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Abstract: Synthetic Data Generation (SDG) is a promising solution for healthcare, offering
the potential to generate synthetic patient data closely resembling real-world data while pre-
serving privacy. However, data scarcity and heterogeneity, particularly in under-resourced
regions, challenge the effective implementation of SDG. This paper addresses these chal-
lenges using Federated Learning (FL) for SDG, focusing on sharing synthetic patients across
nodes. By leveraging collective knowledge and diverse data distributions, we hypothesize
that sharing synthetic data can significantly enhance the quality and representativeness of
generated data, particularly for institutions with limited or biased datasets. This approach
aligns with meta-learning concepts, like Domain Randomized Search. We compare two FL
techniques, FedAvg and Synthetic Data Sharing (SDS), the latter being our proposed con-
tribution. Both approaches are evaluated using variational autoencoders with Bayesian
Gaussian mixture models across diverse medical datasets. Our results demonstrate that
while both methods improve SDG, SDS consistently outperforms FedAvg, producing
higher-quality, more representative synthetic data. Non-IID scenarios reveal that while
FedAvg achieves improvements of 13–27% in reducing divergence compared to isolated
training, SDS achieves reductions exceeding 50% in the worst-performing nodes. These
findings underscore synthetic data sharing potential to reduce disparities between data-rich
and data-poor institutions, fostering more equitable healthcare research and innovation.

Keywords: synthetic data generation; federated learning; medical data; data scarcity; data
heterogeneity

1. Introduction
A significant challenge in healthcare research is the scarcity and often suboptimal

quality of medical data, particularly in resource-limited regions. The need for infrastruc-
ture, funding, and research capacity in these areas hinders the collection of comprehensive
patient datasets. Moreover, the prevalence of specific medical conditions may vary ge-
ographically, resulting not only in a lack of data for particular diseases but also in the
presence of biases within the data. This disparity exacerbates the inequities between well-
resourced healthcare institutions and those serving marginalized communities [1,2]. This
uneven distribution of medical data intensifies the gap in healthcare research and medical
innovation. Hospitals and research centers with access to extensive datasets can conduct
thorough testing and develop effective treatments, while insufficient data constrain others
from pursuing similar endeavors.

Addressing the scarcity of medical data requires innovative strategies. One approach
involves inter-institutional data sharing, often hindered by stringent data privacy regu-
lations. Data anonymization techniques are used to remove identifiers and standardize
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shared data to mitigate these restrictions [3]. However, these methods can introduce biases
or distortions and may compromise data utility by removing or obscuring sensitive or
unique information. Additionally, encrypted data sharing, while a widely used privacy-
preserving solution, is not without its risks. Encrypted data are vulnerable to security
threats, including man-in-the-middle attacks, key compromises, and the potential for re-
identification when auxiliary information is available [4,5]. Such vulnerabilities highlight
the inherent risks of transmitting real patient data, even when encrypted. These chal-
lenges underscore the importance of developing methods that avoid transmitting sensitive
information entirely.

In recent years, Synthetic Data Generation (SDG) has emerged as a promising alter-
native, generating artificial patient data that mimics real data while preserving privacy.
Synthetic data can augment existing datasets and facilitate research without compromising
patient confidentiality [6,7]. Generative models, such as Generative Adversarial Net-
works (GANs) and Variational Autoencoders (VAEs), offer powerful tools for this SDG.
GANs [8,9], capable of generating diverse data, have limitations in handling mixed data
types and specific feature values, particularly with imbalanced datasets. Conditional GANs,
such as CTGAN [10], address these challenges using a conditional vector to specify desired
labels. VAEs, on the other hand, provide a probabilistic framework for data generation,
offering flexibility in handling complex data distributions. Among VAEs, a recent extension
of TVAE [10] with a Bayesian Gaussian mixture model (BGM), VAE-BGM [11], demon-
strates superior performance in generating high-quality synthetic tabular data. These
models effectively capture the underlying structure and distribution of real-world data,
enabling the creation of realistic, anonymized patient data for research and analysis. By
leveraging generative artificial intelligence models, healthcare institutions can overcome
the limitations of real-world data and accelerate medical research while protecting patient
privacy. However, the effectiveness of these models and SDG hinges on the quality and
quantity of the underlying real data. If an institution lacks sufficient data to generate
reliable synthetic data, the process may require tailored approaches to minimize the impact
of the lack of samples [12].

Federated Learning (FL) [13] has emerged as a promising framework for collaborative
Machine Learning (ML), particularly in scenarios where data privacy is a significant concern.
While traditionally employed to enhance model performance and generalization, FL’s
potential for improving SDG has garnered increasing attention. By enabling institutions
to train models locally on their private datasets and aggregate the learned parameters,
FL facilitates decentralized SDG. This approach not only protects data privacy but also
leverages the diversity of data across institutions to augment model performance and
generalization. FL can be particularly advantageous for institutions with limited data, as
they can benefit from the collective intelligence of a more extensive network of institutions.
Traditional FL techniques, such as FedSGD and FedAvg [14], are particularly effective when
institutions have similar data distributions (i.e., independent and identically distributed
(IID) data). However, data heterogeneity is prevalent in real-world medical contexts due
to population and institutional-specific practices. These disparities can lead to biased
models if not adequately addressed [15,16]. Consequently, developing techniques that
can effectively handle non-IID data is imperative for achieving the full potential of FL in
medical research.

Researchers have explored various data-level techniques to mitigate the challenges
posed by data heterogeneity in FL [17,18]. These techniques include private data processing
(e.g., data collection, filtering, cleaning, and augmentation) and leveraging external data
through knowledge distillation or unsupervised representation learning. For instance,
Federated Distillation (FD) methods, such as Federated Augmentation (FAug) [19], provide
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innovative solutions that enhance the quality of SDG. FD enables more flexible knowledge
transfer between clients and the server, surpassing the limitations of only sharing model
parameters. FAug, in particular, tackles data heterogeneity by generating synthetic data
to augment local datasets, allowing them to resemble IID distributions. Another notable
method, Astraea [20], collects local data distributions and performs data augmentation
based on global distributions to alleviate imbalance. By rearranging the training of clients
based on KL divergence, Astraea ensures that local models are trained on more repre-
sentative data. However, it is essential to emphasize that all these methods, along with
other emerging techniques such as [21,22], are primarily designed for supervised learning
contexts. These approaches focus on improving model training and parameter optimization
by leveraging labeled data, offering significant insights into addressing data heterogeneity
in supervised tasks using FL. However, they do not directly tackle the challenges associated
with SDG. Therefore, FL remains a promising framework for SDG in heterogeneous envi-
ronments. However, tailored strategies are required to address the distinct challenges of
training a deep generative model that takes advantage of the data in different data centers.

Building upon the existing literature, this paper proposes to address data heterogene-
ity in FL specifically for SDG. While this method could be compared to data augmentation,
we move beyond its capabilities by focusing on generating entirely new synthetic patient
data rather than transforming existing samples. Traditional data augmentation typically
takes an existing dataset and applies modifications—such as rotation, scaling, or cropping
in images—to create additional, varied instances within the same data collection. This trans-
formation approach increases the dataset’s diversity but does not introduce fundamentally
new information, as it only reuses the original samples. In contrast, SDG, as applied in this
study, involves creating entirely new, artificial patient records that replicate the underlying
patterns of real data without directly mirroring specific records. Instead of relying solely
on local data augmentation or knowledge distillation, we explore the potential of sharing
locally generated synthetic patients among participating institutions. By leveraging the
collective knowledge and diverse data distributions across the federation, we hypothe-
size that Synthetic Data Sharing (SDS) can enhance the quality and representativeness of
generated data for all institutions, particularly those with limited or biased datasets. SDS
offers several advantages: (1) it can help institutions with insufficient data benefit from
the more diverse and representative synthetic data generated by others; (2) it can improve
the ability of models to generalize to unseen real-world scenarios by exposing them to a
broader range of synthetic patient data; and (3) it can reduce the computational burden
by reusing models with minimal retraining once synthetic patients have been generated.
This method parallels Domain Randomized Search (DRS), a meta-learning approach where
models are trained across tasks to generalize across diverse domains [23]. Similar to DRS,
where data from multiple tasks are aggregated to improve generalization, our method
uses synthetic patient data from different nodes to address the issue of data heterogeneity
in FL. By sharing synthetic patients, institutions with low-quality data can benefit from
the more diverse data generated at other nodes, potentially improving the overall model
performance. This approach could be seen as meta-learning within the FL framework,
where aggregated synthetic data helps balance the disparities between nodes.

Our research contributes to the field of FL by proposing and evaluating an SDG model
within a heterogeneous data environment.

• Specifically, we leverage the VAE-BGM model [11], known for its superior performance
in generating high-quality synthetic tabular data. By integrating this model into an FL
framework, we aim to surpass the performance of isolated SDG methods.
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• To simulate realistic scenarios, we construct an FL environment comprising multiple
nodes with varying data quantities and qualities. This setup enables us to assess the
effectiveness of our approach under diverse conditions.

