-7-5 m 0.74 1.67 521 834 199.64 188.71 521 668 6758 3401 521  109.34
MLP-10 m 1.61 0.66 440 8.06 958.86 840.54 440 760 12486 4566 440 43372
MLP-20 m 6.45 481 0.67 3.94 13573 12830 0.67 530 10006  67.64 067 12607
DRS-depth 0.88 0.83 1.51 411 687.02 641.54 1.51 546 13248  145.68 151  53.03
MLP-2 x 1 m 328.56 325.96 319.15 317.11 0.68 11.80 319.15 32090 39072 39522 31915  425.03
MLP-4 x 2 m 135.91 13538 132.66 129.93 11.68 1.07 132.66 13353 14152 18126  132.66  346.08
MLP-8 x 4m 6.84 499 048 359 221.09 196.39 048 789 26776  81.66 048 9391
DRS-size 6.57 469 0.69 391 1.19 1.08 0.69 790 14991  140.70 069 7253
MLP-6 s 14438 14349 14331 14516 206.65 194.01 14331 14316 052 10109 14331  77.02
MLP-5's 60.06 59.94 58.92 59.29 287.17 253.58 58.92 6041 3893 050 5892 6331
MLP-4 s 6.56 492 0.68 408 243.44 218.31 0.68 571 7724 5171 068  61.39
DRS-sensors 8.86 6.36 0.25 403 345.17 320.20 0.25 7.57 0.29 023 025 6948

Appendix D. Latency Estimation on Embedded Devices

Appendix D.1. Reference Measurement on Our Server Desktop

*  Hardware & Software: NVIDIA RTX 2080 Ti (13.45 TFLOPS FP32) running PyTorch 2.2.

up passes.

Appendix D.2. Computational Scaling Model

Script: test_latency.py scritp that performs N = 200 timed iterations after ten warm-

Result: tyogos = 3.775 ms per batch (20 + 80 points, B = 1, FP32).

The forward pass is dominated by matrix—matrix products in the decoder. Assum-

ing identical kernel efficiency 7 across devices, latency scales inver
FLOPS ([33]):

FLOPSy080ti 172080t
FLOPSgevice Ndevice

tdevice =~ £2080ti

sely with sustained

(A)

Various empirical studies show that Jetson Xavier NX reaches #gevice ~ 0.35

(plain FP32) and ~0.65 with TensorRT/FP16; Jetson Nano sustains
continuous load.

Appendix D.3. Device Specifications

Table A3. Compute capability used in Equation (A1).

Ndevice ~ 0.30 under

Device Architecture TFLOPS FP32 TFLOPS FP16
RTX 2080 Ti Turing TU102 13.45 27.0
Jetson Xavier NX Volta (384 CUDA) 1.30 6.0
Jetson Nano Maxwell (128 CUDA) 0.47 —
Appendix D.4. Resulting Latency Estimates
Table A4. Predicted single-batch latency for the ANP model.
Device Mode Scale Factor Latency
Jetson Xavier NX FP32 13.45/1.30 ~ 10.3 ~38ms
Jetson Xavier NX FP16 (TensorRT) 27/6.0 =~ 4.5 ~9ms
Jetson Nano FP32 13.45/0.47 =~ 28.6 ~110ms
Appendix D.5. Limitations
(1) Throttling on the Nano under passively cooled cases can add ~20 % latency.

Host + device transfers are excluded.

(ii)
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