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Survival analysis in medical research has witnessed a growing interest in applying deep learning 
techniques to model complex, high-dimensional, heterogeneous, incomplete, and censored data. 
Current methods make assumptions about the relations between data that may not be valid in 
practice. Therefore, we introduce SAVAE (Survival Analysis Variational Autoencoder). SAVAE, based 
on Variational Autoencoders, contributes significantly to the field by introducing a tailored Evidence 
Lower BOund formulation, supporting various parametric distributions for covariates and survival time 
(if the log-likelihood is differentiable). It offers a general method that demonstrates robustness and 
stability through different experiments. Our proposal effectively estimates time-to-event, accounting 
for censoring, covariate interactions, and time-varying risk associations. We validate our model in 
diverse datasets, including genomic, clinical, and demographic tabular data, with varying levels 
of censoring. This approach demonstrates competitive performance compared to state-of-the-art 
techniques, as assessed by the Concordance Index and the Integrated Brier Score. SAVAE also offers 
an interpretable model that parametrically models covariates and time. Moreover, its generative 
architecture facilitates further applications such as clustering, data imputation, and synthetic patient 
data generation through latent space inference from survival data. This approach fosters data sharing 
and collaboration, improving medical research and personalized patient care.
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In recent years, there has been a significant transformation in medical research methodologies towards the 
adoption of Deep Learning (DL) techniques for predicting critical events, such as disease development and 
patient mortality. Despite their potential to handle complex data, practical applications in this domain still need 
to be expanded, with most studies still relying on traditional statistical methods.

Survival Analysis (SA), or time-to-event analysis, is an essential tool for studying specific events in various 
disciplines, not only in medicine but also in fields such as recommendation systems1, employee retention2, 
market modeling3, and financial risk assessment4.

According to the existing literature, the Cox proportional hazards model (Cox-PH)5 is the dominant SA 
method that offers a semiparametric regression solution to the non-parametric Kaplan-Meier estimator problem6. 
Unlike the Kaplan-Meier method, which uses a single covariate, Cox-PH incorporates multiple covariates to 
predict event times and assess their impact on the hazard rate at specific time points. However, it is crucial to 
acknowledge that the Cox-PH model is built on certain strong assumptions. One of these is the proportional 
hazards assumption, which posits that different individuals have hazard functions that remain constant over 
time. Also, the model assumes a linear relation between the natural logarithm of the relative hazard (the ratio of 
the hazard at time t to the baseline hazard) and the covariates. Although the standard Cox-PH model assumes 
the absence of interactions among these covariates, it can be extended by introducing interaction terms, such as 
quadratic or higher-order terms, allowing the modeling of more complex relations between covariates. However, 
even with these extensions, the model may struggle to capture non-linearities in real-world datasets, where 
intricate interactions between covariates and non-linear relationships might exist. Other traditional parametric 
statistical models for SA make specific assumptions about the distribution of event times. For instance, there 
are models that assume exponential and Weibull distributions, respectively, for event times7,8. However, one 
drawback of these models is that they lack flexibility when changing the assumed distribution for survival times, 
making them less adaptable to diverse datasets.

In response, researchers have explored Deep Neural Networks (DNNs) to effectively capture the intricate 
and non-linear relations between predictive variables and a patient’s risk of failure. Significant emphasis has 
been placed on improving the Cox PH model, the standard SA approach. Recent approaches have introduced 
Neural Networks (NN) in various configurations, either enhancing the Cox-PH model with neural components 
or proposing entirely novel architectures. This exploration of NN applications for SA traces back to 19959, when 

Information Processing and Telecommunications Center, ETSI Telecomunicación, Universidad Politécnica de 
Madrid, Avda. Complutense, 30, 28040 Madrid, Spain. email: patricia.alonsod@upm.es

OPEN

Scientific Reports |        (2024) 14:24567 1| https://doi.org/10.1038/s41598-024-76047-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


a simple feed-forward NN was employed to replace linear interaction terms while incorporating non-linearities. 
Subsequently, the field saw the emergence of DeepSurv10, a model designed to extract non-linearities from 
input data, albeit still assuming the proportional hazards assumption. This assumption persists in other related 
models11. Beyond addressing non-linearity, some researchers have sought to enhance prediction accuracy 
and model interpretability by combining Bayesian networks with the Cox-PH model12. Additionally, efforts 
have been made to introduce concepts that facilitate analysis when data availability is limited13,14. However, 
it is essential to note that all these models still depend on the assumption of proportional hazards. As a result, 
novel architectures such as DeepHit15 have emerged as alternatives that do not rely on this assumption. While 
DeepHit has exhibited superior performance compared to other state-of-the-art models, it operates exclusively 
in the discrete-time domain, which comes with certain limitations, notably the requirement for a dataset with a 
substantial number of observations. This condition may not be feasible in real-world scenarios.

In light of the persistent limitations of existing approaches in the realm of SA, this paper introduces a novel, 
versatile algorithm grounded in DL advances named SAVAE (Survival Analysis Variational Autoencoder). 
SAVAE has been meticulously designed to predict the time distribution leading to a predefined event and adapts 
to application in various domains, explicitly focusing on the medical context. Then, our main contributions 
consist of:

• We introduce a generative approach that underpins the development of a flexible tool, SAVAE, based on 
Variational Autoencoders (VAEs). SAVAE can effectively reproduce the data by analytically modeling the 
discrete or continuous time to a specific event. This analytical approach enables the precision calculation of 
all necessary statistics, as the output provided by SAVAE are the estimated parameters of the predicted time 
distribution.