• We compare the traditional FedAvg technique with the proposed SDS method of shar-
ing generated data across nodes under IID and non-IID data scenarios. To validate the
comparative performance of these approaches, we employ statistical validation using
Jensen–Shannon divergence (DJS), as described in [24], and clinical utility validation,
as recommended by recent research. These evaluations demonstrate the efficacy of
SDS in addressing data heterogeneity and improving SDG within FL environments.

This paper is structured as follows. Section 2 outlines our methodology for the
proposed SDG model within the FL framework. Section 3 presents the experimental
setup, details the datasets used, and analyzes our results. Finally, Section 4 summarizes our
findings, discusses the implications of our research, and proposes future research directions.

2. Materials and Methods
2.1. VAE-BGM Model

A novel approach to synthetic tabular data generation is introduced in [11], which
integrates a BGM within the framework of a VAE. This approach addresses the limitations
observed in existing models like CTGAN and TVAE [10]. While these earlier models
demonstrate strong performance for certain data types, the VAE-BGM model offers superior
results, particularly in capturing the complexity of real-world tabular data.

The model’s core innovation uses a Gaussian mixture model (GMM) to model the
VAE’s latent space. More specifically, the model leverages a BGM, a type of GMM that
offers greater flexibility. Unlike traditional GMMs, which require a pre-specified number
of components, the BGM allows the model to automatically determine the appropriate
number of components. This flexibility is essential for accurately capturing the complexity
of real-world data, as it allows the model to adapt dynamically to the underlying data
distribution. By integrating the BGM, the model avoids the restrictive assumption of a
purely Gaussian latent space, which is common in models like TVAE. Instead, the BGM
enables the model to handle more complex, non-Gaussian latent structures. This is achieved
through a Dirichlet process that adjusts the number of Gaussian components in the mixture,
allowing the model to adapt to the specific data characteristics without requiring manual
specification. As a result, the VAE-BGM model provides a more nuanced and accurate latent
representation, making it particularly effective for handling complex tabular datasets where
simple Gaussian assumptions are insufficient. In addition to improving the latent space
representation, the model excels in handling mixed data types, including continuous and
discrete features. By permitting various differentiable distributions for individual features,
the model ensures that the specific characteristics of different data types are preserved
during the data generation process. This makes the VAE-BGM particularly suitable for
applications in healthcare, where datasets often contain diverse information, ranging from
binary indicators to continuous measurements.

Another key advantage of this approach is its ability to generate synthetic data that
better reflects the marginal and joint distributions of the original data. Traditional VAEs
are constrained by the Kullback–Leibler divergence (DKL) term in the loss function, which
enforces a Gaussian prior in the latent space and limits the model’s ability to capture
more complex data structures. Integrating a GMM into the already learned latent space
overcomes this limitation, allowing for a more accurate sampling process that reflects the
true diversity of the data. This enhancement leads to the generation of synthetic data that
resembles the real data more closely and retains crucial feature correlations, improving its
utility for downstream ML tasks.
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The architecture of the proposed model follows the typical VAE design, consisting
of an encoder and a decoder. The encoder learns a latent representation z of the input
data x. This latent representation is assumed to be Gaussian. The encoder aims to learn a
variational distribution qϕ(z|x) that is as close as possible to the true posterior distribution
p(z|x). This is achieved by maximizing the Evidence Lower Bound (ELBO), which is a
lower bound on the marginal log-likelihood of the data represented as defined in [11]:

log pθ(xi) ≥ −DKL(qϕ(z|xi)||p(z)) +Eqϕ(z|xi)
[log pθ(xi|z)] = L(xi, θ, ϕ), (1)

where DKL represents the KL divergence. The derivation of the ELBO is critical for
understanding the VAE framework. A detailed step-by-step derivation is provided in
Appendix A, where it is demonstrated that L(xi, θ, ϕ) in Equation (1) coincides with the
ELBO expression in Equation (A5).

On the other hand, the decoder learns the conditional distribution pθ(x|z) to generate
realistic data points from the latent space. To improve the flexibility of the latent space
representation, the BGM is applied to the learned latent space z, refining it into zGM. The
BGM models the latent space as originating from a mixture of K Gaussian distributions,
each characterized by a mean vector µk, covariance matrix Σk, and mixing coefficient πk.
This allows for a more complex and multi-modal representation of the latent space, enabling
the model to capture intricate data distributions. The probability density of a point in the
latent space is defined as follows:

p(zGM) =
K

∑
k=1

πkN (z | µk, Σk), (2)

where N (z|µk, Σk) is the probability density function of a multivariate Gaussian for each of
the K components. The expectation–maximization algorithm estimates these parameters,
enabling the model to capture richer latent structures than a single Gaussian. The BGM
allows for a more flexible representation of the latent space, enabling the model to capture
complex data distributions accurately. Figure 1 illustrates the schematic process of the
VAE-BGM model.

Given its ability to handle complex data distributions and mixed data types and
generate high-quality synthetic data, the VAE-BGM model presents a compelling synthetic
tabular data generation approach. For these reasons, we have chosen to adopt this model
as the generative model for our research.

2.2. FL Integration in SDG

Traditionally, ML models are trained in a centralized way, where all data are gathered
in a single location. However, such centralization raises significant security concerns,
especially in domains such as healthcare, where personal data are involved. FL offers a
decentralized approach to ML, enabling the training of a shared model across multiple
institutions (nodes) without the need to centralize their data. This paradigm is rooted in
three core principles:

• Distributed Data: Training data are partitioned across various clients, preserving data
locality and privacy.

• Privacy Preservation: FL mitigates privacy concerns by training models locally on
each node and sharing only model updates rather than raw data.

• Model Aggregation: Model updates from all nodes are aggregated to create a global
model that captures the knowledge from distributed data sources.
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Figure 1. Schematic representation of the VAE-BGM model. The encoder extracts a latent represen-
tation of the input data. This representation is then modeled using a BGM, creating a new space
zGM. By sampling from this space, the model generates new distribution parameters, which are
subsequently used by the already-trained decoder network to sample novel data points that closely
resemble the original dataset.

This study simulates an FL environment comprising multiple nodes to generate
synthetic data. In the context of SDG, using FL leverages decentralized data to create
synthetic datasets that maintain the statistical properties of real-world data while protecting
the privacy of the individuals involved. SDG has been widely explored in isolated settings,
but challenges remain when considering data scarcity or heterogeneity across different
institutions or geographical regions. This is where FL enters as a potential solution: by
leveraging decentralized datasets in a privacy-preserving way, FL allows institutions to
collaborate and generate synthetic data without transferring real patient records. In an
FL context, SDG can be conducted across multiple distributed nodes with local, sensitive
datasets. Rather than centralizing data, FL allows each node to train a generative model
(VAE-BGM in this study) locally. The model parameters (not the data itself) are then
shared with a central server, where they are aggregated to form a global generative model.
This global model can then generate synthetic data that encapsulate the diverse statistical
properties of data from all participating nodes.

2.3. Information Aggregation Techniques

In the proposed FL framework, we explore two techniques to train the VAE-BGM
models across scarce and heterogeneous data environments: FedAvg and SDS. This section
will explain both algorithms, detailing their mechanisms and how they address the chal-
lenges of non-IID data distribution across nodes. Comparing these two methods aims to
clarify their respective advantages in improving SDG under the constraints of FL.
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2.3.1. Federated Averaging

FedAvg, introduced by [14], is a foundational method in FL and serves as a baseline in
this study to evaluate the performance of advanced approaches such as FedSDS.

The process begins with initializing a shared model architecture, such as the VAE-
BGM, that is consistent across all nodes to ensure compatibility during aggregation. Each
node trains this model locally on its dataset, producing updated parameters Wi. These
local updates are then sent to a central server, where they are aggregated using a weighted
averaging approach. The contribution of each node is proportional to its data size Mi,
and the global model is updated as W = ∑L

i=1
Mi
N Wi, where N = ∑L

i=1 Mi represents the
total number of samples across all nodes. The updated global model is then distributed
back to the nodes for further refinement in iterative rounds until a stopping criterion,
such as convergence or a predefined number of iterations, is met. This iterative process
allows FedAvg to combine distributed knowledge effectively while preserving data privacy.
Figure 2 illustrates the overall FedAvg process, highlighting the interaction between local
model training and global aggregation.

Figure 2. FedAvg process in FL. Each node trains a local model based on its data and shares the
model parameters with a central server. The server averages the parameters over several rounds to
create a global model, which is then distributed back to the nodes.

2.3.2. Synthetic Data Sharing

FedAvg has proven effective in many FL settings but can face challenges when applied
to non-IID data [16,25]. Non-IID data are associated with scenarios where the data stored
across different nodes are highly heterogeneous, leading to biased models or poor conver-
gence. Differences in data distributions across nodes can result in variations in the local
generative models. This can complicate the aggregation process, making it challenging to
generate synthetic data that accurately represent the combined dataset.

