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Explainable drug repurposing 
via path based knowledge graph 
completion
Ana Jiménez 1,2, María José Merino 1,2, Juan Parras 1* & Santiago Zazo 1

Drug repurposing aims to find new therapeutic applications for existing drugs in the pharmaceutical 
market, leading to significant savings in time and cost. The use of artificial intelligence and knowledge 
graphs to propose repurposing candidates facilitates the process, as large amounts of data can be 
processed. However, it is important to pay attention to the explainability needed to validate the 
predictions. We propose a general architecture to understand several explainable methods for graph 
completion based on knowledge graphs and design our own architecture for drug repurposing. We 
present XG4Repo (eXplainable Graphs for Repurposing), a framework that takes advantage of the 
connectivity of any biomedical knowledge graph to link compounds to the diseases they can treat. 
Our method allows methapaths of different types and lengths, which are automatically generated 
and optimised based on data. XG4Repo focuses on providing meaningful explanations to the 
predictions, which are based on paths from compounds to diseases. These paths include nodes such 
as genes, pathways, side effects, or anatomies, so they provide information about the targets and 
other characteristics of the biomedical mechanism that link compounds and diseases. Paths make 
predictions interpretable for experts who can validate them and use them in further research on drug 
repurposing. We also describe three use cases where we analyse new uses for Epirubicin, Paclitaxel, 
and Predinisone and present the paths that support the predictions.

Keywords Drug repurposing, Heterogeneous knowledge graphs, Knowledge graph completion, 
Interpretability, Hetionet, Rule-based link prediction

Drug discovery is a time-consuming and high-cost process that involves several stages to obtain the approval of 
the authorities of a new drug. It takes 10–15 years and requires between $500 million and $2 billion. Moreover, 
approximately 90% of drugs fail in the early stages of development and toxicity testing and even among drugs 
that pass these steps, most fail due to side effects or adverse  problems1,2.

Due to these limitations, the identification of new applications for existing drugs is a time-effective and cost-
effective alternative, which is called drug repurposing. It allows the increase in treatment options for existing 
diseases and provides faster treatment for emerging  diseases2,3.

The increasing amount of data available in recent years has led to the use of machine learning approaches for 
drug repurposing. This research focusses on drug repurposing based on biological knowledge graph datasets. 
Knowledge graphs are a set of nodes and edges that represent the relations between nodes. In the case of biologi-
cal knowledge graphs, the nodes can be of different types, such as genes, compounds, side effects, diseases, etc. 
The goal of drug repurposing based on knowledge graphs is to discover links of type “treats” between entities 
of type compounds and diseases.

Related work
Drug repositioning is a complex task that includes several approaches. In the state-of-the-art drug repurposing 
based on knowledge graphs, the most extended methods are based on embeddings, which map the nodes to a 
low-dimensional representation that summarises their graph location and the structure of their neighbourhood. 
Models such as those developed  in4–12 are based on embeddings.

In4, a model based on attention called MT-DTI is developed to identify drug target interactions using binding 
affinity scores.  In5, CoV-KGE, a deep learning model is used to generate a biomedical network and then applied 
embedding methods to find drug target interactions for COVID-19.  In6, the authors use embeddings, but also 
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diffusion networks and proximity-based algorithms for drug repurposing.  In13, geometric deep learning is used 
to obtain smoothed feature representations of drugs and diseases, and then attention techniques are applied to 
propose candidate drugs for a given disease.

These methods provide predictions, but do not include any information on why or how the prediction was 
made. In addition, most of these methods cannot capture multistep relations. Interpretability is very important 
in this field, so several models include different methods to explain the predictions. Most of them are based on 
paths that relate drugs and diseases through the nodes of the graph. These paths provide biological explanations 
for why the compound can treat a certain disease. They also use metapaths, which are sequences of types of 
nodes and relations, to obtain paths.

Some methods use a small set of metapaths selected by an expert to obtain paths used for  prediction14–17. 
The predictions are always based on the metapaths that are known to be useful. Other methods do the opposite, 
evaluating every possible  metapath18,19 that connects the compound to the disease. In the first case, the model is 
based on expert knowledge rather than data, and the second approach is computationally expensive.

Other methods use tools for graph analysis such  as20,21.  In21, NeDRex is proposed as a platform for identifying 
subgraphs that represent the mechanisms of action of diseases that include genes and proteins, called disease 
modules. Then, disease modules are used to predict a list of drug candidates to treat a certain disease. They 
generated disease modules using network-based medical algorithms. However, the entities of the network and 
the relations between them are limited.

In22, a framework for drug repurposing named Torchdrug is developed that includes several important tasks 
for drug discovery, such as biomedical knowledge graph reasoning. In this field, they provided benchmarks for 
embedding-based models for Hetionet. However, they evaluate the complete graph and do not focus on repur-
posing, which is what we do in this work.