• SAVAE is a flexible tool that enables us to use various distributions to model the time-to-event and the covar-
iates. This allows us not to assume proportional hazards. Using NN permits modeling complex, non-linear 
relations between the covariates and the time-to-event, as opposed to linearity assumptions in the state of the 
art. Also, the time-to-event is trained with standard likelihood techniques, unlike state-of-the-art models like 
DeepHit, which trains the Concordance Index (C-index). This makes our approach more general and flexible, 
as any differentiable distribution could be used to model the time and the covariates.

• Furthermore, our proposal can be trained on right-censored data, effectively leveraging information from 
patients who have not yet experienced the event of interest.

• We have conducted comprehensive time-to-event estimation experiments using datasets characterized by 
continuous and discrete time-to-event values and varying covariate natures, encompassing clinical and 
genomic data. These experiments involve a comparative analysis with the traditional Cox-PH model and 
other DL techniques. The results indicate that SAVAE is competitive with these models regarding the C-index 
and the Integrated Brier score (IBS).

Methods
Survival analysis
In a conventional time-to-event or SA setup, N observations are given. Each of these observations is described by 
D = (xi, ti, di)

N
i=1 triplets, where xi = (x1i , . . . , x

L
i ) is an L-dimensional vector where l = 1, 2, . . . , L indexes the 

covariates, ti is the time-to-event, and di ∈ {0, 1} is the censor indicator. When di = 0 (censored), the subject 
has not experienced an event up to time ti, while di = 1 indicates the observed events (ground truth). SA models 
are conditional on covariates: time probability density function p(t|x), hazard rate function (the instantaneous 
rate of occurrence of the event at a specific time) h(t|x), or survival function S(t|x) = P (T > t) = 1− F (t|x)
, also known as the probability of a failure occurring after time t, where F (t|x) is the Cumulative Distribution 
Function (CDF) of the time. From standard definitions of the survival function, the relations between these 
three characterizations are formulated as follows:

 p(t|x) = h(t|x)S(t|x). (1)

Vanilla variational autoencoder
The original VAE was proposed in 201316, a robust approach employing DNNs for Bayesian inference. It 
addresses the problem of a dataset consisting of N i.i.d. samples xi of a continuous or discrete variable, where 
i ∈ 1, 2, . . . , N , xi are generated by the following random process, which is depicted in Fig. 1:

 1.  A latent variable zi is sampled from a given prior probability distribution p(z). The original research16 as-
sumes a form pθ(z), i.e., the prior depends on some parameters θ, but its main result drops this dependence. 
Therefore, a simple prior p(z) is assumed in this paper.

 2.  A conditional distribution, pθ(x|z), with parameters θ generates the observed values, xi. A generative model 
governs this process. Certain assumptions are made, including the differentiability of probability density 
functions (pdfs), p(z), and pθ(x|z), regarding θ and z.The latent variable z and the parameters θ are unknown. 
Without simplifying assumptions, evaluating the marginal likelihood pθ(x) =

∫
p(z)pθ(x|z)dz is infeasible. 

The true posterior density pθ(z|x), which we aim to approximate, can be defined as Eq. (2) using Bayes’ the-
orem:

 
pθ(z|x) =

pθ(x|z)p(z)
pθ(x)

. (2)
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However, since the marginal likelihood pθ(x) is often intractable, direct computation of the true posterior 
pθ(z|x) is not practicable.

Variational methods offer a solution by introducing a variational approximation, qϕ(z|x), to the true posterior. 
This approximation involves optimizing the best parameters for a chosen family of distributions. The quality of 
the approximation depends on the expressiveness of this parametric family.

ELBO derivation
Since an optimization problem must be solved, the optimization target needs to be developed. Considering xi 
are assumed to be i.i.d., the marginal likelihood of a set of points {xi}Ni=1 can be expressed as

 
log pθ(x1, x2, . . . , xN) =

N∑
i=1

log pθ(xi), (3)

where

 
pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x, z)

qϕ(z|x)
qϕ(z|x)

dz = Eqϕ(z|x)

[
pθ(x, z)

qϕ(z|x)

]
. (4)

Using Jensen’s inequality, we can obtain:

 
log pθ(x) = log

[
Eqϕ(z|x)

[
pθ(x, z)

qϕ(z|x)

] ]
≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
. (5)

Rearranging Eq. (5), we can express it as follows:

 

Eqϕ(z|x)

[
log

(
pθ(x, z)

qϕ(z|x)

)]

=

∫
qϕ(z|x) log

pθ(x|z)p(z)
qϕ(z|x)

dz

=

∫
qϕ(z|x) log

p(z)

qϕ(z|x)
dz +

∫
qϕ(z|x) log pθ(x|z)dz

= −
∫

qϕ(z|x) log
qϕ(z|x)
p(z)

dz +

∫
qϕ(z|x) log pθ(x|z)dz

= −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x) [log pθ(x|z)]
= L(x, θ, ϕ),

 (6)

where DKL(p||q) is the Kullback-Leibler divergence between distributions p and q, and L(x, θ, ϕ) is the Evidence 
Lower BOund (ELBO), whose name comes from Eq. (5):

 log pθ(x) ≥ −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x) [log pθ(x|z)] = L(x, θ, ϕ), (7)

the ELBO is a lower bound for the marginal log-likelihood of the relevant set of points. Thus, maximizing the 
ELBO maximizes the log-likelihood of the data. This would be the optimization problem to solve.

Figure 1. Bayesian VAE vanilla model. The shaded circle refers to the latent variable z, and the white circle 
refers to the observable x. Probabilities pθ(x|z) and qϕ(z|x) denote, respectively, the generative model and the 
variational approximation to the posterior, since the true posterior pθ(z|x) is unknown.
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Implementation
The ELBO derived from Eq.  (7) can be effectively implemented using a DNN-based architecture. However, 
computing the gradient of the ELBO concerning ϕ presents challenges due to the presence of ϕ in the 
expectation term (the second part of the ELBO in Eq.  (7)). To address this issue, the original research16 
introduced the reparameterization trick. This method involves modifying the latent space sampling process to 
make it differentiable, enabling gradient-based optimization techniques. Rather than sampling directly from 
the latent space distribution, VAEs sample ϵ from a simple distribution, often a standard normal distribution. 
Subsequently, a deterministic transformation gϕ is applied to ϵ, producing z = gϕ(x, ϵ) where z ∼ qϕ(z|x) and 
ϵ ∼ p(ϵ). In this case, the ELBO can be estimated as follows.

