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I. INTRODUCTION

The development of marine robotics is emerging as a 
interdisciplinary field that integrates various disciplines, 
including engineering, computer science, and marine 
sciences. This field focuses on the advancement and 
deployment of both autonomous and remotely operated 
underwater drones, which have become essential tools in a 
variety of marine applications.  

Despite challenges like limited communication, positional 
uncertainty, and autonomy issues, Unmanned Underwater 
Vehicles (UUVs) have key advantages over manned vehicles: 
they are cost-effective, compact, highly agile, and safe for use 
in hazardous conditions as they don’t require human operators 
[1]. These traits make UUVs essential across marine science 
fields, enabling applications in maintenance missions, , as 

This article introduces NauSim, an open-source simulation 

tool designed for developing control algorithms for Unmanned 

Underwater Vehicle (UUVs). NauSim is targeted at researchers 

and developers in underwater robotics, with a focus on Machine 

Learning (ML) based applications. The simulation tool is made 

in Python, acknowledging its prominence in ML research.  Key 

design principles include a clean, flexible and modular 

architecture which can be integrated easily with existing control 

paradigms, thus allowing for the configuration of simulations, 

the creation of new environments and the addition of sensor 

interfaces and control models. Furthermore, NauSim 

emphasizes simplicity in deploying control algorithms from the 

simulator to target hardware. The article presents three use 

cases that illustrate the diverse applications of the simulator. 

The first case study is based on swarm robotics, the second 

showcases the development of advanced sensor simulations, and 

the third demonstrates the deployment of a controller developed 

in NauSim in a "real world" scenario. 
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seen in [2] and [3] and mapping [4]. UUVs are frequently 
deployed in reconnaissance and data collection tasks, such as 
coral reef monitoring [5] and cave exploration [6]. 
Additionally, in aquaculture, fish farm monitoring, discussed 
in [7] and [8], benefits from these drones by providing 
continuous surveillance and management of fish stocks. Also, 
underwater drones are employed to monitor and ensure the 
health of aquatic environments, detecting pollutants and other 
possible harmful substance [9]. 

Despite the growing importance of underwater robotics, 
the research and development of these technologies are 
fraught with challenges, mainly due to their dependence on 
aquatic environments. Any project in this area requires access 
to suitable bodies of water, such as rivers, seas, or lakes. These 
environments present logistical and safety issues, with 
unpredictable conditions that complicate test repetition and 
compromised equipment security. While water tanks offer 
controlled spaces, they are expensive, limited in size, and may 
not replicate natural conditions. Underwater testing is further 
hindered by limited visibility and monitoring difficulties, as 
well as risks of equipment loss from technical or 
environmental failures, making experimentation a cautious, 
time-intensive process. 

These challenges demand the use of simulators for the 
design and preliminary testing of vehicle behavior. Simulators 
mitigate the dependence on access to a water environment 
prior to the deployment phase and allow observation of 
underwater tasks when direct observation of the system is not 
feasible. This has led to numerous developments. Among the 
most recognized are the UWSim software [10], and the 
Gazebo UUV Simulator extension [11],  although these have 
not been updated for some time. With the aim of utilizing 
well-known platforms, there are packages that integrate 
simulation functionalities within MATLAB™ and 
Simulink™ [12][13]. In recent years, the trend has been 
towards providing visual fidelity by leveraging the capabilities 
of commercial 3D engines, as can be seen  in HoloOcean [14] 
and UNav-Sim [15], albeit at the cost of making these 
simulators somewhat dependent on the structure and 
limitations of the engines.  

Ultimately, these developments are frequently associated 
with specific projects, and their features don’t always meet the 
broader needs of different applications, especially as UUV 
technology and machine learning-based control models 
advance rapidly. This growth demands a versatile, scalable 
simulation platform that supports multi-vehicle interaction, 
such as those in underwater swarm robotics [16]. This article 
presents NauSim, an open-source simulation tool designed to 
address these needs. Key features of NauSim include: 

• It is a software designed with the objective of 
developing control algorithms for autonomous 
underwater vehicles, either individually or as group 
behavior in UUVs, with a focus on Machine Learning 
(ML) applications. Its architecture is designed to be 
clean, flexible, and modular. 

• Easily integrated with different existing control 
paradigms. Control algorithms are external and 
Taking into account the importance that Python has 
acquired as a reference language (see [17] or [18] ) in 
ML, the simulator has been developed in this 
language. 