Our proposal, SDS, is a technique that can address this issue: sharing synthetic
patients generated locally at each node. We leverage the SDG model we intend to train
at each node to generate data and enhance model performance when data are non-IID.
This approach draws upon the meta-learning paradigm, specifically DRS, as introduced
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by [23], which approximates Model-Agnostic Meta-Learning (MAML). Meta-learning, often
described as “learning to learn” [26], focuses on training algorithms that can generalize
efficiently across tasks. By learning from related tasks, meta-learning models can rapidly
adapt to new tasks with minimal data, addressing scenarios where large datasets are
unavailable. MAML [27], one of the most significant meta-learning methods, focuses on
finding a set of initial parameters, θMAML, that can be fine-tuned with minimal data for new
tasks. MAML optimizes task-specific and meta-parameters through bi-level optimization,
allowing rapid adaptation to new, unseen tasks. However, this bi-level optimization
presents significant computational complexity, making it less suitable in environments
constrained by resources or data. In contrast, DRS approximates MAML’s generalization
goal while reducing computational demands. Instead of performing a bi-level optimization,
DRS aggregates data across tasks and trains the model directly on this aggregated dataset,
resulting in a more resource-efficient solution. DRS achieves the same goal as MAML
generalization across tasks by simplifying the learning process through direct training on
aggregated data. Let a task instance T represent a tuple containing a dataset D and its
corresponding loss function L. Solving this task entails finding the optimal task-specific
parameters ω∗ that minimize the loss L for the particular dataset D. Thus, the parameters
θDRS for each SDG model are optimized according to the following equation:

θDRS = arg min
ω

L(D(real)
i ; ω) + ∑

j∈−i
L(D(synth)

j ; ω), (3)

where D(real)
i denotes the real, local dataset of node i, and D(synth)

j signifies the synthetic
datasets shared by the other nodes j ∈ −i, with −i denoting all nodes except node i.
This method optimizes the model by minimizing the loss across the aggregated data,
including the real, local data from node i and the synthetic data from the other nodes. This
approach mitigates the negative impact of non-IID data by leveraging synthetic data from
multiple nodes to create a more representative and diverse training set. The ability of
SDS to aggregate synthetic patient data from different nodes aligns with the meta-learning
principles, allowing the model to generalize effectively across varying data distributions
and enhancing model convergence in FL environments. A point worth emphasizing is the
suitability of DRS over MAML in scenarios with a limited number of tasks (nodes). FL
environments typically involve fewer data providers than more generalized ML setups.
This small number of nodes can lead to situations where DRS, by aggregating synthetic
data from these nodes, outperforms MAML. The reasoning behind this is grounded in the
computational efficiency of DRS: unlike MAML, which requires bi-level optimization over
multiple tasks, DRS aggregates data across tasks in a single round of optimization, making
it less computationally intensive [23].

Thus, SDS provides the FL model with a richer and more diverse dataset, improving
the quality and representativeness of the generated synthetic data, particularly in nodes
where the data are scarce or biased. Unlike traditional parameter aggregation methods,
SDS directly introduces additional information from other nodes, potentially improving
convergence and mitigating the negative effects of data heterogeneity.

1. Local SDG: Each node initializes its local VAE-BGM model and trains it until synthetic
data are generated based on the learned latent representation of the model. This
aligns with the DRS strategy of generating data across domains (nodes) to capture
domain-specific features.

2. Synthetic Data Sharing and Aggregation: Similar to DRS, synthetic data from each
node are shared with other nodes. This aggregated data forms a more diverse and
representative training dataset, mitigating the effects of data heterogeneity.
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3. Model Training with Augmented Data: Each node trains its local VAE-BGM model
using the augmented dataset, including real and synthetic data. This process, akin to
DRS’s task-based aggregation, leverages the diversity in the shared synthetic data to
improve model performance. The training continues until the model converges.

This approach improves convergence and mitigates the negative impact of non-IID
data by leveraging the diversity of synthetic data from multiple nodes. Sharing synthetic
data instead of generative models further optimizes the system, making SDS a highly
efficient option for complex FL scenarios. Figure 3 depicts the explained process.

FedAvg and SDS can operate without a central server in this revised approach, al-
lowing direct communication between nodes. However, a notable distinction lies in the
number of communication rounds necessary for model convergence. FedAvg typically
requires multiple parameter updates and aggregation rounds to achieve optimal accuracy.
This iterative process involves continuous communication between nodes, which can be a
limitation in bandwidth-constrained environments. In contrast, SDS could theoretically be
executed in a single communication round. Although this study does not apply a single-
round strategy, the potential for such an approach exists. By sharing synthetic patient data
only once, significant improvements in model performance could be obtained, particularly
in scenarios where communication resources are limited. This single-round communication
would drastically reduce overhead compared to FedAvg, which depends on numerous
rounds of sharing and aggregating model parameters. Additionally, in SDS, sharing not
just the synthetic data but also the generative model itself, including the decoder and the
BGM-derived parameters, enhances communication efficiency compared to FedAvg. Thus,
SDS offers a more scalable and bandwidth-efficient solution for real-world FL applications,
especially when communication restrictions are a significant concern.

Figure 3. SDS process in FL. The SDS approach generates synthetic data locally at each node and then
shares this data across nodes. Nodes incorporate the aggregated synthetic data from other nodes into
their local training.



Big Data Cogn. Comput. 2025, 9, 18 10 of 30

3. Results
3.1. Data

This section details the two medical datasets used in our experiments [28]. The
motivation for selecting these classification datasets is their substantial number of samples
and several types of varying features, making them well suited for testing our proposed
approach. They offer the complexity needed to evaluate the robustness of SDG due to the
intricate relationships between features and the heterogeneous nature of their data types.

• Diabetes_H (Diabetes Health Indicators) https://www.kaggle.com/datasets/al
exteboul/diabetes-health-indicators-dataset (accessed on 20 January 2025): This
dataset comprises survey responses collected by the Centers for Disease Control and
Prevention from the Behavioral Risk Factor Surveillance System (BRFSS) 2015. BRFSS
is an annual health-related telephone survey designed to gather information on health
conditions and risk factors. The target variable includes three classes: 0 for no diabetes
or diabetes during pregnancy, 1 for prediabetes, and 2 for diabetes.

• Heart (Heart Disease Indicators) https://www.kaggle.com/datasets/kamilpytlak/
personal-key-indicators-of-heart-disease (accessed on 20 January 2025): Similar to
Diabetes_H, this dataset originates from the cleaned BRFSS 2015 survey and focuses
on a binary classification of heart disease presence.

Table 1 provides a more detailed description of the composition of these datasets. The
data complexity stems from the many features with diverse data types, leading to intricate
relationships and dependencies. This feature diversity presents a significant challenge
for generating high-quality synthetic data that accurately reflect the underlying structure
of the real data. Additionally, the class proportions reveal that these datasets are highly
imbalanced, adding further complexity to the generation process. The imbalance introduces
challenges in ensuring that the synthetic data adequately represent minority classes, which
is crucial for accurate classification.

Table 1. Medical databases used in experiments. Datasets vary in number of samples, features, data
types, and class proportions.

Dataset Number of Samples Number of Features Data Types Class Proportion

Diabetes_H 253,680 22 Integer, categorical, and
binary 84.24%/1.83%/13.93%

Heart 253,680 22 Integer, categorical, and
binary 90.58%/9.42%

3.2. Experimental Design
3.2.1. Data Distribution and Nodes Setup

We employ a federated environment consisting of three nodes to mimic real-world
situations where data availability and quality vary significantly between institutions
or locations.

• Node 1 represents an institution with limited data and resources, having only
100 training samples.

• Node 2 represents an institution with moderate resources, using 1000 training samples.
• Node 3 represents a well-resourced institution with access to a large dataset of

10,000 training samples.

However, all nodes share the same number of validation samples, each tested on 9500.
This validation set ensures that performance is measured consistently across all nodes. The
datasets selected allow us to create these divisions without losing the integrity of the data.

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
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Two distinct scenarios are conducted to assess the performance under different data
distributions: IID and non-IID.

• IID Scenario: In this case, data are split randomly across the three nodes, ensuring
each node receives a statistically similar distribution of features. This ensures that the
feature distributions are balanced and equal across all nodes.

• Non-IID Scenario: To represent more realistic, complex data conditions, this scenario
reflects non-IID data distributions, where feature distributions vary across nodes.
In an FL context, data might naturally exhibit variability across locations due to
differences in population, local health factors, or socioeconomic conditions. For this
scenario, we simulate distributional variation by selecting a key feature in each dataset
with a substantial impact on the target variable—in this case, the Body Mass Index
(BMI) column, due to its established correlation with diabetes [29] and heart disease
[30], as well as its sensitivity to regional socioeconomic factors like healthcare access
and diet quality [31]. BMI distribution was stratified to create differing distributions
across nodes: one node received a balanced distribution of BMI values (50% above
and 50% below the median), while the other two nodes were provided with skewed
distributions, with 90% of samples having BMI values either above or below the
median, respectively. Maintaining consistent features across nodes (i.e., the same
columns) while introducing distributional differences allows us to model the non-
IID scenario while ensuring compatibility with FedAvg realistically. By preserving
identical feature columns across nodes, FedAvg remains applicable, as it requires the
compatibility of model parameters based on shared input feature sets across nodes.
In cases where nodes differ in feature sets, applying FedAvg would be infeasible, as
model parameter aggregation depends entirely on the alignment of input features
across nodes. This design choice lets us compare SDS and FedAvg, underscoring our
approach’s robustness and practical relevance in a realistic FL scenario.
Figure 4 illustrates the Kernel Density Estimation (KDE) of the BMI distributions
across the three nodes for both IID and non-IID scenarios. In the IID scenario, shown
in Figure 4a,b, the distributions of BMI are similar across all nodes, as expected
due to random data splitting. However, the distributions differ significantly across
nodes in the non-IID scenario, depicted in Figure 4c,d. Specifically, Node 3 retains
a distribution similar to the overall population, while Nodes 1 and 2 distributions
are shifted, reflecting the intentional skew in their data. This variation highlights
the challenges posed by non-IID settings in federated learning and underscores the
importance of techniques like SDS to address such disparities.