Other researches develop hybrid architectures that make predictions based on embeddings or other non-
interpretable methods and apply some technique to provide  explanations23–26.  In15, KGML-xDTD is developed 
to predict repurposing candidates using embedding methods and random forest. Then, the model includes an 
actor-critic reinforcement learning approach to find paths between the drugs and the diseases that could explain 
the predictions. The agent was guided by demonstration paths, which are paths that can explain why a drug treats 
a disease. These paths were previously selected by experts.

KR4SL is presented  in27 where they use a knowledge graph to learn semantic representations of gene pairs 
that encode the information of relational digraphs using an encoder-decoder framework. They use language 
models to enrich the semantics of KG for reasoning. They also use attention mechanisms to identify important 
subgraphs as explanations. This model is used to predict synthetic lethality partners for a primary gene.

MINERVA28 is a reinforcement learning agent used for general link prediction.  PoLo29 is a modification of 
MINERVA which integrates the use of predefined rules for the task of drug repurposing.

Our contribution: XG4Repo
In this work we address the drug repurposing problem using knowledge graphs, and we propose XG4Repo 
(eXplainable Graphs for Repurposing), which achieves good performance as well as high quality explanations. 
We focus on the interpretability and limitations of the models found in the literature to design our framework. 
Our main contributions are:

• Present a general architecture for knowledge graph drug repurposing and show how several algorithms fit 
this description. These models follow different approaches, but we show that they all share similar principles.

• Design XG4Repo, our own drug repurposing strategy that focusses on interpretability. Our approach com-
bines and optimises state-of-the-art algorithms for graph completion and presents the results in natural 
language so they can be easily understood for humans. We provide a ready-to-use framework to propose 
candidates for repurposing. Our proposal is able to find high-quality paths with an adjustable computational 
cost, and works with any heterogeneous graph. Our method allows methapaths of different types and lengths, 
which are automatically generated and optimised based on data.

• We validate our approach by presenting three use cases in which we show that the predictions are interpret-
able and reliable, in line with the state-of-the-art in current clinical studies.

This tool is useful for experts in drug repurposing interested in starting a research process with a new drug. 
Instead of identifying potential disease candidates by hand, XG4Repo provides an ordered list as well as an 
explanation of why the disease can be treated by that drug. It allows processing large amounts of information 
contained in the knowledge graph in a short time. These predictions are then validated by the expert before 
starting the research.

Methods
Knowledge graph drug repurposing background
Graphs are collections of objects (nodes) and the set of interactions (edges) between pairs of these  objects30. 
Knowledge graphs ( G ) are a particular type of multirelational graph where the information is defined by a set of 
existing triples, including a head node (h), a tail node ( t∗ ) and a relation (r) that links them:

Drug repurposing on knowledge graphs can be seen as a task of link prediction, where we ask the graph which 
diseases a certain compound treats. We can understand the problem as a query that has to be solved by the graph. 

(1)(h, r, t∗) ∈ G
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The query is composed of a “compound” c as the head, and the relation “treats”. The answer to this query is a 
disease d that can be treated with the compound, which is the tail of the triple.

The problem can be formulated in terms of the probability of success of the compound over the disease d, where 
the objective is that the answer equals the tail of the triple d = d∗ , and which is conditioned on the existing graph:

where q = (c, treats) is the query.

Path‑based drug repurposing
Path-based drug repurposing leverages the connectivity of the graph to predict the disease that can be treated 
with a certain drug and also to provide a biological explanation of the prediction. These methods provide paths, 
which are sequences of nodes and relations that start and the head node of the query, in this case the compound, 
and follow different relations and nodes to arrive at the candidate disease. Another important concept is the 
metapath, which is a sequence of types of nodes and types of relations. For example, in the path (Epirubicin 
upregulates
−→  Gene EGF regulates−→  Gene BRAF is associated to

−→  Breast cancer) is a particularisation of the metapath (Com-
pound upregulates−→  Gene regulates−→  Gene is associated to

−→  Disease). Metapaths are also called rules in certain contexts.
To generate paths, a strategy is needed. This strategy can be represented by a policy µ , which indicates the 

node that should follow the current node on the path. Another method of obtaining paths is the use of rules z 
or metapaths that applied to the graph generate paths. This strategy conditionally characterises the probability 
of a cadidate disease as:

in the case of policies, and

in the case of rules.
The main reason to use paths is that predictions can be interpreted by healthcare professionals, which is 

necessary to validate candidate diseases for further research. Paths provide information about the side effects, 
targets, or anatomies involved in the biological mechanism.

We propose an architecture that generalises several methods for path-based graph completion, and we show 
the relation between them. We also present a mathematical formulation in Supplementary Data that unifies these 
models to understand them as a particularisation of the architecture described in this work.

The objective of the model is to predict diseases that can be treated by a certain compound using paths to con-
nect the compound to the disease. Figure 1 shows the training process where the model is optimised to generate 
high-quality paths between the heads and tails of the queries. In the drug repurposing case, given a compound, 
the model generates paths that end in a set of candidate diseases. A score function evaluates the quality of the 
proposed diseases. The model learns to give high scores to diseases that are known to be treated with the com-
pound. Therefore, other diseases that have high scores are good candidates for repurposing.

