
Exploring UUV Development with NauSim: An

Open-Source Simulation Platform

César Antonio Ortiz-Toro

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

ca.ortiz@upm.es

Dictino Chaos-García

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

dchaos@dia.uned.es

 Juan Manuel Vidal-Pérez

Escuela de Ingenierías Marinas,

Náutica y Radioelectrónica

UCA

Cádiz, Spain

juan.vidal@uca.es

 José Jesús Fraile-Ardanuy

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

jesus.fraile.ardanuy@upm.es

 Joaquín Aranda-Almansa

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

jaranda@dia.uned.es

 Luis Magdalena-Layos

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

luis.magdalena@upm.es

Cristina Cerrada-Collado,

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

criscerrada@dia.uned.es

 Karen Lyn García-Suárez

I. para el Desarrollo Tecnológico y la

Innovación en Comunicaciones

ULPGC

Las Palmas, Spain

 karen.garcia101@alu.ulpgc.es

 Miguel Ángel Luque-Nieto

Instituto de Ingeniería Oceánica, E.T.S.

de Ingeniería de Telecomunicación

UMA

Málaga, Spain

luquen@uma.es

 Vicente Negro-Valdecantos

Escuela Técnica Superior de ing. de

caminos canales y puertos

UPM

Madrid, Spain

vicente.negro@upm.es

 Santiago Zazo-Bello

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

santiago.zazo@upm.es

 Juan Parras-Moral

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

j.parras@upm.es

David Moreno-Salinas

Departamento de Ciencias de la

Computación y Control Automático

UNED

 Madrid, Spain

dmoreno@dia.uned.es

 Pablo Otero-Roth

Instituto de Ingeniería Oceánica, E.T.S.

de Ingeniería de Telecomunicación

UMA

Málaga, Spain

pablo.otero@uma.es

 Ana Isabel Vázquez

Escuela de Ingenierías Marinas,

Náutica y Radioelectrónica

UCA

Cádiz, Spain

anaisabel.vazquez@uca.es

 Eugenio Jiménez-Yguacel

I. para el Desarrollo Tecnológico y la

Innovación en Comunicaciones

ULPGC

Las Palmas, Spain

eugenio.jimenez@ulpgc.es

 Pedro J. Zufiria

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

pedro.zufiria@upm.es

 Alvaro Gutiérrez

Escuela Técnica Superior de Ingenieros

de Telecomunicación

UPM

Madrid, Spain

a.gutierrez@upm.es

Abstract— Keywords— Simulation, UUVs, Multi-vehicle systems,

Sensors and actuators, Robot Navigation, Programming and

Vision

I. INTRODUCTION

The development of marine robotics is emerging as a
interdisciplinary field that integrates various disciplines,
including engineering, computer science, and marine
sciences. This field focuses on the advancement and
deployment of both autonomous and remotely operated
underwater drones, which have become essential tools in a
variety of marine applications.

Despite challenges like limited communication, positional
uncertainty, and autonomy issues, Unmanned Underwater
Vehicles (UUVs) have key advantages over manned vehicles:
they are cost-effective, compact, highly agile, and safe for use
in hazardous conditions as they don’t require human operators
[1]. These traits make UUVs essential across marine science
fields, enabling applications in maintenance missions, , as

This article introduces NauSim, an open-source simulation

tool designed for developing control algorithms for Unmanned

Underwater Vehicle (UUVs). NauSim is targeted at researchers

and developers in underwater robotics, with a focus on Machine

Learning (ML) based applications. The simulation tool is made

in Python, acknowledging its prominence in ML research. Key

design principles include a clean, flexible and modular

architecture which can be integrated easily with existing control

paradigms, thus allowing for the configuration of simulations,

the creation of new environments and the addition of sensor

interfaces and control models. Furthermore, NauSim

emphasizes simplicity in deploying control algorithms from the

simulator to target hardware. The article presents three use

cases that illustrate the diverse applications of the simulator.

The first case study is based on swarm robotics, the second

showcases the development of advanced sensor simulations, and

the third demonstrates the deployment of a controller developed

in NauSim in a "real world" scenario.

This work has been supported by Grant PID2020-112502RB-C41,

PID2020-112502RB-C42, PID2020-112502RB-C43 and PID2020-

112502RB-C44 funded by MCIN/AEI/10.13039/501100011033.

 2024 Global Conference on Wireless and Optical Technologies (GCWOT)

979-8-3315-3427-1/24/$31.00 ©2024 IEEE

20
24

 G
lo

ba
l C

on
fe

re
nc

e
on

 W
ire

le
ss

 a
nd

 O
pt

ic
al

 T
ec

hn
ol

og
ie

s (
GC

W
O

T)
 |

 9
79

-8
-3

31
5-

34
27

-1
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
GC

W
O

T6
38

82
.2

02
4.

10
80

56
02

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

seen in [2] and [3] and mapping [4]. UUVs are frequently
deployed in reconnaissance and data collection tasks, such as
coral reef monitoring [5] and cave exploration [6].
Additionally, in aquaculture, fish farm monitoring, discussed
in [7] and [8], benefits from these drones by providing
continuous surveillance and management of fish stocks. Also,
underwater drones are employed to monitor and ensure the
health of aquatic environments, detecting pollutants and other
possible harmful substance [9].