3.2.2. Data Generation in an FL Environment

Each node trains its local VAE-BGM model to generate data based on the locally
available training samples. The critical aspect of this experiment is comparing two different
FL techniques, FedAvg and SDS, against isolated, non-federated training. Comparing these
two FL techniques will provide insights into how FL can enhance SDG in data heterogeneity
and imbalance environments.

• FedAvg: This method aggregates the model weights from each node and updates the
local models using a weighted average of these aggregated weights. Each node trains
its local model for 200 epochs, after which the weights are shared, aggregated, and
redistributed for the next training round. This process is repeated for five rounds.

• SDS: Instead of sharing model parameters, each node shares synthetic data generated
locally. The synthetic data are shared across the network. These additional synthetic
data improve the quality and quantity of the local datasets at each node, boosting
training efficacy. The process steps are the following:
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1. In the first round, each node trains its local VAE-BGM model with its original
dataset, generating synthetic samples.

2. From the second round onward, the synthetic data generated by each node are
shared with the other nodes, augmenting their local datasets. However, the total
number of samples used for training at each node is limited to 10,000. If the sum
of local and synthetic samples exceeds 10,000, the node will use only as many
synthetic samples as needed to maintain this maximum training size.

Both methods aim to improve the performance of the nodes with less data or poorer
data quality. In the FedAvg case, we expect that sharing model weights will help align the
local models across nodes. In contrast, in SDS, the increase in data volume and diversity
from shared synthetic patients is expected to mitigate the issues related to data scarcity
and bias.
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Figure 4. KDE plots for BMI distributions across nodes under IID and non-IID scenarios for the
Diabetes_H and Heart datasets.

3.3. Network Architecture

The proposed network leverages a VAE and a BGM model for SDG at each node [11].
The VAE learns a latent data representation with an encoder featuring a hidden ReLU layer
of 256 neurons and a hyperbolic tangent output layer. The latent space dimensionality is
fixed at 20, capturing key data features. The decoder mirrors the encoder structure with
tailored activation functions for covariate distributions. Dropout at 20% helps prevent
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overfitting. The VAE is trained for 200 epochs in each federated round with a batch size of
1024. The BGM further models the latent space as a mixture of Gaussian distributions, using
a Dirichlet process prior with a maximum of 20 components. Each Gaussian component has
its covariance matrix, enhancing the model’s ability to represent complex data relationships.

Each node trains its local VAE-BGM model in the FL setup over five federated rounds.
After each round, depending on the technique, either model weights (FedAvg) or syn-
thetic data (SDS) are shared and aggregated across nodes. FedAvg aggregates model
weights, while SDS shares synthetic data to enrich local datasets. The performance is
averaged over three runs with different random seeds to account for the sensitivity of VAEs
to initialization.

3.4. Evaluation Metrics

The primary goal of this study is to generate synthetic data that is indistinguishable
from real data, both in terms of statistical properties and practical utility in clinical settings.
We adopt a dual validation approach focused on statistical similarity and clinical utility to
comprehensively evaluate the generated data, following state-of-the-art guidelines [32].

For statistical validation, although numerous statistical tests and metrics can be used
to compare real and synthetic data distributions, we chose to rely on DJS estimation, a
well-established method for measuring the similarity between two probability distributions.
The DJS is a symmetrized and bounded version of the DKL and is particularly effective
for large datasets. With DKL

(
p(x)∥q(x)

)
=

∫
p(x) log

(
p(x)/q(x)

)
dx , the DJS between

two distributions p(x) and q(x) is defined as

DJS
(

p(x)∥q(x)
)
=

1
2

DKL
(

p(x)∥m(x)
)
+

1
2

DKL
(
q(x)∥m(x)

)
, (4)

where m(x) = 1
2
(

p(x) + q(x)
)

is the average distribution. This divergence captures the
dissimilarity between each distribution and the average distribution m(x). The DJS is
bounded between 0 and 1, with lower values indicating greater similarity between the
distributions. To estimate DJS, we followed the methodology outlined by [24], which
employs a discriminator network to differentiate between real and synthetic data. This
probabilistic classifier is trained with two datasets: M samples from the real data, labeled
as class 1, and M synthetic samples, labeled as class 0. The classifier learns a decision
boundary to distinguish between real and synthetic data, and the probabilities predicted
by the network are then used to compute the DJS. Specifically, the network outputs
probabilities P(y = 1|x), representing the likelihood that a given sample x comes from real
data. Using this information, the DJS is approximated as follows:

DJS
(

p(x)||q(x)
)
≈ 1

2L

L

∑
i=1

log
(

2P(y = 1|xi)

P(y = 1|xi) + P(y = 0|xi)

)

+
1

2L

L

∑
i=1

log
(

2P(y = 1|x̃i)

P(y = 1|x̃i) + P(y = 0|x̃i)

)
,

(5)

where xi ∼ p(x), x̃i ∼ q(x) and L are the number of samples used for evaluation. This
study employs M = 7500 samples for training and L = 1000 samples for evaluation,
consistent with prior research [24].

To assess the effectiveness of different scenarios—specifically, isolated learning, Fe-
dAvg, and SDS—on the DJS values, we introduce the Mean Reciprocal Rank (MRR). The
MRR gauges the relative effectiveness of each technique by considering the rank position
of the first relevant DJS value within an ordered list of DJS values derived from each FL
technique and the isolated learning scenario. The Reciprocal Rank (RR) for each method
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is calculated as the inverse of the position of the first relevant DJS result. For example, if
the first relevant result appears in the top position, its RR is 1; if it appears in the second
position, the RR is 0.5, and so forth. The MRR is then computed as the average of the RRs
across all situations:

MRR =
1
Q

Q

∑
i=1

1
ranki

, (6)

where Q denotes the total number of situations under evaluation (isolated, FedAvg, and
SDS), and ranki represents the position of the first relevant DJS for the i-th scenario. Higher
MRR values imply that relevant DJS values appear earlier in the list, indicating better
performance and suggesting an advantage of one FL technique over the isolated approach.
This metric thus provides insight into which FL techniques potentially enhance model
performance compared to isolated scenarios.

In addition to statistical validation, evaluating whether the synthetic data can be
effectively applied to real-world clinical tasks is crucial. Clinical utility validation ensures
that the synthetic data are statistically similar and useful for practical applications, such
as training ML models for medical decision-making. For clinical utility validation, we
use a Random Forest (RF) classifier to assess the accuracy of predicting the target feature
in each dataset. For this RF, we employed the default hyperparameters provided by the
scikit-learn library [33]. This choice is justified by the balanced class distributions and large
sample sizes in the datasets, which ensure that the default settings are sufficient to provide
robust and reliable performance. Random Forests are well known for their robustness to
hyperparameter choices, particularly in scenarios with ample data and balanced classes.
Furthermore, this study focuses not on maximizing the classifier’s performance but on
evaluating the comparability of synthetic and real data in downstream tasks. Using default
hyperparameters avoids introducing variability associated with tuning and provides a
consistent baseline for comparing the utility of synthetic data.

Two experimental scenarios are considered:

• Training on real data and validating on real data: This is the upper-bound performance
we aim to match with the synthetic data.

• Training on synthetic data and validating on real data: This tests the ability of a
classifier trained on synthetic data to generalize to real-world data, indicating the
practical utility of the synthetic samples.

The goal is for the classification accuracy obtained in the second scenario to closely
match that of the first scenario. If the accuracy gap is minimal, synthetic data can be
effectively used in clinical applications.

This dual validation approach comprehensively assesses the quality and applicabil-
ity of the generated synthetic data by combining statistical similarity and clinical utility
validation. Statistical validation ensures that the synthetic data closely mimics the real
data distribution. In contrast, clinical validation confirms that the synthetic data retain the
necessary information to perform well in real-world tasks. These metrics offer a holistic
evaluation of the synthetic data’s fidelity and utility.

We conducted hypothesis testing to validate our proposed approaches’ effectiveness
further. For statistical validation, the null hypothesis assumed that isolated training would
yield lower DJS values (indicating better performance) than FL techniques. A significance
level of 0.01 was employed. Rejection of the null hypothesis, based on p-values below
this threshold, indicated that FL techniques significantly outperformed isolated training.
Regarding clinical utility validation, the accuracy achieved using real data for training
and validation was considered the upper bound. The null hypothesis assumed this upper
bound would be higher than the accuracy obtained using synthetic data for training and



Big Data Cogn. Comput. 2025, 9, 18 15 of 30

real data for validation. A significance level of 0.01 was again applied. Rejection of the null
hypothesis implied that the performance of classification models trained on synthetic data
was comparable to or even exceeded that of the models trained on real data.