Taking into account the concepts of path generator and score function, the probability of the candidate for 
repurposing can be parameterised by θ and ω.

where the path generation process is parameterised with θ and the score function with ω.

(2)(c, treats, d∗) ∈ G

(3)p(c, treats, d = d∗ | G ) = p(d | G , (c, treats)) = p(d | G , q)

(4)p(d | G , q,µ)

(5)p(d | G , q, z)

(6)p(d | G , q) → pω,θ (d | G , q)

Figure 1.  General architecture to train path-based drug repurposing models. The information is presented 
in the form of a knowledge graph composed of triples (in yellow). The input of the model is the graph and the 
query that has to be solved. The model (in blue) generates paths between compounds and different diseases. 
A score is computed to assess the quality of the paths and diseases that they propose. The model is optimised 
(green block) so that the ground truth diseases have the highest score.
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This expression can be decomposed into two processes: path generation and reasoning prediction. The objec-
tive of the path generator is to obtain the paths from components to diseases, and the reasoning predictor uses 
those paths to answer queries. As explained before, paths can be generated using policies or rules.

Several models fit this description with minor modifications, as we will show in the next sections. There are dif-
ferent approaches, some models are based on rules, while others use reinforcement learning techniques. These 
approaches fit into the general model that we propose because they are based on similar ideas. Further details 
on this formulation can be found in Supplementary Data.

Fixed path generator
There are several ways to generate paths, and the simplest is to use a fixed path generator. We can generate paths 
using a fixed generator following different principles, for example, random walks. This is the approach followed 
in  AnyBURL31. AnyBURL is a bottom-up technique for efficiently learning logical rules from large knowledge 
graphs inspired by classic bottom-up rule learning approaches. AnyBURL learns as many rules as possible by 
sampling random paths over a predetermined time interval. Then, each rule is evaluated according to the rate of 
correct positive predictions among all inferred predictions to obtain the confidence of the rule. The particularisa-
tion of the rules in the graph given a query generates paths between the compound and the candidate diseases. 
This is done in the path generator block in Fig. 1.

Several rules generate the same candidate, so an aggregation of the score of each rule is required to find the 
final score of a candidate. This corresponds to the prediction block in Fig. 1. There are three different approaches 
to determine the score of each candidate: Maximum score and Noisy-OR originally proposed with AnyBURL 
 in32, and Non-redundant Noisy-OR proposed as a framework called  SAFRAN33.

The optimisation in this case is very simple as the only task is to keep the rules that have a high enough con-
fidence so that they can provide good predictions.

Reinforcement learning based path generator
The next step is to use path generators that can be updated based on data to learn the best way to traverse the 
graph to make predictions. Some methods use reinforcement learning to model the trajectory on the graph as 
a Markov Decision Process. Starting from the head node, the agent learns to walk to the tail node, choosing 
intermediate nodes step by step, taking into account the path history. Paths are generated based on policy µ , 
which is the strategy to traverse the graph to make good predictions.

This approach is followed in  MINERVA28 and its  variants29,34. In the drug repurposing context, the environ-
ment is the graph, and the possible actions are all the links the agent can choose from a certain node to the next. 
The objective of the agent is to move from a compound node to a disease node which is linked through the 
relations “treats”. The state includes all nodes and relations travelled through to the current node, so the next 
action depends on the whole path. Moreover, it is necessary to define a reward function R

(

πn | q
)

 that indicates 
whether the path πn provides good predictions or not.

In this case, as shown in Fig. 3, the main element is a policy generator that is trained to maximise long-term 
reward. Paths are sampled from the generator to connect the compound to the candidate diseases. The predic-
tion and calculation of the score function are included in this block, because the score is directly related to the 
policy followed to generate the path as shown in the Supplementary Data.

The long-term reward over the policy is defined as:

where the policy generator is parameterised with θ and πn represent the paths sampled from policy µθ . After 
some manipulation found in the Supplementary material, the function that needs to be optimised is the following:

which averages the paths πn sampled from policy µθ weighted by the reward R
(

πn | q
)

 of the path. N is the 
number of paths.

PoLo29 is a modification of MINERVA that focusses on drug repurposing. The model includes a term in the 
reward related to how similar the path is to a set of manually crafted metapaths considered reliable for repurpos-
ing. This model relies on the existence of expert knowledge to improve the results of MINERVA.

Path generator using variational inference
Reasoning based on reinforcement learning has the problem that the action space is large and the reward is 
sparse, as few paths lead to the correct answer and a positive reward. For that reason, there are models that use 
rules as latent variables to make predictions. These rules (z) allow for the interpretability of the results and sup-
port the predictions.  RNNLogic35 follows this approach.