 
L̂(x, θ, ϕ) = 1

N

N∑
i=1

(
−DKL(qϕ(z|xi)||p(z)) + log pθ(xi|gϕ(xi, ϵi))

)
. (8)

This modification facilitates the calculation of the ELBO gradient concerning θ and ϕ, allowing the application 
of standard gradient optimization methods.

Equation  (8) offers a solution using DNNs, with functions parameterized by ϕ and θ. Gradients can be 
conveniently computed using the Backpropagation algorithm, which various programming libraries automate. 
The term VAE derives from the fact that Eq.  (8) resembles the architecture of an Autoencoder (AE)17, as 
illustrated in Fig. 2. The variational distribution qϕ can be implemented using a DNN with weights ϕ, taking 
an input sample x and outputting parameters for the deterministic transformation gϕ. The VAE’s latent space 
comprises the latent variable z distribution, a deterministic transformation gϕ of the encoder DNN output and 
random ancillary noise ϵ. A sampled value zi is drawn from the latent distribution and used to generate an 
output sample, where another DNN with weights θ acts as a decoder, taking z as input and providing parameters 
of the distribution pθ(x|z) as output.

Two key observations emerge. 

 1.  The ELBO losses in Eq. (7) include a regularization term penalizing deviations from the prior in the latent 
space and a reconstruction error term that enforces similarity between generated samples from the latent 
space and inputs.

 2.  In contrast to standard AEs, VAEs incorporate intermediate sampling, rendering them non-deterministic. 
This dual sampling process is retained in applications where the distribution of output variables is of interest, 
facilitating the derivation of input value distribution parameters.

Our contribution
The interest lies in using VAEs to obtain the predictive distribution of time-to-event given covariates. The 
proposed approach termed Survival Analysis VAE (SAVAE), depicted in Fig. 3, extends the Vanilla VAE. SAVAE 
includes a continuous latent variable z, two vectors (an observable covariate vector x and the time-to-event t), and 

Figure 3. SAVAE Bayesian model. The shadowed circle refers to the latent variable, and the white circles refer 
to the observables. Note that the probabilities pθ1(x|z) and pθ2(t|z) denote the generative models, and qϕ(z|x) 
denotes the variational approximation to the posterior, since the true posterior pθ(z|x) is unknown.

 

Figure 2. VAE vanilla model implementation using DNNs.
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generative models pθ1(x|z) and pθ2(t|z), assuming conditional independence, which is a characteristic inherent 
to VAEs and their ability to model the joint distribution of variables effectively. This means that knowing z, the 
components of the vector x and t can be generated independently. A single variational distribution estimates 
the variational posterior p(z|x) to define the predictive distribution based on covariates. While it is possible to 
include the effect of time (p(z|t, x)), this approach focuses on using only covariates to obtain the latent space, as 
the time t can be unknown to predict survival times for test patients and could be censored. SAVAE combines 
VAEs and survival analysis, offering a flexible framework for modeling complex event data.

Goal
To achieve the main objective, which is to obtain the predictive distribution for the time to event, variational 
methods will be used in the following way18:

 
p
(
t∗|x∗, {xi, ti}Ni=1

)
=

∫
p
(
t∗|z, {xi, ti}Ni=1

)
p
(
z|x∗, {xi, ti}Ni=1

)
dz, (9)

where x∗ represents the covariates of a particular patient, and its survival time distribution p
(
t∗|z, {xi, ti}Ni=1

)
 

needs to be estimated.

ELBO derivation
Considering our main objective and the use of VAE as the architecture on which we base our approach, the 
previous ELBO development can be extended to apply to our case. SAVAE assumes that the two generative 
models pθ1(x|z) and pθ2(t|z) are conditionally independent. This implies that if z is known, generating x or t is 
possible. Furthermore, due to the VAE architecture, it is assumed that each component of the covariate vector x 
is also conditionally independent given z. Therefore,

 p(x, t, z) = pθ1(x|z)pθ2(t|z)p(z) = pθ(x, t|z)p(z). (10)

It also assumes that the distribution families of pθ1(x|z) and pθ2(t|z) are known, but not the parameters θ1 and θ2
. Taking into account these assumptions, the ELBO can be computed in a similar way to the Vanilla VAE. First, 
the conditional likelihood of a set of points {xi, ti}Ni=1 can be expressed as follows:

 
log pθ(x1, x2, . . . , xN, t1, t2, . . . , tN |z) =

N∑
i=1

log pθ(xi, ti|z) =
N∑
i=1

(
log pθ2(ti|z) +

L∑
l=1

log pθ1(x
l
i|z)

)
, (11)

where the expected conditional likelihood can be expressed as:

 

Ez [pθ(x, t|z)]

=

∫
pθ(x, t|z)p(z)dz

=

∫
pθ(x, t, z)

p(z)
p(z)dz

=

∫
pθ(x, t, z)dz

= pθ(x, t) =

∫
pθ(x, t, z)

qϕ(z|x)
qϕ(z|x)

dz

= Eqϕ(z|x)

[
pθ(x, t, z)

qϕ(z|x)

]
.