3.5. Experiments

For each dataset, we provide a detailed comparison of the DJS and accuracy scores,
which reflect the statistical and clinical utility validations. These results are displayed in
tables, allowing for a clear performance comparison across the different FL techniques
and the isolated case. The analysis was conducted for IID and non-IID data scenarios.
Additional results are included in Appendix C, where we compare key features of real and
synthetic data distributions, and in Appendix ??, which presents a study on the influence
of varying sample sizes across nodes. The code to replicate the results can be found in
https://github.com/Patricia-A-Apellaniz/fed_vae (accessed on 20 January 2025).

3.5.1. IID Scenarios

The results for the Diabetes_H dataset in Table 2 demonstrate the effectiveness of SDS
in generating high-quality synthetic data, particularly in nodes with limited data (Nodes 1
and 2). SDS consistently outperforms isolated training and FedAvg regarding statistical
similarity, as evidenced by the lower DJS values. Although FedAvg enhances performance
compared to independent training on Node 2, it remains less effective than SDS. The
DJS results for Node 3, which has the most significant data, are relatively similar across
all techniques. This is expected, as the abundance of data may limit the potential gains
from FL. Regarding clinical utility, all nodes achieve comparable and high accuracy in the
real–real scenario, suggesting that the classification task is relatively straightforward, even
with limited data. In the synthetic–real scenario, the isolated case and the FL techniques
maintain comparable accuracy to the real–real scenario in Nodes 1 and 3, indicating their
ability to generate clinically useful synthetic data. However, in Node 2, both FL techniques
exhibit a slight decrease in accuracy, suggesting that FL may not provide significant benefits
in this particular case.

Table 2. Diabetes_H results in IID scenario: Comparison of DJS and accuracy for isolated training
and two FL techniques. Lower DJS indicates better similarity between real and synthetic data, while
synthetic–real accuracy closer to real–real reflects better clinical utility. Results are expressed as mean
(std). * indicates p-value < 0.01. In particular, for DJS, * denotes statistically significant improvement
over isolated case. For accuracy, * signifies performance of models trained on synthetic data was
comparable to or exceeded that of models trained on real data. Bold values indicate best significative
performance, and ▼ denotes decrease relative to upper bounds.

Node Technique
Similarity Validation Clinical Utility Validation

Estimated DJS Accuracy (Real–Real) Accuracy (Synthetic–Real)

Node 1
Isolated 0.718 (0.040) 0.833 (0.004) *
FedAvg 0.637 (0.026) 0.840 (0.001) 0.835 (0.002) *

SDS 0.411 (0.002) * 0.842 (0.001) *

Node 2
Isolated 0.583 (0.020) 0.843 (0.002) *
FedAvg 0.444 (0.014) * 0.846 (0.001) 0.840 (0.001) ▼

SDS 0.412 (0.004) * 0.841 (0.002) ▼

Node 3
Isolated 0.080 (0.062) 0.841 (0.003) *
FedAvg 0.042 (0.008) 0.842 (0.001) 0.844 (0.001) *

SDS 0.094 (0.040) 0.842 (0.001) *

https://github.com/Patricia-A-Apellaniz/fed_vae
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For the Heart dataset in Table 3, SDS consistently outperforms isolated training and
FedAvg in terms of statistical similarity, as indicated by the lowest DJS values across all
nodes. While FedAvg demonstrates improved performance over isolated training in Node
1, SDS significantly reduces DJS values. Regarding clinical utility, SDS achieves the highest
accuracy in the synthetic–real scenario for Node 2, surpassing the performance of models
trained on real data. This highlights the potential of SDS to generate synthetic data that
can improve model performance. In Node 3, both FedAvg and SDS achieve comparable
accuracy levels in the real–real scenario, further validating their ability to produce valid
synthetic data. In contrast, for Node 1, which has the most limited data, isolated training
and FedAvg show a slight accuracy decline relative to the real–real scenario, underscoring
SDS’s superiority in generating high-quality synthetic data.

Table 3. Heart results in IID scenario: Comparison of DJS and accuracy for isolated training and
two FL techniques. Lower DJS indicates better similarity between real and synthetic data, while
synthetic–real accuracy closer to real–real reflects better clinical utility. Results are expressed as mean
(std). * indicates p-value < 0.01. In particular, for DJS, * denotes statistically significant improvement
over isolated case. For accuracy, * signifies that performance of models trained on synthetic data was
comparable to or exceeded that of models trained on real data. Bold values indicate best significative
performance, and ▼ denotes decrease relative to upper bounds.

Node Technique
Similarity Validation Clinical Utility Validation

Estimated DJS Accuracy (Real–Real) Accuracy (Synthetic–Real)

Node 1
Isolated 0.772 (0.023) 0.896 (0.000) ▼
FedAvg 0.647 (0.030) * 0.907 (0.001) 0.904 (0.001) ▼

SDS 0.431 (0.007) * 0.905 (0.000) *

Node 2
Isolated 0.576 (0.006) 0.909 (0.001) *
FedAvg 0.530 (0.022) 0.908 (0.000) 0.910 (0.001) *

SDS 0.486 (0.013) * 0.912 (0.001) *

Node 3
Isolated 0.371 (0.036) 0.915 (0.000) *
FedAvg 0.330 (0.047) 0.914 (0.001) 0.914 (0.000) *

SDS 0.127 (0.029) * 0.914 (0.000) *

3.5.2. Non-IID Scenarios

The results for the non-IID scenario on the Diabetes_H dataset in Table 4 highlight
the effectiveness of SDS in mitigating the impact of data heterogeneity. SDS significantly
outperforms isolated training and FedAvg regarding statistical similarity in Nodes 1, 2,
and 3. Regarding clinical utility, while all nodes achieve high accuracy in the real–real
scenario, Node 1 exhibits a significant drop in performance when using synthetic data,
particularly for isolated training. SDS, however, demonstrates a notable improvement over
isolated training and FedAvg in this case, even though it does not reach the upper bound
value. Nodes 2 and 3, which have more balanced data distributions, maintain comparable
performance between real and synthetic data, indicating the effectiveness of FL techniques
in these scenarios.

The results presented in Table 5 for the Heart dataset under non-IID conditions offer
insightful observations about the performance of the SDS method compared to isolated
training and FedAvg. Regarding statistical similarity, SDS consistently outperforms isolated
training and FedAvg across Nodes 1 and 2. In particular, Node 1, characterized by a limited
number of samples and lower data quality, benefits significantly from SDS. This suggests
that SDS effectively leverages information from other nodes to generate synthetic data re-
sembling the real data distribution, even if it substantially reduces heterogeneity. However,
FedAvg fails to substantially improve isolated training in this node, further corroborating
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our previous findings that FedAvg may not be the optimal choice for non-IID scenarios. A
similar trend is observed in Node 2, where SDS reduces DJS. Conversely, Node 3, which
benefits from a larger and more balanced dataset, does not exhibit significant improvements
when using SDS, as expected. Interestingly, FedAvg leads to a higher DJS value in Node
3 compared to the isolated case, suggesting that the exchange of model weights between
nodes with disparate data distributions can negatively impact the quality of synthetic
data generated in well-performing nodes. However, when examining the clinical utility,
measured by the accuracy of models trained on synthetic data and tested on real data, we
observe a slight decrease in performance for Nodes 1 and 2. In Node 1, accuracy drops
slightly from 0.919 (real-real) to 0.915 (SDS), indicating a minor underperformance when
using synthetic data generated by SDS. A similar slight decrease is observed in Node 2, with
accuracy moving from 0.899 (real–real) to 0.894 (SDS). The slight underperformance of SDS
in clinical utility metrics for Nodes 1 and 2 can be attributed to several factors. In non-IID
settings, data distributions vary significantly across nodes. While FL techniques improve
statistical similarity, they may not fully capture the unique, node-specific relationships and
patterns critical for classification tasks. This is especially true for nodes with limited data,
where rare or local patterns are essential for accurate predictions. In particular, SDS aims to
create a more generalized synthetic dataset by incorporating information from multiple
nodes. This can lead to the smoothing of important nuances or the dilution of specific
features that are pivotal for the model’s performance in individual nodes. Furthermore,
sharing synthetic data across nodes may introduce biases if the synthetic data do not
adequately represent the underlying distributions of the target nodes. This can affect the
model’s ability to generalize and perform well on real data from those nodes. Nevertheless,
the overall accuracy remains high, indicating that the synthetic data generated by these
techniques are still suitable for classification tasks.

Table 4. Diabetes_H results in non-IID scenario: Comparison of DJS and accuracy for isolated training
and two FL techniques. Lower DJS indicates better similarity between real and synthetic data, while
synthetic–real accuracy closer to real–real reflects better clinical utility. Results are expressed as mean
(std). * indicates p-value < 0.01. In particular, for DJS, * denotes statistically significant improvement
over isolated case. For accuracy, * signifies that performance of models trained on synthetic data was
comparable to or exceeded that of models trained on real data. Bold values indicate best significative
performance, and ▼ denotes decrease relative to upper bounds.