(7)pω,θ (d | G , q) =
∑

µ

pω(d | G , q,µ)pθ (µ | G , q)

(8)pω,θ (d | G , q) =
∑

z

pω(d | G , q, z)pθ (z | G , q)

(9)Eπn∼µθ

[

R
(

πn | q
)]

(10)
1

N

N
∑

n=1

R
(

πn | q
)

log pθ (π
n | G , q)
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The model includes a rule generator and a reasoning predictor that apply the rules to propose candidate 
answers for the query, as shown in Fig. 4. The rule generator returns a set of logic rules conditioned on the query, 
which are given to the reasoning predictor for query answering. The reasoning predictor computes the likelihood 
of the answer conditioned on the logic rules and the existing knowledge graph G , pω(d | G , q, z) . At each train-
ing iteration, a few logic rules are sampled from the generator, which are fed into the reasoning predictor to try 
these rules for prediction. The distribution p(d | G , q) can be calculated according to Eq. (7) as:

Figure 2.  Description of AnyBURL based on our architecture. In this case, the input of the model is the whole 
graph (training set) including the ground truth. Paths are sampled based on random walk, and they are used to 
generate rules using a bottom-up approach. Then the confidence of the rule is computed, so only the rules with 
a confidence higher than a threshold are used for prediction. Rules are applied to the graph to obtain predictions 
which are ranked using the confidence of the rule.

Figure 3.  Description of MINERVA based on our architecture. The core of the algorithm is the policy 
generator, which is trained to obtain the best policy through the reward using policy search. Paths are sampled 
from the generator to obtain candidate diseases which are ranked according to the path that proposes them.

Figure 4.  Description of RNNLogic based on our architecture. In addition to the graph and the query, there is 
another input which is a set of prior rules to initialize the generator. The model consists of a rule generator and a 
reasoning predictor. A set of rules is sampled and used for prediction. During training, the predictor is updated 
using maximum likelihood estimation (MLE). Combining information of the generation and the prediction, 
a score for each rule H(zi) is computed and it is using during the training of the generator which is based on 
expectation maximisation.
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which is the objective function that has to be optimised by the whole model. This task is divided as the generator 
and predictor use different optimisation algorithms, but both contribute to a common goal.

The generator pθ (z | q) is updated using expectation maximisation (EM), and the optimisation of the predic-
tor pw(d | G , q, z) is based on maximum likelihood principles (MLE). Given the graph and the query, a set of 
rules is sampled and then used for the prediction ẑ ∼ pθ (z | q) . Based on the results of the predictions, a score 
is calculated for each rule H(ẑi) . It includes information from both the generation and prediction processes, so 
it is possible to know which are the high-quality rules for prediction ẑI.

To optimise the generator pθ (z | q) , a set of high-quality rules zI is selected according to H(ẑI ) . For each data 
instance, the set of rules ẑI is treated as part of the training data, and the generator is updated by maximising 
the logarithmic likelihood of ẑI . Moreover, H(ẑI ) has information on the quality of the rules, so it can also be 
included in the generator optimisation in the form of weights of each rule:

The function to be maximised is the average of the rules weighted by the score of the rules.
Rules generate paths that end in candidate diseases which are ranked according to a score computed based on 

trainable parameters related to the importance of rules and paths. The score measures the reliability of the predic-
tions and can be used in the drug repurposing case study to evaluate and interpret candidates for repurposing.

XG4Repo
We have developed XG4Repo, a ready-to-use framework for computational drug repurposing using knowledge 
graphs. This framework is capable of predicting candidate diseases for repurposing and providing informative 
explanations to help a human expert in the research of new treatments.

Our proposal is a particularisation of the described architecture that combines state-of-the-art methods 
for graph completion and optimises them for drug repurposing. In Fig. 2 we see the architecture of XG4Repo. 
The core of the framework is RNNLogic, because it provides informative rules and achieves good results. To 
initialise the generator, we have used the rule miner in AnyBURL, as the generated rules are good for prediction 
tasks. These rules need to be processed to be readable by the generator and filtered to remove those that are not 
general enough.

We have adapted the graph completion task to repurposing. In conventional graph completion, the model is 
trained to predict queries that include every type of relation. In drug repurposing, we are only interested in the 
relation “treats”, so the model is specifically optimised to find diseases that can be treated by compounds. The 
training set only includes triples of “compound treats disease” but the whole graph can be traversed to find paths 
that include nodes and relations of any kind. Reducing the training set reduces computational time and resources, 
which is very interesting in the case of drug repurposing. As we see in Fig. 5, “compound treats disease” (CtD) 
triples are differentiated from the rest of the graph.

A key element in our design is a module for the interpretability of the results, where we can look for the pre-
dictions, the rules that support them, how important these rules are, and the paths that connect the compound 
to the disease. This is useful for those experts interested in the repurposing task, as they get predictions and 
explanations in natural language. Moreover, the code generates Cypher queries to obtain the paths generated by 
any specific rule on Hetionet. This is more efficient than storing every path generated by the rules. The code of 
XG4Repo is ready-to-use and available in https:// github. com/ AnaJi mBej/ XG4Re po.

An important aspect of our interpretability-based contribution is that the explainability module is integrated 
with the prediction process. It is not just a model to make predictions, it is a framework that starting from prior 
knowledge and a candidate drug predicts the diseases it can treat and the explanation of why it would work in 
natural language. This makes it possible for it to be used by end users who want to initiate drug repurposing 
research.