 (12)

As the interest lies in computing the log-likelihood:

 
log pθ(x, t) = log

[
Eqϕ(z|x)

[
pθ(x, t, z)

qϕ(z|x)

]]
≥ Eqϕ(z|x)

[
log

pθ(x, t, z)

qϕ(z|x)

]
, (13)

where the inequality comes from applying Jensen’s inequality. Then, this could be rearranged as:
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Eqϕ(z|x)

[
log

(
pθ(x, t, z)

qϕ(z|x)

)]

=

∫
qϕ(z|x) log

pθ1(x|z)pθ2(t|z)p(z)
qϕ(z|x)

dz

= −
∫

qϕ(z|x) log
qϕ(z|x)
p(z)

dz +

∫
qϕ(z|x) (log pθ1(x|z) + log pθ2(t|z)) dz

= −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x) [log pθ1(x|z) + log pθ2(t|z)]
= L(x, θ1, θ2, ϕ).

 (14)

After computing this ELBO, it can be seen that it is similar to the Vanilla VAE’s one (Eq. 8). The only difference 
lies in the reconstruction term, which is expressed differently to distinguish between the covariates and the time-
to-event explicitly. By using Eq. (11) and the reparameterization trick, the ELBO estimator is obtained, explicitly 
accounting for each dimension of the covariates vector:

 
L̂(x, θ1, θ2, ϕ) =

1

N

N∑
i=1

(
−DKL(qϕ(z|xi)||p(z)) + log pθ2(ti|gϕ(xi, ϵi)) +

L∑
l=1

log pθ1(x
l
i|gϕ(xi, ϵi))

)
. (15)

Three DNNs have been used in implementation, as specified in Fig. 4. Note that the decoder DNNs output the 
parameters of each distribution.

Divergence computation
SAVAE assumes that qϕ(z|x) follows a multidimensional Gaussian distribution defined by a vector of means µ, 
where each element is µj and by a diagonal covariance matrix C, where the main diagonal consists of variances 
σ2
j . It can be stated that:

 
−DKL(qϕ(z|x)||p(z)) =

1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ), (16)

where J is the dimension of the latent space z16. This means the Kullback-Leibler divergence from the ELBO 
equation 15 can be calculated analytically.

Time modeling
One significant challenge in handling survival data is the issue of censorship, which occurs when a patient has 
not yet experienced the event of interest. In such cases, the survival time remains unknown, resulting in partial 
or incomplete observations. Consequently, SA models must employ techniques capable of accommodating 
censored observations and uncensored ones to estimate relevant parameters reliably.

In our case, to account for censoring in survival data, we start from the time t reconstruction term from 
Eq. 15 for a single patient:

 L̂time(xi, θ2, ϕ) = log pθ2(ti|gϕ(xi, ϵi)). (17)

Taking into account the censoring indicator di:

Figure 4. SAVAE implementation using DNNs. One of them acts as an encoder, which has the covariates 
vector as input. The other two act as decoders, one for the covariates and the other one for the time.
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di =

{
0 if censored
1 if event experienced

, (18)

we could just use the information given by uncensored patients. However, we would waste information since 
we know that the censored patients have not experienced the event until time ti. Hence, considering Eq. (1) and 
following19, we model the time pdf as:

 pθ2(ti|gϕ(xi, ϵi)) = h(ti|gϕ(xi, ϵi))diS(ti|gϕ(xi, ϵi)). (19)

Therefore, the hazard function term is only considered when the event has been experienced, when the data 
are not censored. This way, SAVAE incorporates information from censored observations, providing consistent 
parameter estimates.

Regarding the distribution chosen for the time event, we have followed several publications such as8, where 
the Weibull distribution model is used. This distribution is two-parameter, with positive support, that is, 
p(t) = 0, ∀t < 0. The two scalar parameters of the distribution are λ and α, where λ > 0 controls the scale and 
α > 0 controls the shape as follows:

 




p(t;α, λ) = α
λ

�
t
λ

α−1
exp

�
−
�
t
λ

α
S(t;α, λ) = exp

(−( t
λ)

α
)

h(t;α, λ) = p(t;α,λ)
S(t;α,λ) =

α
λ

�
t
λ

α−1

. (20)

Although the Weibull distribution is our primary choice for modeling time-to-event data in SAVAE, it is crucial 
to highlight that other distributions are feasible as long as their hazard functions and CDFs can be analytically 
calculated. This versatility distinguishes SAVAE from other models. For example, the exponential distribution, 
a particular case of Weibull with α = 1, can represent constant hazard functions. Integrating alternative 
distributions, such as the exponential, into SAVAE is straightforward and only requires adjusting the terms in 
Eq. (19). The ability of SAVAE to predict the distribution parameters for each patient facilitates the calculation of 
various statistics, such as means, medians, and percentiles, providing flexibility beyond the models customized 
to a single distribution.

Marginal log-likelihood computation
Assigning distribution models to patient covariates in the reconstruction term is essential in SAVAE. This choice 
enables control over the resulting output variable distribution, but it also implies that the model approximates 
the chosen distribution even if the actual distribution differs. The third component of the ELBO (15) depends 
on the log-likelihood of the data, which for some representative distributions is:

• Gaussian distribution: Suitable for real-numbered variables (xli ∈ (−∞,+∞)), it has parameters 
µ ∈ (−∞,+∞) and σ ∈ (0,+∞), known for its symmetric nature. Its log-likelihood function is: 

 
log(p(xli;µ, σ)) = − log(σ

√
2π)− 1

2

(
xli − µ

σ

)2

. (21)

• 
• Bernoulli distribution: Applied to binary variables (xli ∈ {0, 1}), it has a single parameter β ∈ [0, 1], repre-

senting the probability of xli = 1.Its log-likelihood function is: 

 log(p(xli; β)) = xli log(β) + (1− xli) log(1− β). (22)

• 
• Categorical distribution: Models discrete variables with K possible values. We can think of xli as a categorical 

scalar random variable with K different values. Each possible outcome is assigned a probability θk (note that ∑K
k=1 θk = 1). The log-likelihood function can be computed based on the Probability Mass Function (PMF) 

following the expression: 

 
log(p(xli|θ1, θ2, . . . , θk)) = log

(
K∏
k=1

θ
I(xli=k)

k

)
, (23)

 where the indicator function means: 

 
I(xli = k) =

{
1 xli = k

0 xli ̸= k
. (24)
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• Recall that other desired distributions can be implemented in SAVAE if their log-likelihood is differentiable.