• It  provides realistic experiences for sensing, visual, 
and physical interaction models, ensuring simulation 
results are applicable to real-world environments. 

II. ARCHITECTURE 

The NauSim architecture is built on the sensor-controller-
actuator model, a core framework in drone operation that 
divides tasks into three layers: sensors (data collection), 
controllers (decision-making), and actuators (action 
execution). Sensors gather environmental data (e.g., 
temperature, pressure, visual information), which controllers 
then process to determine actions, like movement 
adjustments, using pre-programmed algorithms or AI. The 
actuators carry out these commands, translating them into 
physical changes within the simulated environment through a 
physical model. A diagram illustrating the general 
organization of this development is shown in Fig. 1. 

 
Fig.1. A diagram showing a schematic representation of the NauSim simulator architecture. 
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This model’s design enables real-time feedback and 
adaptive responses to environmental changes, enhancing the 
drone's operational efficiency and reliability. Its modular 
structure also supports easy upgrades and replacements of 
individual components without a full system redesign, 
allowing for flexible configurations and new scenarios. The 
architecture also enables a seamless transition between 
simulation and real-world applications, where virtual 
components can be replaced by actual ones with minimal 
adjustments, facilitating the practical deployment of tested 
algorithms. 

A. Simulated enviroment 

A robotics simulator, regardless of its specific 
functionalities, is typically organized around a virtual space 
that represents the real world, to provide developers with a 
controlled, repeatable environment for testing and refining 
robotic systems. NauSim uses Panda3D [19]  as its 3D engine, 
an open-source platform originally developed by Disney 
Interactive for virtual reality applications. 

Developed by Disney Interactive in 2002 for its theme 
park virtual reality division, Panda3D  (originally ‘Platform 
Agnostic Networked Display Architecture’, although its use 
as an acronym has been lost over time) was released under 
BSD license in 2008, and has since been maintained and 
extended by an active community of users. Panda3D offers a 
complete set of functionalities, is fully cross-platform, and 
features an interface fully developed in Python. 

Panda3D is a scene graph-based engine. A scene graph is 
a general data structure commonly used in vector graphics 
editing applications and 3D engines. It imposes a hierarchy on 
the logical and often spatial representation of a graphical 
scene, organizing it as a collection of nodes forming a tree 
structure. A node may have multiple children but only one 
parent. This hierarchical structure is well-suited to the abstract 
definition of space and the entities forming the simulated 
environment. For instance, a drone within the simulator can 
be 'loaded' with multiple sensors that can move or pivot 
relative to the parent object (the drone itself) while 
maintaining actualizing synchronization with the parent 
object. This level of control makes it easy to simulate complex 
configurations where each component must react accurately 
to movements and positional changes in real time. 

The simulator is not limited to any specific scenario editor, 
providing flexibility in creating and defining virtual 
environments. Virtual scenarios are defined using glTF (GL 
Transmission Format) files, which are commonly supported 
by most 3D modeling software. These glTF format generally 
consist on a text file (.gltf) using a json structure, that 
describes  the scene, along with separate files containing the 
geometry and texture data of the objects. This format is 
extensible through tags, allowing developers to define specific 
functions for the simulator, e.g. they can include simplified 
geometry for collision detection, add invisible 'walls' to limit 
the simulation area, or import geometry based on height maps 
directly into the 3D engine. Some examples of scenarios 
created for NauSim can be seen in Fig. 2. 

B. Sensor/contoller/actuator model 

Sensors are the initial layer of a drone’s architecture, 
responsible for gathering crucial environmental data that 
informs the drone’s decision-making processes during 
autonomous missions and training. This includes both real-
world sensors—such as GPS units, accelerometers, and 
cameras—and virtual sensors designed for simulation and 
machine learning applications. To accurately simulate real 
conditions on a drone, sensors operate in a separate thread 
where the update rate of each sensor is defined independently. 
This approach reflects the variability in how different sensors 
collect data. For example, a GPS unit might update its position 
data once per second, while an accelerometer might provide 
data hundreds of times per second. This  allows for more 
accurate modeling of real-world scenarios Also, running the 
sensors in a separate thread, the simulator can minimize the 
impact of computationally expensive sensor simulations on 
overall performance.  