Data
Hetionet18 was developed within the Rephetio project with the aim of creating a knowledge graph suitable for 
different tasks related to drug repurposing, and is publicly available. This database has been chosen as it is public 
and can therefore be used for comparison with other state-of-the-art methods. In addition, it has been used for 
similar tasks related to drug repurposing.

One notable aspect of Hetionet is its emphasis on incorporating multiple types of relations, such as drug-
target interactions, gene-disease associations, and pathway connections. This comprehensive approach enables 
researchers to explore and prioritise potential drug repurposing opportunities, as well as gain insight into the 
underlying mechanisms of diseases.

Among the 2,250,197 triplets that make up the knowledge graph, only 755 correspond to “compound treats 
disease”. An 80-10-10% split was applied to divide the data set for training, testing and validation, respectively, 
obtaining the triplets. Of the 755 triplets of “compound treats disease”, 598 are used to train the model, 82 for 
testing, and the remaining 75 triplets are used for validation.

The model is specifically trained to predict “compound treats disease” relations. The rule generator learns the 
relations of every triplet in the graph. The rules generated to make the predictions include relations of all types, 
so the paths generated can include any of the nodes or relations that make up the graph.

(11)pw,θ (d | G , q) =
∑

z

pw(d | G , q, z)pθ (z | q)

(12)H(ẑI ) log pθ
(

ẑI | q
)

=
∑

zi∈ẑi

H(ẑI )pθ
(

ẑi | q
)

https://github.com/AnaJimBej/XG4Repo
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The graph has been augmented with inverse relations, which, for each triplet, go from tail to head (t, r−1, h) . 
This adds flexibility to the rules and allows more connections between the nodes.

Evaluation metrics
Once a model has been trained, it has to be evaluated. The output of the model is a score for each possible answer 
for the test. During the test, we check that the disease of the triple being evaluated ( d∗ ) receives a high score. 
Candidate diseases are ordered by decreasing score and the rank is defined as the position of the disease of the 
ground truth ( d∗ ) in the list of candidates.

Based on the rank, several metrics are computed, which aggregate in a single number the performance of 
the  model36. In this work, we have evaluated the models using mean reciprocal rank (MRR), Hits@1, Hits@3 
and Hits@10.

The metrics calculated in this research are filtered as described  in36. Moreover, binomial proportion confi-
dence intervals are applied to compare the performance of the models as the size of the test set does not have 
enough samples to use the Gaussian approximation. It provides an interval estimate of a success probability p 
when only the number of experiments n and the number of successes ns are known.

Results
We have trained several path-based graph completion models for Hetionet. The models being compared are 
XG4Repo, which represents our approach, MINERVA as a representation of reinforcement learning-based meth-
ods, and AnyBURL-based methods. For AnyBURL, we test three prediction strategies: Maximum score, Noisy-
OR and SAFRAN. In the case of MINERVA and XG4Repo, we have trained only “drug treats disease” triples. For 
models based on AnyBURL, we have trained over every relation and then filtered test triples for evaluation, so 
test samples are the same in all cases. In Table 1, we present test metrics for models when the path length is set 
to three in all cases for comparison. For XG4Repo, 100 rules have been sampled from the generator.

We include the results reported in  PoLo29, because as far as we know, this is the only work that provides 
results for “compound treats disease” on Hetionet. We see that XG4Repo obtains better metrics under the same 
experimental conditions.

Figure 5.  Description of XG4Repo architecture. The first step of the process is to generate a set of prior rules 
using AnyBURL rule miner. These rules are processed and used as priors in the generators. The model is 
trained using only the triples “compound treats disease” so the computational complexity is reduced. Once the 
predictions are made, the rules and corresponding scores are stored in natural language, so they can be easily 
understood. Moreover, our framework can generate Cypher queries to obtain the paths in Hetionet given the 
rules. This adds interpretability to the predictions without adding extra storage requirements.
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In Fig. 6, we show the MRR of each model including 90% confidence interval. As the test set only includes 82 
triples, the confidence intervals are large, so for most models, they overlap. Confidence intervals can be expected 
to narrow in larger knowledge graphs. For that reason, we propose XG4Repo as a promising tool to propose 
repurposing candidates and to provide meaningful explanations about the predictions. We can see that XG4Repo 
is clearly better than models based on reinforcement learning models, as it can generate more variate paths that 
lead to different candidates. We show the performance of the model and the interpretability of the predictions 
using three use cases of repurposing.

Use cases
In this section, we present three use cases of repurposing using the framework we have developed. The goal is 
to obtain diseases that can be treated with Epirubicin, Paclitaxel, and Prednisone using the methods explained 
previously. We include the predictions of AnyBURL-based models and MINERVA to support consistency in the 
predictions of our framework, as in most cases different models propose the same candidates.

The rules provided in this section are generated by XG4Repo and have a length of three steps. Paths provide 
explanations for the predictions and include the score by which the rule contributes to the prediction.