Results
This section proceeds with the experimental validation of SAVAE. First, we describe the survival data and the 
performance metrics used to validate the model. Then, we define the experimental setup (network architecture 
and training process). Finally, we analyze the different experiments carried out. The code can be found in https://
github.com/Patricia-A-Apellaniz/savae.

Survival data
In SA datasets, each patient contributes information about whether events of interest occurred during a study 
period, categorizing them as censored or uncensored and indicating their respective follow-up times. To 
evaluate SAVAE, we trained it in nine diverse disease datasets, including WHAS, SUPPORT, GBSG, FLCHAIN, 
NWTCO, METABRIC, PBC, STD, and PNEUMON. We followed pre-processing procedures similar to state-of-
the-art models, ensuring a fair evaluation of established benchmarks in SA.

The Worcester Heart Attack Study (WHAS)20 focuses on patients with acute myocardial infarction (AMI), 
providing clinical and demographic data. The Study to Understand Prognoses Outcomes and Risks of Treatment 
(SUPPORT)21 investigates seriously ill hospitalized adults and includes information on demographics, 
comorbidities, and physiological measurements. The Rotterdam & German Breast Cancer Study Group 
(GBSG)22,23 combines data from node-positive breast cancer patients and a chemotherapy trial. The FLCHAIN24 
dataset studies the relationship between mortality and serum immunoglobulin-free Light Chains, which are 
essential in hematological disorders. NWTCO25 studies Wilms tumor in children, Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC)26 explores breast cancer, PBC27 focuses on Primary 
Biliary Cholangitis, STD deals with sexually transmitted diseases, and PNEUMON examines infant pneumonia.

Table  1 offers a more comprehensive view of the temporal aspects and occurrences of events within the 
various datasets considered. It becomes evident that a deliberate selection of diverse disease datasets has been 
made, each characterized by distinct types and quantities of information. This diversity in the disease datasets 
showcases the model’s versatility. Significantly, the evaluation of the model has been carried out systematically 
in datasets that show varying proportions of censored samples and differing time-to-event ranges. This strategic 
approach aims to provide a broader perspective on how the model might perform when applied to other real-
world datasets.

Performance metrics
Recalling from the Survival Analysis Section, each dataset is described by D = (xi, ti, di)

N
i=1 triplets, where 

xi = x1i , . . . , x
L
i  is an L-dimensional vector of covariates, ti is the time to event and di ∈ {0, 1} is the censoring 

indicator.
When evaluating an SA model, the literature shows that the most commonly used metric is the C-index, 

which is the generalization of the ROC curve for all data. It measures the rank correlation between predicted risk 
and observed times. The concept arises from the intuition that a higher risk of an event occurring has a complete 
relation with a short time to the event. Therefore, a high number of correlating pairs, i.e., pairs of samples that 
meet this expectation, is decisive to say that the model has good predictive quality.

In this case, the time-dependent C-index28 will be used since the original one29 cannot reflect the possible 
changes in risk over time being only computed at the initial observation time. This C-index is defined as follows:

 
Cindex = P

(
F̂ (t|xi) > F̂ (t|xj)|di = 1, ti < tj, ti ≤ t

)
, (25)

where F̂ (t|xi) is the CDF estimated by the model at the time t given a set of covariates xi. The probability is 
estimated by comparing the relative risks pairwise, as already mentioned.

Dataset # Samples # Censored # Covariates Event time (mean, (min - max)) Censoring time (mean, (min - max))

WHAS 1638 948 (57.88%) 5 1045.42 (1 - 1999) days 1298.92 (371 - 1999) days

SUPPORT 9104 2904 (31.89%) 14 478.45 (3 - 2029) days 1060.22 (344 - 2029) days

GBSG 1546 965 (43.23%) 7 44.49 (0.26 - 87.36) months 65.15 (0.26 - 87.36) months

FLCHAIN 6524 4562 (69.92%) 8 3647.5 (0 - 5166) days 4296.74 (1 - 5166) days

NWTCO 4028 3457 (85.82%) 6 2276.68 (4 - 6209) days 2588.23 (4 - 6209) days

METABRIC 1980 854 (56.18%) 21 2944.81 (3 - 9193) days 3424.81 (21 - 9193) days

PBC 418 257 (61.48%) 17 63.93 (1.37 - 159.8) months 75.22 (17.77 - 159.83) months

STD 877 530 (60.43%) 21 369 (1 - 1519) days 420 (1 - 1519) days

PNEUMON 3470 3397 (97.9%) 13 9.84 (0.5 - 12) months 9.98 (0.5 - 12) months

Table 1. Data information from datasets used to train SAVAE model. We have analyzed nine different disease 
datasets with different proportions of samples, censored data, and varying survival times.  Additionally, each 
contains different patient information, be it genomic, clinical, or demographic data.
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Based on the prediction index proposed30,31, the second evaluation metric that has been used in this analysis: 
Brier Score (BS). It is essentially a square prediction error based on the Inverse Probability of Censoring 
Weighting (IPCW)32, a technique designed to recreate an unbiased scenario compensating for censored samples 
by giving more weight to samples with similar features that are not censored. So, given a time t the BS can be 
calculated as follows, with G(·) being the survival function corresponding to censoring (1/G(t) is the IPCW):

 
BS(t) =

1

N

N∑
i=1

[
(S(t|xi))2

G(ti)
· I(ti < t, di = 1) +

(1− S(t|xi))2

G(t)
· I(ti ≥ t)

]
. (26)

Since the C-index does not take into account the actual values of the predicted risk scores, BS can be used to 
assess calibration, i.e., if a model predicts a 10% risk of experiencing an event at time t, the observed frequency 
in the data should match this percentage for a well-calibrated model. On the other hand, it is also a measure of 
discrimination: whether a model can predict risk scores that allow us to determine the order of events correctly.