Sensors are defined as independent components and can 
be reused in new simulated robot models. There is no 
distinction between ‘simulated’ and ‘real’ sensors (defined as 
an ‘interface’ for accessing data from the corresponding 
hardware’), which makes it possible, once an ML model has 
been trained, to switch transparently between the sensors used 
in the simulator for training and their real counterparts. 

.The controller layer acts as the drone's brain, processing 
input data from sensors to determine the drone's state and plan 
necessary actions, including navigation and obstacle 
avoidance. It abstracts the interaction with the environment 
through actuators, allowing the same controller software to 
function in both simulated and real-world scenarios. 
Controllers can vary from simple, ad hoc solutions to complex 
algorithms. The simulator has been designed in such a way 

 
 

Fig.2.  Examples of different scenes developed for NauSim, as they 

appear in the simulator. 
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that the control functionalities of a drone can be extended 
through the deployment of a hierarchy of controllers. The role 
of a parent controller is to select which child controller is 
deployed at a given moment; this allows, for example, 
seamless transitions between manual and autonomous control. 

Actuators form the final layer, executing commands from 
the controller to physically alter the drone’s position and 
orientation. They include motors and servos that respond to 
controller directives. In simulations, actuators replicate real-
world behaviors by converting commands into values that the 
simulation engine can process. In real applications, actuator 
interfaces connect directly to the drone’s hardware, often 
managed through external control libraries like MAVLink 
[20] and ROS2 [21], ensuring effective integration into the 
drone's operational framework. 

C. Physics engine 

Interaction with the virtual world in robotic simulations 
relies on physical models that replicate the behaviors and 
dynamics of real-world objects. These models translate 
commands from virtual actuators into changes in the robot's 
position, orientation, and other physical attributes within the 
simulated environment. For example, when a virtual actuator 
adjusts motor power levels, the physical model calculates the 
resulting movement based on principles like Newtonian 
mechanics and inertia. NauSim allows for the development of 
various robot models with different complexity levels, as long 
as they can be considered  a description of the motion of rigid 
bodies underwater. As an alternative, Panda3D integrates an 
interface with two independent external physical models; 
Open Dynamics Engine (ODE) [22] and  Bullet [23]. 

III. USE CASES 

The development of this simulator is framed within the 
NAUTILUS project (Swarms of uNderwAter aUTonomous 
vehIcLes gUided by artificial intelligence: ItS time has come). 
This project aims to develop swarms of small, low-cost 
autonomous vehicles responsible for managing coordinated 
activities, supporting research in the area, providing services 
such as positioning, data collection, and battery recharging for 
fixed or mobile nodes deployed without direct human 
intervention. The swarm will act as a single, decentralized 

system where collective information will be disseminated 
among the individuals. The swarm will autonomously decide 
where to deploy each individual and adapt its spatial coverage 
based on the environmental state and its needs. 

A. BlueROV2 

As a vehicle, NAUTILUS uses the popular BlueROV2 
[25] in its heavy configuration (Fig. 3). This version of the 
ROV features four thrusters for horizontal locomotion and 
four thrusters for vertical locomotion, allowing six degrees of 
freedom in maneuvers. The vehicle is controlled by a 
Raspberry Pi and integrates an inertial measurement unit 
(IMU), a magnetometer, and a pressure sensor on an external 
expansion board (the "Navigator"). The vehicle's software is 
distributed as open source, allowing it to work with a wide 
variety of hardware, such as sonar sensors, cameras, and an 
inertial navigation system. Moreover, although the 
BlueROV2 is a tethered underwater vehicle, the use of open-
source code opens the possibility of extending the vehicle's 
control software to convert it into a UUV. 

As an extension to the basic sensor configuration, each 
vehicle has been equipped with an echo-sounding device and 
a mechanical scanning sonar for navigation and image 
acquisition. Developing realistic models of these sensors is 
part of the simulator's development. 

For the physical model simulation of this vehicle a version 
of the mathematical simulation models of BlueROV2 
dynamics developed in [26] has been implemented. The 
model developed use the associated measured maneuvering 
coefficients used presented in that, pending specific 
experimental validation for the NAUTILUS vehicles. A full 
discussion of the physical model is beyond the scope of this 
article, particularly in view of the general model's complexity.  