Node Technique
Similarity Validation Clinical Utility Validation

Estimated DJS Accuracy (Real–Real) Accuracy (Synthetic–Real)

Node 1
Isolated 0.823 (0.011) 0.815 (0.001) ▼
FedAvg 0.715 (0.005) * 0.846 (0.000) 0.826 (0.002) ▼

SDS 0.381 (0.002) * 0.837 (0.001) ▼

Node 2
Isolated 0.542 (0.026) 0.810 (0.003) *
FedAvg 0.394 (0.017)* 0.808 (0.001) 0.806 (0.002) *

SDS 0.376 (0.011) * 0.803 (0.005) *

Node 3
Isolated 0.489 (0.006) 0.910 (0.000) *
FedAvg 0.479 (0.020) 0.911 (0.001) 0.911 (0.001) *

SDS 0.349 (0.036) * 0.910 (0.000) *
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Table 5. Heart results in non-IID scenario: Comparison of DJS and accuracy for isolated training
and two FL techniques. Lower DJS indicates better similarity between real and synthetic data, while
synthetic–real accuracy closer to real–real reflects better clinical utility. Results are expressed as mean
(std). * indicates p-value < 0.01. In particular, for DJS, * denotes statistically significant improvement
over isolated case. For accuracy, * signifies that performance of models trained on synthetic data was
comparable to or exceeded that of models trained on real data. Bold values indicate best significative
performance, and ▼ denotes decrease relative to upper bounds.

Node Technique Similarity Validation Clinical Utility Validation
Estimated DJS Accuracy (Real–Real) Accuracy (Synthetic–Real)

Node 1
Isolated 0.803 (0.002) 0.918 (0.000) *
FedAvg 0.586 (0.007) * 0.919 (0.000) 0.914 (0.001) ▼

SDS 0.361 (0.006) * 0.915 (0.000) ▼

Node 2
Isolated 0.479 (0.054) 0.893 (0.001) ▼
FedAvg 0.441 (0.023) 0.899 (0.000) 0.895 (0.000) ▼

SDS 0.359 (0.020) 0.894 (0.001) ▼

Node 3
Isolated 0.336 (0.021) 0.915 (0.000) *
FedAvg 0.476 (0.024) ▼ 0.917 (0.001) 0.914 (0.001) *

SDS 0.280 (0.084) 0.916 (0.000) *

3.5.3. Discussion

The results presented in Table 6 further highlight the effectiveness of the SDS in both
IID and non-IID scenarios. In both settings, SDS consistently outperforms both isolated
training and FedAvg regarding MRR, indicating its superior ability to generate synthetic
data that enhance model performance. In the IID setting, where data are evenly distributed
across nodes, SDS effectively leverages the collective knowledge of the federation to
generate high-quality synthetic data. This leads to significant improvements in model
performance, particularly in scenarios with limited data, as observed in Nodes 1 and 2 of
the Diabetes_H dataset.

Table 6. MRR values across different scenarios (IID and Non-IID) and datasets for isolated FedAvg
and SDS approaches. Higher MRR values indicate superior performance. Bold values denote best
performances.

Scenario Dataset Isolated FedAvg SDS

IID Diabetes_H 0.389 0.667 0.778
Heart 0.333 0.667 0.833

Non-IID Diabetes_H 0.333 0.500 1.000
Heart 0.389 0.444 1.000

The robustness of SDS becomes even more apparent in non-IID settings, where data
are unevenly distributed across nodes. In such scenarios, SDS demonstrates remarkable
robustness, mitigating the negative impact of data heterogeneity. By sharing synthetic
data generated from diverse data distributions, SDS helps improve models’ generalization
ability and enhance their performance in unseen data. In contrast, FedAvg, while providing
moderate improvements over isolated training, struggles to fully address the imbalance in
data distribution, particularly in nodes with scarce or biased datasets. This is particularly
evident in the non-IID scenarios, where FedAvg’s performance can be negatively impacted
by the imbalance in data distribution. Overall, these results underscore the potential of SDS
as a powerful tool for generating high-quality synthetic data in FL environments, particu-
larly in data scarcity and heterogeneity. By effectively leveraging the collective knowledge
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of the federation, SDS can improve model performance and enhance the generalization
ability of models trained on synthetic data.

Beyond improving model performance, we emphasize the security and privacy-
preserving benefits of synthetic data generation within the FL framework. As outlined
in Appendix B, we conducted a rigorous evaluation of privacy preservation by analyzing
minimum distances between real and synthetic samples. In this analysis, we compared the
distributions of pairwise distances between real–real samples and synthetic–real samples
across Node 3 under both IID and non-IID scenarios. The results, visualized through
histograms and KDE plots, demonstrate that while the distance distributions are statis-
tically similar, they are not identical, and minimum distances are consistently non-zero.
This finding is significant because our VAE-BGM architecture generates synthetic data by
sampling from the latent space rather than directly replicating real samples. Consequently,
synthetic data avoid exact duplication of real data points, effectively mitigating privacy
risks. This outcome underscores a key advantage of SDG: unlike raw or encrypted data,
synthetic data inherently reduce the risk of privacy breaches during sharing, such as those
associated with man-in-the-middle attacks or key compromises. These properties make
SDG a robust solution for data privacy preservation, particularly when compared to shar-
ing raw datasets, encrypted data, or even trained model parameters, which may still leak
sensitive information through model inversion or membership inference attacks.

In summary, SDS not only enhances performance in FL environments under both IID
and non-IID conditions but also offers significant security advantages by reducing the risks
associated with sharing real or encrypted data. By leveraging synthetic data, institutions
can collaborate effectively while ensuring data privacy, thereby fostering trust and enabling
more widespread adoption of FL frameworks in healthcare and other sensitive domains.

4. Conclusions
This research underscores the effectiveness of FL for SDG in healthcare, particularly

in addressing the challenges posed by heterogeneous and scarce data distributions. By
employing VAE-BGM models across diverse medical datasets, this study demonstrates
that SDS consistently outperforms traditional approaches like FedAvg and isolated train-
ing in both IID and non-IID scenarios. A key strength of SDS lies in its ability to expose
nodes to diverse synthetic samples, effectively approximating a more IID-like environment
even in non-IID settings. This results in significant advantages for generating high-quality
synthetic data, as reflected in lower DJS values, and supports robust model performance
across nodes. Clinical utility validation confirms the practicality of synthetic data gen-
erated using SDS, achieving comparable accuracy to real data in downstream tasks. In
non-IID environments, SDS proves particularly robust, addressing the challenges of un-
evenly distributed data among institutions by leveraging the diversity of synthetic sam-
ples to enhance representativeness and mitigate the negative effects of heterogeneity. In
contrast, FedAvg demonstrates limited improvements in these scenarios, often failing
to match SDS’s effectiveness, particularly in nodes with constrained data availability or
skewed distributions.

These findings highlight the potential of sharing synthetic data within FL frameworks.
By fostering data diversity and reducing the disparities between data-rich and data-poor
nodes, SDS enables improved model generalization and supports collaborative research
without exposing sensitive patient information. This approach not only bridges gaps in
data accessibility and quality but also sets a foundation for advancing medical research
and innovation in under-resourced regions. Future work should continue exploring the
role of synthetic data in FL, focusing on increasingly heterogeneous and imbalanced data
distributions to further validate and refine the methodology.
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Future research should explore optimizing FL architectures for even more complex
data types and more extensive networks of institutions, further refining the integration
of SDG with FL to maximize efficiency and scalability. In particular, exploring SDG in
low-sample settings as in [12] could be highly beneficial. This approach, which integrates
meta-learning (like DRS) and transfer learning techniques to SDG, could be adapted to
augment FL environments, where leveraging knowledge from previously trained models
or similar tasks could significantly enhance the quality of synthetic data in low-sample
nodes. Furthermore, while the VAE-BGM model has already been compared with state-of-
the-art tabular generative models (CTGAN and TVAE), future research should investigate
additional architectures tailored for tabular data, further validating its performance. Promis-
ing approaches such as TabDDPM [34], a diffusion-based generative model designed for
tabular data, could be evaluated to enhance the quality of synthetic data generation and
improve the overall effectiveness of SDS. Expanding our evaluation to include datasets
from other domains, such as financial markets [35] or sustainable energy [36], would
demonstrate the broader applicability of SDS. Additionally, focusing on increasingly het-
erogeneous and imbalanced data distributions can be used to further validate and refine
the methodology. While this study varied the distribution of a single feature (BMI) across
nodes, a more realistic setup could involve modifying multiple features to emulate extreme
heterogeneity better. However, such modifications may limit direct comparisons with
techniques like FedAvg, which rely on consistent feature sets across nodes. Exploring these
scenarios independently of FedAvg could provide deeper insights into SDS’s performance
under extreme variability. Exploring other data types, such as imaging or sequential data,
could provide new opportunities to extend the methodology to domains requiring diverse
data modalities. Incorporating these data types would further validate the flexibility and
robustness of SDS in addressing challenges across a wide range of applications. Lastly,
addressing privacy risks must be a future line of research on this topic. Investigating
techniques to mitigate privacy risks associated with FL, such as differential privacy [37]
or homomorphic encryption [38], can help protect sensitive patient data while enabling
collaborative training. By pursuing these research directions, we can continue advancing
the FL field for SDG in healthcare and develop more robust and effective methods for
generating high-quality synthetic data.
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Appendix A. VAE-BGM Methodology
We include detailed derivations and explanations in this appendix to provide further

clarity on the VAE-BGM model [11]. The full implementation of the model can be accessed
via the following GitHub repository: https://github.com/Patricia-A-Apellaniz/vae-
bgm_data_generator (accessed on 20 January 2025). Below, we elaborate on the VAE
framework’s underlying principles and the ELBO’s derivation.