In this case, the evaluation is made using the integral form of BS since it does not depend on the selection of a 
specific time t:

 
IBS(tmax) =

1

tmax

∫ tmax

0

BS(t)dt. (27)

To statistically assess each model’s performance based on the global C-index, we propose the Mean Reciprocal 
Rank (MRR) as the third metric. It measures the effectiveness of a prediction by considering the rank of the first 
relevant C-index within a list composed of the C-indices obtained from each model. Formally, the Reciprocal 
Rank (RR) for a set of results for each model is the inverse of the position of the first pertinent result. For 
example, if the first relevant result is in position 1, its RR is 1; if it is in position 2, the RR is 0.5; if it is in position 
3, the RR is approximately 0.33, and so on. Thus, the MRR is the average of the RRs for a set of models:

 
MRR =

1

Q

Q∑
i=1

1

ranki
, (28)

where Q is the total number of models being compared, and ranki is the position of the first relevant C-index for 
the i− th model. Higher MRR values indicate that relevant results appear higher in the list.

Additionally, to add more statistical information on the performance of the models, we performed hypothesis 
testing to compare the mean C-index and IBS values of our model with those of the state-of-the-art models in 
multiple folds since we are using a five-fold cross-validation method. Specifically, we formulated a null hypothesis 
that assumes that the mean performance metrics of the state-of-the-art models are more significant than our 
model’s mean performance metrics. To assess the validity of this null hypothesis, we used p-values as a statistical 
measure. We established a significance threshold of 0.05, a common practice in hypothesis testing. When the 
obtained p-value for each case fell below this threshold, we rejected the null hypothesis. In practical terms, this 
indicated that our model exhibited superior performance compared to the other models. On the contrary, if the 
p-value exceeded 0.05, we concluded that there were no statistically significant differences between our model 
and the others. It is important to note that this approach considered variations in results across different folds, 
providing a more comprehensive assessment of model performance beyond just the average results. Given the 
multiple hypothesis tests performed, we acknowledge that the Family-Wise Error Rate (FWER)33 increases as 
the number of tests grows, as established in the literature34,35. This increase in FWER raises the risk of Type I 
errors, where false positives may occur due to the accumulation of multiple tests. To address this issue, we have 
applied an appropriate method to control this inflation, the Holm adjustment36. The results of these adjustments 
can be seen in the Supplementary Information, ensuring the robustness of our findings.

Finally, we performed a sensitivity analysis to assess the robustness of our model and to understand how 
variations in the input data influence its predictions. This analysis provides insights into the impact of individual 
features on the model’s performance and contributes to a better understanding of the model’s decision-making 
process. Furthermore, we analyzed the computational complexity of our model by comparing its runtime with 
state-of-the-art models. This analysis considers the time required for training and validating SAVAE across 
multiple datasets, providing insights into its efficiency relative to other methods. The findings illustrate that while 
SAVAE’s computational demands are higher due to its complex architecture, they remain manageable, making 
it suitable for practical applications. The detailed results of these analyses can be found in the Supplementary 
Information.

Experimental setting
The implementation of SAVAE was executed using the PyTorch framework37. As defined in Section ELBO 
derivation , three different DNNs were trained, consisting of one encoder and two decoders. These decoders were 
designed to infer covariates and time parameters, respectively. The Gaussian encoder exhibits a straightforward 
architecture characterized by a single hidden linear layer featuring a Rectified Linear Unit (ReLU) activation 
function and an output linear layer with hyperbolic tangent activation. The input to this encoder consists 
of the covariate vectors from the training dataset, while the output generates a Gaussian latent space. The 
dimensionality of this latent space has been fixed to 5. The generated latent space is input for both decoders, 
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each featuring two linear layers. The first layer employs a ReLU activation function and incorporates a dropout 
rate of 20%. However, the final layer of the decoders employs different activation functions based on the specified 
distribution, thereby tailoring the output to the parameters of the respective covariate distribution. Furthermore, 
the number of neurons in each hidden layer was also fixed at 50. The training process involved 3,000 epochs with 
a batch size of 64 samples while incorporating an Early Stop mechanism in case of an insufficient reduction in 
validation loss.

To better understand the behavior of the SAVAE model and to justify the selection of the defined 
hyperparameters, we conducted an ablation study. This study analyzed how changes in key hyperparameters, 
such as latent space dimensionality, number of neurons, and dropout rates, affect model performance. We 
could identify settings that balance performance and computational efficiency by systematically varying these 
parameters. The results of this ablation study are provided in the Supplementary Information, offering further 
insights into the rationale behind our chosen hyperparameter configuration.

We used a five-fold cross-validation technique to evaluate the results while ensuring their robustness against 
data partitioning. This method was applied to our model and the state-of-the-art models used for performance 
comparison and result evaluation, including Cox-PH, DeepHit, and DeepSurv. Moreover, due to the inherent 
sensitivity of VAE architectures to initial conditions, we conducted training using up to 10 different random 
seeds. Subsequently, the C-index was averaged among the three best-performing seeds. The average performance 
of the three seeds provides a representative and sufficient evaluation. Lastly, note that the three state-of-the-art 
models have been implemented using the Pycox package38 and the different metrics used for validation, C-index, 
and IBS. The MRR has been calculated manually, while the p-value has been obtained using the SciPy39 package.