B. Use case: Flocking 

One of the first controllers implemented in NauSim  was a 
PID controller based on virtual GPS positioning. A 
Proportional-Integral-Derivative (PID) controller is a control 
mechanism for dynamic feedback systems used in industrial 
and engineering applications. It is designed to minimize the 
error between the desired and actual state by adjusting the 
control inputs through three types of actions: the proportional 
component, which adjusts the output proportionally to the 
current error; the integral component, which takes into 
account the accumulation of past errors to eliminate steady-
state deviations; and the derivative component, which predicts 
accumulation of past errors to eliminate steady-state 
deviations; and the derivative component, which predicts 
future errors based on the rate of change.  

Using this PID controller, a scenario is proposed where 
one of the drones acts as a leader and six others as followers. 
The leader drone is configured to move, by means of a PID 
controller, along a predetermined route, defined by a series of 
points. In the rest of the drones, over the PID controller a 
modification to the classical flocking rules is implemented, in 
order to maintain a formation. These rules include maintaining 
a safe distance to avoid collisions, aligning their direction and 
speed with the leader and nearby drones, and staying close to 
the center of the group. As the leader drone navigates the 
terrain, the followers dynamically adjust their positions to 
create a cohesive and synchronized flight pattern. Results of 
running this scenario can be seen in Fig. 4. 

 
 

Fig. 3. Photography of the BlueROV2 in its heavy configuration. 
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Of course, this scenario is not intended to be realistic, since 
its execution depends on two of the major problems faced by 
AUVs, communication and positioning. However, by 
modifying the transfer rate, noise and accuracy of the 
communication module and the virtual positioning sensors, it 
is possible to have a baseline to assess the performance needs, 
robustness and reliability of the system under various 
conditions. 

C. Use case: Sonar simulation 

While a basic approach is relatively simple to implement, 
the complexities associated with sub-acoustic acoustic 
phenomena such as reflections, propagation characteristics 
and scattering make a realistic implementation a very complex 
task, especially in the area of high-frequency sonar with which 
AUVs are often equipped. However, in an autonomous drone 
the sonar is one of its main windows to the world, so a realistic 
simulation of this contributes directly to the development of 
these vehicles and associated marine technologies, providing 

a tool with which to virtually test these sonar systems in 
various navigation and data acquisition scenarios. 

Thus, based on the method presented in [25], a sonar 
model based on Screen Space Reflections (SSR) has been 
developed. SSR is a method commonly used in the generation 
of real-time 3D graphics to compute realistic reflections in the 
environment. SSR approximates reflections by tracing rays in 
screen space, rather than in the entire 3D scene, which 
significantly reduces the computational burden. By capturing 
the interactions of sound waves with objects and surfaces in 
the screen space, the use of SSR can effectively represent 
realistic reflections and refractions of sonar signals, as well as 
alternative paths and secondary reflections, all in real time. A 
comparison of the results with real sampling can be seen in 
Fig. 5. 

Using  this simulation and as a form of validation, a simple 
algorithm has been developed to determine the distance of 
vertical walls and prominent obstacles using the signal from a 
mechanical sonar. The sonar return signal is treated as a 
numerical array, and the most prominent area of the signal is 
identified as the largest subarray sum in the signal, where the 
subarrays are represented by fixed windows, once the noise 
has been removed.  

The vehicle was submerged in a capsule-shaped saltwater 
pool, measuring 1.64 meters in length, 1.52 meters in width, 
and 65 centimeters in depth. The pool had hemispherical ends 
with a radius of 76 centimeters. A two meters range, 360-
degree sonar cycle was performed, resulting in 400 samples 
(the resolution  of mechanical of the sonar is in gradians). This 
experiment was repeated using a virtual model of the pool in 
the simulator. The results can be seen in  Fig. 6.   

Compared to the distances to the pool perimeter, the 
results obtained using the real sonar signal have a root mean 
square error of 0.0118, with the mean distance to the perimeter 
in the 400 samples series being 7.98 centimeters. The results 
for the simulated sonar signal exhibit a mean square error of 
0.007, with a mean distance to the perimeter of 6.42 
centimeters. The mean difference between the real and virtual 
results is 12.1 centimeters. Overall, and considering  the 

 
 
Fig.4. Flocking simulation using NauSim. The trajectories followed by 

each drone are shown as dotted lines. The leader's trajectory is shown 

in light green. 
 