The VAE is a generative model first introduced in 2013 [39]. It employs deep neural
networks for Bayesian inference, aiming to represent a dataset xi

N
i=1 of N independent

and identically distributed (i.i.d.) samples. These samples are generated via a two-step
stochastic process:

1. A latent variable zi is drawn from a prior distribution p(z). A simple isotropic Gaussian
prior is often assumed for simplicity and generality.

2. The observed variable xi is then sampled from a conditional distribution pθ(x|z)
governed by model parameters θ. This process is referred to as the generative model.

Figure A1 illustrates this process, where the latent variable z forms the basis for
generating observable data x.

Figure A1. Bayesian VAE model. The shaded circle refers to the latent variable z, and the white circle
refers to the observable x. Probabilities pθ(x|z) and qϕ(z|x) denote, respectively, the generative model
and the variational approximation to the posterior, since the true posterior pθ(z|x) is unknown.

The true posterior pθ(z|x) is generally intractable because the marginal likelihood
pθ(x) is difficult to compute directly. Variational inference addresses this by introducing an
approximation qϕ(z|x), parameterized by ϕ, to the true posterior.

Appendix A.1. ELBO Derivation

Formulating the corresponding optimization problem is necessary to establish the
optimization objective. Assuming that xi are independent and identically distributed (i.i.d.),
the marginal likelihood of a dataset comprising {xi}N

i=1 can be expressed as

log pθ(x1, x2, ..., xN) =
N

∑
i=1

log pθ(xi), (A1)

where the marginal likelihood for a single data point x is given by the following:

pθ(x) =
∫

pθ(x, z)dz =
∫

pθ(x, z)
qϕ(z|x)
qϕ(z|x)

dz = Eqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]
. (A2)

https://github.com/Patricia-A-Apellaniz/vae-bgm_data_generator
https://github.com/Patricia-A-Apellaniz/vae-bgm_data_generator
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Using Jensen’s inequality, we can obtain the following:

log pθ(x) = log

[
Eqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]]
≥ Eqϕ(z|x)

[
log

pθ(x, z)
qϕ(z|x)

]
. (A3)

Rearranging Equation (A3), we can express it as follows:

Eqϕ(z|x)

[
log

(
pθ(x, z)
qϕ(z|x)

)]

=
∫

qϕ(z|x) log
pθ(x|z)p(z)

qϕ(z|x)
dz

=
∫

qϕ(z|x) log
p(z)

qϕ(z|x)
dz +

∫
qϕ(z|x) log pθ(x|z)dz

= −
∫

qϕ(z|x) log
qϕ(z|x)

p(z)
dz +

∫
qϕ(z|x) log pθ(x|z)dz

= −DKL(qϕ(z|x)||p(z)) +Eqϕ(z|x)[log pθ(x|z)]

= L(x, θ, ϕ),

(A4)

where DKL(p||q) is the DKL between distributions p and q, and L(x, θ, ϕ) is the ELBO,
which is defined as follows:

log pθ(x) ≥ −DKL(qϕ(z|x)||p(z)) +Eqϕ(z|x)[log pθ(x|z)] = L(x, θ, ϕ). (A5)

Thus, the ELBO is a lower bound for the marginal log-likelihood of the relevant set of
points. Maximizing the ELBO maximizes the log-likelihood of the data. This would be the
optimization problem to solve. This last equation, labeled (A5), coincides with the ELBO
formulation previously introduced as Equation (1).

Appendix B. Privacy Concerns
To ensure that the proposed SDG process is privacy-preserving, we conducted an

empirical evaluation by analyzing the similarity between real and synthetic data. This
analysis aims to confirm that the generated synthetic data maintain sufficient statistical
similarity to the real data for utility while avoiding direct replication of real samples,
thereby protecting sensitive information. Such privacy assurance is particularly critical in
federated environments where synthetic data are shared across nodes.

We designed the study as follows:

1. Real data were input to our proposed VAE-BGM generative framework to produce
synthetic data.

2. These synthetic data were shared with a specific node within the federated framework.
3. To quantify the similarity and verify privacy preservation, we calculated the minimum

pairwise distances between the following:

• Real samples and other real samples.
• Synthetic samples and real samples.

4. The minimum distances were visualized using histograms and KDE plots for both
comparisons.

5. To statistically validate the differences between these minimum distances, we applied
one-sided Wilcoxon and Kolmogorov–Smirnov (KS) tests to compare the two dis-
tance distributions.
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The results of the privacy evaluation are presented in Figure A2. This evaluation was
specifically performed on Node 3 in both IID and non-IID scenarios for the two datasets
used in the study (Heart and Diabetes_H), resulting in four distinct plots. These analyses
comprehensively evaluate privacy preservation under different data distributions and
experimental settings. The histograms and KDE curves of the minimum distances between
real–real samples (blue) and synthetic–real samples (pink) exhibit high similarity. However,
they are not identical, which is a desirable outcome. Specifically:

• Non-zero minimum distances: Since the VAE-BGM framework generates synthetic
data by sampling from the latent space rather than directly reconstructing the real
samples, the minimum distances are never zero. This ensures that no synthetic sample
exactly replicates any real data point, mitigating privacy risks.

• Larger distances for synthetic–real comparisons: The p-values obtained through the
Wilcoxon and KS tests (both lower than 10−3) confirm that the minimum distances
between synthetic and real samples are statistically larger than those observed between
real samples themselves. This outcome aligns with our expectations, as synthetic data
are generated from a latent space and are not direct copies of the real data.

• Similarity, not equality: While the distributions of the distances are similar, the his-
tograms and KDEs demonstrate slight deviations, reflecting the stochastic nature of
the latent space sampling process. This confirms that the synthetic data preserve the
statistical properties of the real data without compromising privacy.

These results demonstrate that the synthetic data provide sufficient privacy protection.
Specifically, even in the event of an attack such as man-in-the-middle during the federated data
sharing process, the exposure of synthetic data would present a far lower risk than raw data
transmission, as the synthetic data are inherently different from the real samples. The minimum
distances provide further assurance, as the largest values consistently arise in the synthetic–real
comparisons, reinforcing that the synthetic data do not overlap with real data points.

This study validates the privacy-preserving nature of our SDG process. The proposed
framework effectively mitigates privacy risks such as re-identification by ensuring that the
generated synthetic data do not replicate real data points while retaining statistical similarity.
Furthermore, the statistical tests confirm that the synthetic data maintain an appropriate level
of separation from real data, making them robust to adversarial attacks within a federated
learning environment. These findings underscore the utility of the VAE-BGM architecture in
generating high-quality, privacy-preserving synthetic data suitable for FL environments.
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Figure A2. Comparison of minimum pairwise distances between real–real samples and synthetic–real
samples. The histograms and KDE plots show similar distributions, ensuring statistical resemblance
while maintaining privacy.

Appendix C. Comparison of Features Distributions
To evaluate the performance of SDG techniques in capturing the underlying distributions

of critical features, we focused on the worst-performing node (Node 0) in both IID and non-
IID scenarios for the Diabetes_H dataset. We identified the most important features for
classification tasks using an RF classifier trained on real data. The distributions of these key
features were then compared between real data and synthetic data generated using FedAvg
and SDS, aiming to assess the quality of the synthetic data generated by each technique.

Figures A3 and A4 show the KDEs and histograms of the selected features for both
IID and non-IID scenarios. These comparisons provide insights into how effectively each
SDG technique captures the distributions of the real data. We can confirm that SDS
captures critical continuous features more accurately. SDS better approximates the real
data distribution for features such as Age and BMI compared to FedAvg. This suggests
that SDS can model complex continuous variables more effectively. In addition, SDS
improves the handling of categorical features. SDS demonstrates a superior ability to
generate realistic distributions for categorical features such as Education. In contrast,
FedAvg overemphasizes the most predominant category, resulting in less representative
synthetic data distributions. Finally, consistency across IID and non-IID scenarios since the
ability of SDS to generate accurate feature distributions remains evident in both of them.
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Figure A3. Distribution plots of selected features from the real data, synthetic data generated by
FedAvg, and synthetic data generated by SDS in the IID scenario for the Diabetes_H dataset. All
displayed feature data are normalized.
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Figure A4. Distribution plots of selected features from the real data, synthetic data generated by
FedAvg, and synthetic data generated by SDS in the non-IID scenario for the Diabetes_H dataset. All
displayed feature data are normalized.

Appendix D. Impact of Sample Distribution Across Nodes
This section examines the impact of varying sample sizes across nodes on the proposed

FL framework’s performance in both IID and non-IID scenarios. Tables A1 and A2 summarize
the results for different combinations of sample sizes, evaluating statistical similarity using
DJS and clinical utility through accuracy metrics for real–real and synthetic–real setups.