We also include some references to show that there are research and clinical trials that use drugs to treat dis-
eases that have been proposed by the model. This shows that our framework can be a useful tool for healthcare 
professionals, as it is capable of handling larger amounts of data and coming to the same conclusions as them. It is 
an interesting first approximation for the processing of large datasets that has to be validated by further research.

Epirubicin
Epirubicin is a chemotherapy drug that is used to treat various types of cancer. Epirubicin treats 14 types of 
cancer according to Hetionet. The test set includes breast cancer, bone cancer, sarcoma, and uterine cancer, and 
the rest of the diseases are used for training.

In Table 2, we show the test results for different models and include the position of the disease in the predic-
tion (rank). We see that the triples in the test set (in bold), those that we know to be true, are proposed as the 
first candidates for repurposing for every model except for MINERVA. Different models tend to provide similar 
predictions. The results of our model are consistent with the state-of-the-art in particular cases as shown in 
Table 2 and better for the whole graph as shown in Fig. 6.

Table 1.  Comparison of the test results on “compound treats disease” on Hetionet using explainable methods. 
We include the results reported by  PoLo29 for comparison.

Method MRR Hits@1 Hits@3 Hits@10

PoLo 0.402 0.314 0.428 0.609

PoLo (pruned) 0.430 0.337 0.47 0.641

AnyBURL(maxscore) 0.520 0.390 0.573 0.817

AnyBURL(noisy-OR) 0.511 0.366 0.598 0.805

SAFRAN 0.563 0.439 0.598 0.793

MINERVA 0.359 0.244 0.378 0.622

XG4Repo 0.612 0.488 0.671 0.890

Figure 6.  Comparison of the MRR of different models for “compound treats disease” in Hetionet. The 
confidence intervals at 90% are included. Rule-based models work better than reinforcement learning. Due to 
the small test set, confidence intervals for rule-based models overlap, so it is not possible to identify the best 
performing one in statistical terms.
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Epirubicin treats breast cancer. All the models propose breast cancer as a candidate disease to be treated by 
Epirubicin. We already know that this prediction is true, as it is in the test set. The models can effectively identify 
those diseases that could improve with the use of the drug. In Table 3, we see the most important rules for this 
prediction according to XG4Repo and a path length of 3. These metapaths are expressive and include useful 
information about the targets of the disease. Most of them match the metapaths found relevant  in18. The score 
of the rule shows the importance of the rule for prediction. This score is related to Eq. (12) and helps the human 
expert in drug repurposing interpret the prediction.

We do know that the relation treats exists between Epirubicin and breast cancer and have presented the rules 
that show the mechanisms that explain it. Moreover, we can see the paths to identify the nodes that relate the 
query and the prediction. In Fig. 7 we see some paths that follow the rule: [Compound upregulates−→  Gene is expressed by

−→  
Anatomy is localized to

−→  Disease]. We also provide Cypher queries to explore all these paths in Neo4J browser along 
with the code.

Epirubicin treats lung cancer. Most models predict that lung cancer can be treated with Epirubicin in second 
position. This disease is not included in Hetionet, so it is a candidate.  DrugBank37 is an online free-to-access 
database that contains information on drugs and drug targets.  In37, DrugBank includes Epirubicin as treatment 
for Non-Small Cell Lung Carcinoma and Small Cell Lung Cancer (SCLC). Then, the models has been able to 
predict a treatment for a disease that healthcare community has accepted, even though it is not included in the 

Table 2.  Top 10 diseases predicted by each model for the query “Epirubicin treats disease”. Each disease is 
predicted in a different position (rank) for different models. Diseases are ordered by XG4Repo results. Notice 
that in MINERVA, several paths can lead to the same node in different realisations. In bold, those diseases that 
are in the test set and, therefore, are true answers of the query.

Disease
AnyBURL
maxscore

AnyBURL
noisy-OR SAFRAN MINERVA XG4Repo

Breast cancer 1 1 3 8, 9 1

Lung  cancer37 2 2 2 2

Sarcoma 3 6 6 3

Kidney cancer 5 4 1 4

Muscle  cancer38 4 5 5 5

Bone cancer 6 7 4 6

Melanoma39 7

Lymphatic system  cancer40 8 8

Germ cell  cancer41 9 10 9

Coronary artery disease 10

Hypertension 3

Colon  cancer42 7 10 7

Multiple sclerosis 8 9 9

Brain  cancer43 10

Asthma 8

Epilepsy 1, 2, 5, 6, 10

Osteoporosis 3

Atopic dermatitis 4

Table 3.  Top rules for Epirubicin treats breast cancer and the corresponding scores.