Experiments and results
In this section, we present a comprehensive assessment of the performance of our proposed model, SAVAE, 
compared to three well-established state-of-the-art models. Cox-PH, DeepSurv, and DeepHit. Across multiple 
datasets encompassing a diverse range of medical and clinical scenarios, we conducted extensive experiments to 
assess the performance of these models. The key focus was evaluating their ability to predict survival outcomes, 
considering censored and uncensored data points.

As the initial set of results, we focus on comparing the performance and results in terms of the C-index. 
Table 2 provides a comprehensive view of how our model is completely comparable to the state-of-the-art models 
regarding the average C-index. Additionally, note that all intervals for the minimum and maximum values across 
various folds overlap, indicating consistent performance across different data subsets. The results displayed in 
the table reveal that our model consistently achieves a higher MRR compared to others across multiple datasets, 
showcasing its superiority in many cases regarding the average C-index. However, it is essential to acknowledge 
that the C-index results among the different models are generally similar, highlighting the competitiveness of 
our model within the field. Furthermore, it is important to note that the broad intervals are primarily attributed 
to the limited sample sizes commonly found in medical databases, a characteristic that poses challenges when 
assessing model performance. To address this issue, we employed cross-validation, as previously mentioned, 
ensuring that our model’s performance is robust and reliable. In summary, while our model demonstrates its 
strength by outperforming other models in terms of MRR and achieving competitive average C-index scores, 
the overall similarity in C-index results underscores its robustness and suitability for various medical datasets.

In our validation process, we performed a statistical analysis using p-values to determine whether our model 
exhibited superior performance in terms of the C-index. To carry out this analysis, we compared the average 
C-index of our model with the mean C-index values obtained from multiple folds for each state-of-the-art 
model. The objective was to determine whether the performance of our model was statistically better than the 
alternative models. We established a significance threshold of 0.05, a common practice in hypothesis testing. 
Our findings in Table 3 reveal several instances in which our model outperformed the state-of-the-art models, 
as evidenced by p-values below the 0.05 threshold. These results highlight the effectiveness and competitiveness 

Dataset

COXPH DEEPSURV DEEPHIT SAVAE

Avg. C-index (Min, max) Avg. C-index (Min, max) Avg. C-index (Min, max) Avg. C-index (Min, max)

WHAS 0.74 (0.66, 0.81) 0.78 (0.57, 0.88) 0.89 (0.82, 0.95) 0.74 (0.67, 0.80)

SUPPORT 0.58 (0.39, 0.78) 0.57 (0.37, 0.82) 0.55 (0.37, 0.73) 0.61 (0.40, 0.86)

GBSG 0.66 (0.61, 0.71) 0.67 (0.58, 0.73) 0.66 (0.58, 0.72) 0.67 (0.62, 0.72)

FLCHAIN 0.69 (0.50, 0.80) 0.67 (0.55, 0.80) 0.78 (0.73, 0.82) 0.79 (0.75, 0.83)

NWTCO 0.71 (0.64, 0.79) 0.70 (0.60, 0.79) 0.72 (0.66, 0.78) 0.71 (0.63, 0.79)

METABRIC 0.59 (0.52, 0.68) 0.61 (0.52, 0.69) 0.56 (0.46, 0.64) 0.61 (0.53, 0.70)

PBC 0.81 (0.64, 0.94) 0.80 (0.65, 0.92) 0.80 (0.62, 0.93) 0.81 (0.62, 0.95)

STD 0.60 (0.47, 0.72) 0.60 (0.49, 0.71) 0.59 (0.50, 0.68) 0.59 (0.46, 0.71)

PNEUMON 0.62 (0.54, 0.70) 0.65 (0.49, 0.80) 0.67 (0.57, 0.77) 0.65 (0.53, 0.77)

MRR 0.56 0.60 0.62 0.76

Table 2. C-index average results across different folds for each state-of-the-art model.  Average C-index results 
across the three best seeds for each fold in SAVAE performance. MRR values are given to rank each model 
attending only to the mean value. Bold highlights the best mean. For C-index and MRR, higher is better
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of our proposed approach. This comprehensive analysis, which considers the diverse C-index values in multiple 
folds, provides a robust evaluation of the model’s performance, extending beyond simple average comparisons.

Our validation through IBS values (Tables 4 and 5) yielded conclusions that closely parallel those derived 
from the C-index analysis. Overall, it is essential to note that our model’s IBS results align closely with the 
state-of-the-art models, demonstrating comparable performance. However, our proposed model consistently 
demonstrated competitiveness and emerged as the top performer in the various datasets used in our study. This 
convergence of results across different evaluation metrics reinforces the robustness and effectiveness of our novel 
approach. While our model maintains a competitive edge within the context of the state-of-the-art models, 
further solidifying its potential and utility in the field of SA, it also stands out as a top-performing solution.

It is essential to recall that, like DeepSurv and Cox-PH, SAVAE is a parametric model. However, unlike these 
models, we do not limit ourselves to the exponential distribution to model survival time. Our approach allows 
for the use of any differentiable distribution. Unlike DeepHit, which trains the model using loss functions, our 
framework uses likelihood functions, providing considerable flexibility. We specifically assumed the Weibull 
distribution for these experiments, deriving the shape parameter α and the scale parameter λ for each patient, 
although any differentiable distribution could have been used. This ability enables us to extract vital statistical 
information for personalized patient treatments, offering a significant advantage in medical applications.