• Clinical Utility: Across all sample size combinations, models trained on synthetic data
generally achieve slightly lower accuracy than those trained on real data (Real-Real
accuracy). However, the gap is small, often within a few decimal points, indicating
that synthetic data remains highly effective for downstream classification tasks. In
both IID and non-IID scenarios, in most cases, SDS outperforms FedAvg in clinical
utility validation. This trend is particularly evident in nodes with smaller sample
sizes, where SDS produces synthetic data that generalize more effectively to real-
world applications.

• Similarity Validation: SDS consistently achieves lower DJS values than both FedAvg
and isolated training, particularly in nodes with limited data. This indicates that SDS
generates synthetic data that more closely mirror the real data distribution, effectively
mitigating the effects of data scarcity and heterogeneity. In contrast, FedAvg often
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struggles to reduce DJS, particularly in non-IID scenarios where the data distributions
across nodes are highly skewed.

• Node-Level Performance: In Node 1, SDS demonstrates substantial improvements
over FedAvg and isolated training in both DJS and accuracy metrics, highlighting its
ability to compensate for limited local data through shared synthetic samples. While
SDS continues to outperform FedAvg in most cases in Node 2, the differences are less
pronounced, reflecting the node’s relatively balanced data availability. Finally, Node
3 does not benefit from any technique since the large dataset allows effective model
training without significant reliance on external synthetic data.

Table A1. Diabetes_H results in IID scenario with different sample sizes: Comparison of DJS and
accuracy for isolated training and two FL techniques. Lower DJS indicates better similarity between
real and synthetic data, while synthetic–real accuracy closer to real–real reflects better clinical utility.
Results are expressed as mean (std). * indicates p-value < 0.01. In particular, for DJS, * denotes
statistically significant improvement over isolated case. For accuracy, * signifies that performance of
models trained on synthetic data was comparable to or exceeded that of models trained on real data.
Bold values indicate best significative performance, and ▼ denotes decrease relative to upper bounds.

Sample Size
Node Technique

Similarity Validation Clinical Utility Validation

Combination Estimated DJS
Accuracy

(Real–Real)
Accuracy

(Synthetic–Real)

(50, 100, 500)

Node 1
Isolated 0.872 (0.002) 0.823 (0.001) ▼
FedAvg 0.843 (0.005) * 0.843 (0.002) 0.833 (0.002) ▼

SDS 0.753 (0.016) * 0.827 (0.003) ▼

Node 2
Isolated 0.789 (0.008) 0.841 (0.001) ▼
FedAvg 0.771 (0.011) 0.850 (0.000) 0.834 (0.001) ▼

SDS 0.692 (0.004) * 0.839 (0.001) ▼

Node 3
Isolated 0.560 (0.045) 0.843 (0.002) ▼
FedAvg 0.631 (0.017) 0.853 (0.001) 0.839 (0.002) ▼

SDS 0.623 (0.030) 0.839 (0.002) ▼

(50, 100, 1000)

Node 1
Isolated 0.887 (0.01) 0.824 (0.004)▼
FedAvg 0.816 (0.011) * 0.843 (0.001) 0.821 (0.003) ▼

SDS 0.690 (0.031) * 0.838 (0.000) ▼

Node 2
Isolated 0.756 (0.016) 0.839 (0.001) ▼
FedAvg 0.753 (0.012) 0.847 (0.0) 0.841 (0.002) *

SDS 0.625 (0.003) * 0.837 (0.001) ▼

Node 3
Isolated 0.547 (0.027) 0.845 (0.001) ▼
FedAvg 0.520 (0.022) 0.852 (0.000) 0.838 (0.001) ▼

SDS 0.483 (0.010) 0.848 (0.001)*

(50, 500, 1000)

Node 1
Isolated 0.862 (0.004) 0.824 (0.002) ▼
FedAvg 0.853 (0.005) 0.843 (0.002) 0.823 (0.002) ▼

SDS 0.593 (0.006) * 0.840 (0.003) *

Node 2
Isolated 0.605 (0.022) 0.845 (0.002) *
FedAvg 0.614 (0.013) 0.849 (0.001) 0.846 (0.002) *

SDS 0.611 (0.005) 0.845 (0.002)*

Node 3
Isolated 0.462 (0.057) 0.848 (0.002) *
FedAvg 0.403 (0.031) 0.853 (0.000) 0.831 (0.003) ▼

SDS 0.572 (0.018) 0.832 (0.001) ▼

(100, 500, 1000)

Node 1
Isolated 0.775 (0.009) 0.832 (0.002) ▼
FedAvg 0.692 (0.009)* 0.842 (0.001) 0.827 (0.004) ▼

SDS 0.541 (0.043)* 0.838 (0.003) *

Node 2
Isolated 0.587 (0.005) 0.850 (0.001) *
FedAvg 0.599 (0.011) 0.850 (0.000) 0.845 (0.000) ▼

SDS 0.543 (0.008)* 0.845 (0.001) ▼
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Table A1. Cont.

Sample Size
Node Technique

Similarity Validation Clinical Utility Validation

Combination Estimated DJS
Accuracy

(Real–Real)
Accuracy

(Synthetic–Real)

(100, 500, 1000) Node 3
Isolated 0.502 (0.002) 0.842 (0.003) ▼
FedAvg 0.549 (0.008) ▼ 0.852 (0.001) 0.839 (0.003)▼

SDS 0.593 (0.029) 0.838 (0.003) ▼

Table A2. Diabetes_H results in non-IID scenario with different sample sizes: Comparison of DJS

and accuracy for isolated training and two FL techniques. Lower DJS indicates better similarity
between real and synthetic data, while synthetic–real accuracy closer to real–real reflects better clinical
utility. Results are expressed as mean (std). * indicates p-value < 0.01. In particular, for DJS, * denotes
statistically significant improvement over isolated case. For accuracy, * signifies that performance of
models trained on synthetic data was comparable to or exceeded that of models trained on real data.
Bold values indicate best significative performance, and ▼ denotes decrease relative to upper bounds.

Sample Size
Node Technique

Similarity Validation Clinical Utility Validation

Combination Estimated DJS
Accuracy

(Real–Real)
Accuracy

(Synthetic–Real)

(50, 100, 500)

Node 1
Isolated 0.882 (0.009) 0.821 (0.001) ▼
FedAvg 0.850 (0.006) * 0.845 (0.001) 0.825 (0.000) ▼

SDS 0.764 (0.017) * 0.836 (0.002) ▼

Node 2
Isolated 0.780 (0.005) 0.767 (0.002)) ▼
FedAvg 0.774 (0.021) 0.788 (0.002) 0.761 (0.003) ▼

SDS 0.767 (0.000) 0.778 (0.003) ▼

Node 3
Isolated 0.595 (0.023) 0.902 (0.000) *
FedAvg 0.628 (0.020) 0.902 (0.000) 0.903 (0.001) *

SDS 0.576 (0.005) 0.901 (0.000) *

(50, 100, 1000)

Node 1
Isolated 0.871 (0.004) 0.812 (0.001) ▼
FedAvg 0.878 (0.005) 0.846 (0.002) 0.824 (0.000) ▼

SDS 0.627 (0.028) * 0.842 (0.001) *

Node 2
Isolated 0.734 (0.005) 0.787 (0.000) *
FedAvg 0.724 (0.025) 0.788 (0.002) 0.782 (0.002) ▼

SDS 0.714 (0.004) * 0.786 (0.002) *

Node 3
Isolated 0.527 (0.048) 0.900 (0.000) *
FedAvg 0.542 (0.045) 0.898 (0.001) 0.902 (0.001) *

SDS 0.526 (0.063) 0.902 (0.001) *

(50, 500, 1000)

Node 1
Isolated 0.886 (0.008) 0.801 (0.002)▼
FedAvg 0.830 (0.013) * 0.846 (0.001) 0.823 (0.000) ▼

SDS 0.556 (0.005) * 0.838 (0.001) ▼

Node 2
Isolated 0.549 (0.039) 0.784 (0.002) ▼
FedAvg 0.558 (0.022) 0.793 (0.002) 0.782 (0.002) ▼

SDS 0.514 (0.016) 0.783 (0.000) ▼

Node 3
Isolated 0.523 (0.031) 0.904 (0.002) *
FedAvg 0.519 (0.011) 0.905 (0.0) 0.900 (0.001) ▼

SDS 0.422 (0.037) 0.906 (0.000) *

(100, 500, 1000)

Node 1
Isolated 0.793 (0.012) 0.829 (0.002) ▼
FedAvg 0.829 (0.003) 0.846 (0.000) 0.827 (0.002) ▼

SDS 0.694 (0.009)* 0.831 (0.001) ▼

Node 2
Isolated 0.575 (0.046) 0.793 (0.002) ▼
FedAvg 0.619 (0.002) 0.810 (0.000) 0.806 (0.006) *

SDS 0.639 (0.005) 0.798 (0.002) ▼

Node 3
Isolated 0.561 (0.007) 0.913 (0.001) *
FedAvg 0.478 (0.009) * 0.914 (0.000) 0.914 (0.001) *

SDS 0.594 (0.026) 0.912 (0.001) *
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