Score Rule

1793 [Compound causes−→  Side effect 
is caused by
−→  Compound treats−→ Disease ]

1007 [Compound 
upregulates
−→  Gene 

is expressed by
−→  Anatomy is localized to

−→  Disease ]

636 [Compound 
upregulates
−→  Gene 

regulates
−→  Gene is associated to

−→  Disease ]

412 [Compound 
upregulates
−→  Gene 

is upregulated by
−→  Compound treats−→ Disease]

378 [Compound treats−→ Disease associates−→  Gene is associated to
−→  Disease]

202 [Compound 
upregulates
−→  Gene 

is downregulated by
−→  Anatomy is localized to

−→  Disease]

200 [Compound 
upregulates
−→  Gene 

is upregulated by
−→  Anatomy is localized to

−→  Disease]
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knowledge graph used for training. We also include the most important rules for this prediction Table 4 and 
some paths in Fig. 8.

Furthermore, actual applications of existing drugs are also published  in37, so from there we identified that 
muscle cancer, colon cancer, and germ cell cancer are being treated with Epirubicin. With respect to muscle 
cancer, it is specified in DrugBank as soft tissue  sarcoma38. In addition, Epirubicin has actually been proven to 

Figure 7.  Set of paths that represent the triple Epirubicin treats breast cancer following the metapath 
[Compound upregulates−→  Gene is expressed by

−→  Anatomy is localized to
−→  Disease]. The number of nodes has been limited to 

facilitate visualization.

Table 4.  Top rules for Epirubicin treats lung cancer and the corresponding scores.

Score Rule

1208 [Compound causes−→  Side effect 
is caused by
−→  Compound treats−→ Disease]

713 [Compound 
upregulates
−→  Gene 

is expressed by
−→  Anatomy is localized to

−→  Disease]

340 [Compound 
upregulates
−→  Gene 

is upregulated by
−→  Compound treats−→ Disease]

302 [Compound 
upregulates
−→  Gene 

regulates
−→  Gene is associated to

−→  Disease]

259 [Compound treats−→ Disease associates−→  Gene is associated to
−→  Disease]

152 [Compound 
upregulates
−→  Gene 

is upregulated by
−→  Anatomy is localized to

−→  Disease]

137 [Compound 
upregulates
−→  Gene 

is downregulated by
−→  Anatomy is localized to

−→  Disease]

Figure 8.  Set of paths that represent the triple “Epirubicin treats lung cancer” following the metapath 
[Compound upregulates−→  Gene is upregulated by

−→  Compound treats−→ Disease]. The number of nodes has been limited to 
facilitate visualization.
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be evaluated for colorectal  cancer42, being colon cancer predicted by AnyBURL-based methods. Similarly, the 
germ cell cancer inferred by AnyBURL maximum score, SAFRAN and XG4Repo, is the general name of a type of 
cancer that develops mainly in the ovary or testicle, being the ovarian cancer actually treated with  Epirubicin41.

Moreover,  in37 the finalised and active clinical trials can be found. For lymphatic system cancer also known 
as lymphoma, which is proposed as a candidate by SAFRAN and XG4Repo, different studies have been carried 
out focussing mainly on determining its effectiveness in combination with other drugs. For example, a recent 
study published in November  202240 aims to evaluate the efficacy and safety of Camrelizumab combined with 
Epirubicin, Vincristine and Dacarbazine to treat patients with advanced classical Hodgkin’s lymphoma. They 
obtain an Objective Response Rate (ORR) of 100%, which means that 100% of the study patients had a partial 
and complete response within the study period.

Researchers are also studying the use of Epirubicin to treat  melanoma39 in combination with other drugs.
For the rest of the diseases, current evidence of treatment has not been found in the literature. However, since 

these methods inferred these diseases, they could be potential candidates for diseases that could be treated with 
Epirubicin, providing a starting point for research.

Paclitaxel
Paclitaxel is a taxoid chemotherapeutic agent used as first-line and subsequent therapy for the treatment of 
advanced carcinoma of the  ovary44. As shown in Table 5, all models except MINERVA have been able to predict 
ovarian cancer as a disease to be treated. In particular, XG4Repo proposes ovarian cancer as the first candidate.

In  DrugBank37, we found that urinary bladder cancer, pancreatic cancer, testicular cancer, melanoma, head 
and neck cancer, and sarcoma are being treated with Paclitaxel, in combination with other drugs. Moreover, 
we have found  in37 clinical trials that study the treatment of hematologic  cancer47, stomach  cancer45, prostate 
 cancer46,  psoriasis50, esophageal  cancer48 and colon  cancer51 with Paclitaxel. Paclitaxel has also been associated 
with the treatment of pulmonar  hypertension49.

For the rest of the diseases, no evidence of treatment or clinical trials has been found yet.

Prednisone
Prednisone is a corticosteroid used to treat inflammation or immune-mediated reactions and to treat endocrine 
or neoplastic  diseases37. Ulcerative colitis, hematologic cancer, atopic dermatitis, and chronic obstructive pul-
monary disease can be treated with Prednisone and are included in the test set. As shown in Table 6, all models 
have been able to predict ulcerative colitis as a candidate and most of them hematologic cancer. XG4Repo has 
been able to identify chronic obstructive pulmonary disease as a candidate.

Several models predict osteoporosis as a candidate; however, osteoporosis is a side effect of  Prednisone54. As 
found  in18, it is possible that metapaths find contraindications to the diseases, so it is always necessary to study 
the predictions before starting clinical trials.