Conclusion
In this paper, we have successfully described an SA model (SAVAE), which stands out for its ability to avoid 
assumptions that can limit performance in real-world scenarios. It is a model based on VAEs in charge of 
estimating continuous or discrete survival times, first, modeling complex non-linear relations among covariates 
due to the use of highly expressive DNNs, and second, taking advantage of a combination of loss functions that 
capture the censoring inherent to survival data. Our model demonstrates efficiency compared to various state-
of-the-art models, namely Cox-PH, DeepSurv, and DeepHit, because of its freedom from assumptions related 

Model WHAS SUPPORT GBSG FLCHAIN NWTCO METABRIC PBC STD PNEUMON

COXPH 1.000 0.470 0.998 1.000 0.000 0.995 0.888 0.575 0.000

DEEPSURV 0.000 0.341 0.561 1.000 0.000 1.000 0.868 0.746 0.000

DEEPHIT 0.000 0.950 1.000 1.000 0.000 1.000 1.000 0.995 0.000

Table 5. p-values obtained to determine whether the mean of SAVAE is greater than the state-of-the-art folds 
IBS values. Bold Implies a p-value below our threshold, 0.05. This means that SAVAE is significantly better 
than the other models

 

Dataset

COXPH DEEPSURV DEEPHIT SAVAE

Avg. IBS (Min, max) Avg. IBS (Min, max) Avg. IBS (Min, max) Avg. IBS (Min, max)

WHAS 0.171 (0.109, 0.279) 0.134 (0.067, 0.260) 0.120 (0.067, 0.175) 0.159 (0.114, 0.205)

SUPPORT 0.208 (0.074, 0.374) 0.205 (0.057, 0.363) 0.219 (0.086, 0.370) 0.208 (0.063, 0.385)

GBSG 0.182 (0.142, 0.223) 0.179 (0.137, 0.228) 0.208 (0.168, 0.248) 0.179 (0.139, 0.222)

FLCHAIN 0.137 (0.089, 0.185) 0.142 (0.088, 0.186) 0.121 (0.098, 0.145)  0.102 (0.078, 0.124)

NWTCO 0.107 (0.080, 0.138) 0.109 (0.082, 0.149) 0.111 (0.083, 0.147) 0.127 (0.101, 0.152)

METABRIC 0.186 (0.137, 0.233) 0.191 (0.143, 0.244) 0.214 (0.153, 0.275) 0.180 (0.127, 0.236)

PBC 0.147 (0.043, 0.281) 0.146 (0.046, 0.268) 0.195 (0.087, 0.340) 0.138 (0.034, 0.267)

STD 0.210 (0.121, 0.302) 0.212 (0.123, 0.305) 0.224 (0.142, 0.315) 0.209 (0.121, 0.307)

PNEUMON 0.016 (0.004, 0.031) 0.017 (0.004, 0.034)  0.016 (0.004, 0.031) 0.021 (0.007, 0.037)

MRR 0.55 0.55 0.47 0.71

Table 4. IBS average results across different folds for each state-of-the-art model.  Average IBS results in 
the three best seeds for each fold in SAVAE performance. MRR values are given to rank each model. Bold 
highlights the best mean. For IBS lower is better and for MRR, higher is better

 

Model WHAS SUPPORT GBSG FLCHAIN NWTCO METABRIC PBC STD PNEUMON

COXPH 0.579 0.058 0.000 0.000 0.268 0.003 0.450 0.887 0.003

DEEPSURV 1.0 0.020 0.149 0.000 0.135 0.549 0.280 0.927 0.382

DEEPHIT 1.0 0.000 0.000 0.001 0.644 0.000 0.228 0.727 0.935

Table 3. p-values obtained to determine whether the mean of SAVAE is greater than the state-of-the-art folds 
C-indexes. Bold Implies a p-value below our threshold, 0.05. This means that SAVAE is significantly better than 
the other models
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to linearity and proportional hazards. In contrast to DeepHit, which directly learns the C-Index metric, we 
train using standard likelihood techniques. Note that this means that our approach is more flexible, as it allows 
using many different distributions to model the data, and the performance is competitive, as it performs well in 
C-Index and IBS, instilling confidence in its capabilities.

Furthermore, the adaptability of our model is a notable strength. While we have assumed specific distributions 
for both survival times and covariates in our experiments, SAVAE’s versatility extends to accommodating any 
other parametric distribution, as long as their CDF and hazard function are differentiable, making it a scalable 
tool. Notably, our model can efficiently handle censoring to mitigate bias, introducing a novel improvement in 
results. However, it is essential to acknowledge that the model’s reliance on specific parametric distributions 
could pose limitations. If the chosen distribution does not align well with the underlying data distribution, the 
model may perform suboptimally. This is a known challenge in parametric survival analysis models, and further 
research could explore more flexible non-parametric or semi-parametric approaches to address this limitation40.

This work raises several attractive lines for the future. Since the parameters estimated by SAVAE are subject 
to statistical uncertainty, we propose as future work using Monte Carlo sampling from the latent space to 
derive confidence intervals for survival predictions, providing more robust patient-wise survival curves with 
associated margins of error. An additional advantage lies in our model’s architecture, where time and covariates 
are reconstructed from latent space information. This feature opens opportunities for its utility to be expanded 
to various tasks that have been developed using VAEs, including clustering41, imputation of missing data42, 
and data augmentation43 by the generation of synthetic patients. Thus, this tool has great potential and can be 
exploited in future work to have different functionalities even in the world of Federated Learning44,45.

In summary, SAVAE emerges as a versatile and robust SA model, surpassing state-of-the-art methods 
while offering extensibility to a broader range of healthcare applications. It presents a compelling solution for 
healthcare professionals seeking enhanced performance and adaptability in SA tasks.

Data availability
All datasets used in this research are publicly available and can be found in the repository https://github.com/
Patricia-A-Apellaniz/savae. Through the provided link, readers can also reproduce the results of the current 
study, ensuring transparency and facilitating further research in this area.
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