 
 
Fig. 5. Sonar simulation compared to real data. The left side shows the virtual scenario together with the real data (video and sonar overlay). On the 
right side the sonar simulation results are shown. Real and simulated results are visualized using PingViewer™. 
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limitations of sonar and the discrepancies that may exist 
between the virtual model and the real world, the differences 
between the real and simulated results can be considered to be 
within the range of distance resolution expected for the 
method. 

D. Use case: Wall-tracking 

We propose the design of a wall-tracking controller, where 
the output will be deployed on the target vehicle. The test 
scenario is a swimming pool, so we can assume flat walls and 
right angles. The wall tracker acts as a state machine where 
the vehicle first orients itself towards the first structure it 
encounters, approaches a predetermined distance from it and 
starts moving parallel to the structure, maintaining the 
distance. If it detects a blockage in its path, it rotates until the 
obstacle disappears and starts again in the initial state. If it 
misses the wall or is unable to maintain its orientation, the 
vehicle starts again in the initial state. 

The main constraints in this scenario are the result of the 
limitations of mechanical sonar, which is used to detect walls. 
A mechanical sonar needs to physically move the head to 
sample at a given angle; to cover the necessary arc of view for 
this controller is required so that there will only be one 
complete update of the world around the vehicle every 2 
seconds. Taking into account the maximum speed of the drone 
this means more than 2 meters of distance travelled. 
Moreover, the nature of sonar makes it difficult to differentiate 
between giving a distance to an obstacle if other sources of 
reflections are present, such as the ground or the air-water 
boundary.  Having straight walls makes the task easier, but the 
detecting algorithm (see previous subsection) has to be 

properly validated. Therefore, the sonar simulation presented 
in the previous section has been used in the validation of the 
controller, modified to take into account the delay imposed by 
the hardware. 

The controller has been developed entirely using NauSim. 
As a consequence of the modular nature of the simulator, the 
deployment of this controller in a non-simulated environment 
has only required changes to the configuration file to replace 
the simulated sonar sensor and the virtual actuator with their 
real counterparts, as both virtual and real modules share the 
same interface.  

Figure 7 illustrates a comparison between the route 
traversed by a simulated vehicle in a virtual representation of 
the test setting and an approximation of the route followed by 
the real vehicle, utilizing the same controller. Although a 
direct comparison is not feasible due to the discrepancies in 
the initial conditions, it can be seen that the controller's 
behavior is analogous in both environments. Therefore, the 
obtained trajectories are comparable; the vehicle moves 
within the selected distance ranges without drifting out of the 
sonar range or colliding with the wall. Upon detecting a 
change of orientation, in both cases, it reorients itself 
successfully and continues to track the wall in the new 
direction. Based on these results, it can be concluded that the 
deployment of a simulator-developed controller on the target 
hardware was a success. 

IV. CONCLUSIONS 

In this work, we present NauSim, a simulation 
environment designed to provide researchers and students 
with a platform for testing, developing, and verifying sensor 
configurations and control algorithms in underwater vehicles, 
with a particular focus on machine learning (ML)-based 
controllers. NauSim accommodates a variety of use cases, 
including rapid virtual prototyping, design testing, and control 
algorithm development for both individual robots and large 
heterogeneous swarms. Section III highlights several real-
world applications of the simulator. The first case study 
emphasizes swarm robotics, demonstrating NauSim's 
capability to simulate the collective operation of multiple 
robots. The second example showcases the simulator's ability 
to support complex sensor simulations, while the third case 
study illustrates the practical application of a controller 
developed using NauSim in a real-world context, 
underscoring the simulator's role as a bridge between virtual 
models and target hardware. 

It is important to note that NauSim is still under 
development (currently in revision 62). Future work will focus 
on expanding the range of sensors, actuators, and simulation 
control tools to enhance realism and visual appeal. Plans 
include introducing a realistic underwater camera view, 
increasing the variety of simulated sonars, and extending the 
communication module to reflect specific underwater 
communication devices. To improve usability and facilitate 
general use of the simulator, a series of example scenes will 
be added to showcase its capabilities. Additionally, as 
development progresses, comprehensive documentation will 
be created to detail the features that have been implemented. 
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Fig. 7. Comparison between the route traversed by a simulated vehicle (red dotted line) in a virtual representation of the test environment and an 

approximation of the route followed by the real vehicle (black dotted line), using the same controller. Additionally, the figure includes frames from a 

test conducted in a real-world environment, situated at a location approximating the route of the real vehicle. 

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore.  Restrictions apply. 