We have found clinical trials using Prednisone for lung  cancer55, breast  cancer56, testicular germ cell  cancer60, 
epilepsy in  children59,  leprosy53 and amyotrophic lateral  sclerosis52.

In37, they propose Prednisone as a treatment for allergic rhinitis. In the case of hypertension, there are studies 
that relate the impact of Prednisone on this disease, but mainly in a negative  way57.  In18, they already found that 

Table 5.  Top 10 diseases predicted by each model for the query “Paclitaxel treats disease”. Each disease is 
predicted in a different position (rank) for different models. Diseases are ordered by XG4Repo results. Notice 
that in MINERVA, several paths can lead to the same node on different realisations. In bold, those diseases that 
are in the test set and therefore are true answers of the query.

Disease AnyBURL maxscore AnyBURL noisy-OR SAFRAN MINERVA XG4Repo

Ovarian cancer44 1 1 1 1

Pancreatic  cancer37 3 3 4 2

Melanoma37 2 2 5 3

Stomach  cancer45 4 4 3 4

Prostate  cancer46 5 5 2 5

Hematologic  cancer47 7 7 1, 2, 3, 8, 9, 10 6

Head and neck  cancer37 6 6 6 7

Esophageal  cancer48 8

Urinary bladder  cancer37 9 9 9

Testicular  cancer37 7 10 10

Hypertension49 8 6, 7

Psoriasis50 8

Colon  cancer51 8 10

Epilepsy 4

Sarcoma 10

Osteoporosis 5
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some of the predictions made were contraindications to the disease, as the included relations are too general. 
The relation of Prednisone and coronary artery disease has also been  studied58. The use of Prednisone to treat 
coronary artery disease has been studied in the  past61, although it has not been used in general patients. This 
shows that our tool can make proposals similar to those made by a healthcare professional. Some studies also 
propose Prednisone to treat urinary bladder  cancer59.

We can perform this analysis with any other drug present in the graph and obtain the rules and paths that 
support these predictions.

Conclusion
In this work, we propose a general architecture to unify the process of graph-completion methods using paths. 
These methods are explainable, which is particularly relevant in the drug repurposing context. Moreover, they 
have good performance, which makes them trustworthy. We have analysed how some methods proposed in 
the literature fit our architecture and show that they are different approaches to complete the same stages of the 
process.

We have designed XG4Repo, a framework for drug repurposing using knowledge graphs that predict diseases 
that can be treated with a given compound. Along with the prediction, the model provides the rules that support 
the prediction and the importance of the rule. This step is necessary so that researchers can validate the predic-
tion through the biological mechanism of action.

The results are presented for Hetionet, but the model can be trained on different knowledge graphs that 
include examples “compound treats disease”. Using other knowledge graphs could lead to different but relevant 
predictions. Training the model in larger knowledge graphs is the next step in this research.

We have included three use cases to show that the model is able to propose candidates similar to those pro-
posed by humans. This is important because the objective of these tools is not to replace research, but to analyse 
large quantities of data in a short amount of time. Therefore, it is possible to accelerate the first stages of drug 
repurposing.

Regarding future lines that can extend this research, one of them is identifying and addressing potential biases 
in our model and/or dataset that could affect the accuracy of the drug prediction process. Another line could be 
analyzing the proposed explanations given by XG4Repo and assessing ways in which they can be improved. And 
finally, the performance of XG4Repo could be further assessed by making use of other repurposing databases, 
in order to detect ways in which it could be improved.

Data availibility
The dataset used in this project is  Hetionet18, which was developed within the Rephetio project and is publicly 
available in https:// github. com/ hetio/ hetio net.

Table 6.  Top 10 diseases predicted by each model for the query “Prednisone treats disease”. Each disease is 
predicted in a different position (rank) for different models. Diseases are ordered by XG4Repo results. Notice 
that in MINERVA, several paths can lead to the same node on different realisations. In bold, those diseases that 
are in the test set and therefore are true answers of the query.

Disease AnyBURL maxscore AnyBURL noisy-OR SAFRAN MINERVA XG4Repo

Ulcerative colitis 2 1 1 1, 3, 4, 6, 7, 8, 9, 10 1

Atopic dermatitis 2

Allergic  rhinitis37 1 2 2 5 3

Chronic obstructive pulmonary disease 4

Hematologic cancer 3 3 3 5

Amyotrophic Lateral  Sclerosis52 6

Leprosy53 7

Bone cancer 8

Malaria 9

Primary biliary cholangitis 10

Osteoporosis54 10 7 7

Lung  cancer55 8 10

Breast  cancer56 4 5 4

Hypertension57 8 4 5

Coronary artery  disease58 9 6 6

Dilated cardiomyopathy 8

Kidney cancer 9

Epilepsy59 2

Colon cancer 6

Urinary bladder  cancer59 7 9

Testicular  cancer60 5 10

https://github.com/hetio/hetionet
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Code availability
The code developed in this work is available in https:// github. com/ AnaJi mBej/ XG4Re po.
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