Despite the growing importance of underwater robotics,
the research and development of these technologies are
fraught with challenges, mainly due to their dependence on
aquatic environments. Any project in this area requires access
to suitable bodies of water, such as rivers, seas, or lakes. These
environments present logistical and safety issues, with
unpredictable conditions that complicate test repetition and
compromised equipment security. While water tanks offer
controlled spaces, they are expensive, limited in size, and may
not replicate natural conditions. Underwater testing is further
hindered by limited visibility and monitoring difficulties, as
well as risks of equipment loss from technical or
environmental failures, making experimentation a cautious,
time-intensive process.

These challenges demand the use of simulators for the
design and preliminary testing of vehicle behavior. Simulators
mitigate the dependence on access to a water environment
prior to the deployment phase and allow observation of
underwater tasks when direct observation of the system is not
feasible. This has led to numerous developments. Among the
most recognized are the UWSim software [10], and the
Gazebo UUV Simulator extension [11], although these have
not been updated for some time. With the aim of utilizing
well-known platforms, there are packages that integrate
simulation functionalities within MATLAB™ and
Simulink™ [12][13]. In recent years, the trend has been
towards providing visual fidelity by leveraging the capabilities
of commercial 3D engines, as can be seen in HoloOcean [14]
and UNav-Sim [15], albeit at the cost of making these
simulators somewhat dependent on the structure and
limitations of the engines.

Ultimately, these developments are frequently associated
with specific projects, and their features don’t always meet the
broader needs of different applications, especially as UUV
technology and machine learning-based control models
advance rapidly. This growth demands a versatile, scalable
simulation platform that supports multi-vehicle interaction,
such as those in underwater swarm robotics [16]. This article
presents NauSim, an open-source simulation tool designed to
address these needs. Key features of NauSim include:

• It is a software designed with the objective of
developing control algorithms for autonomous
underwater vehicles, either individually or as group
behavior in UUVs, with a focus on Machine Learning
(ML) applications. Its architecture is designed to be
clean, flexible, and modular.

• Easily integrated with different existing control
paradigms. Control algorithms are external and
Taking into account the importance that Python has
acquired as a reference language (see [17] or [18]) in
ML, the simulator has been developed in this
language.

• It provides realistic experiences for sensing, visual,
and physical interaction models, ensuring simulation
results are applicable to real-world environments.

II. ARCHITECTURE

The NauSim architecture is built on the sensor-controller-
actuator model, a core framework in drone operation that
divides tasks into three layers: sensors (data collection),
controllers (decision-making), and actuators (action
execution). Sensors gather environmental data (e.g.,
temperature, pressure, visual information), which controllers
then process to determine actions, like movement
adjustments, using pre-programmed algorithms or AI. The
actuators carry out these commands, translating them into
physical changes within the simulated environment through a
physical model. A diagram illustrating the general
organization of this development is shown in Fig. 1.

Fig.1. A diagram showing a schematic representation of the NauSim simulator architecture.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

This model’s design enables real-time feedback and
adaptive responses to environmental changes, enhancing the
drone's operational efficiency and reliability. Its modular
structure also supports easy upgrades and replacements of
individual components without a full system redesign,
allowing for flexible configurations and new scenarios. The
architecture also enables a seamless transition between
simulation and real-world applications, where virtual
components can be replaced by actual ones with minimal
adjustments, facilitating the practical deployment of tested
algorithms.

A. Simulated enviroment

A robotics simulator, regardless of its specific
functionalities, is typically organized around a virtual space
that represents the real world, to provide developers with a
controlled, repeatable environment for testing and refining
robotic systems. NauSim uses Panda3D [19] as its 3D engine,
an open-source platform originally developed by Disney
Interactive for virtual reality applications.

Developed by Disney Interactive in 2002 for its theme
park virtual reality division, Panda3D (originally ‘Platform
Agnostic Networked Display Architecture’, although its use
as an acronym has been lost over time) was released under
BSD license in 2008, and has since been maintained and
extended by an active community of users. Panda3D offers a
complete set of functionalities, is fully cross-platform, and
features an interface fully developed in Python.

Panda3D is a scene graph-based engine. A scene graph is
a general data structure commonly used in vector graphics
editing applications and 3D engines. It imposes a hierarchy on
the logical and often spatial representation of a graphical
scene, organizing it as a collection of nodes forming a tree
structure. A node may have multiple children but only one
parent. This hierarchical structure is well-suited to the abstract
definition of space and the entities forming the simulated
environment. For instance, a drone within the simulator can
be 'loaded' with multiple sensors that can move or pivot
relative to the parent object (the drone itself) while
maintaining actualizing synchronization with the parent
object. This level of control makes it easy to simulate complex
configurations where each component must react accurately
to movements and positional changes in real time.

The simulator is not limited to any specific scenario editor,
providing flexibility in creating and defining virtual
environments. Virtual scenarios are defined using glTF (GL
Transmission Format) files, which are commonly supported
by most 3D modeling software. These glTF format generally
consist on a text file (.gltf) using a json structure, that
describes the scene, along with separate files containing the
geometry and texture data of the objects. This format is
extensible through tags, allowing developers to define specific
functions for the simulator, e.g. they can include simplified
geometry for collision detection, add invisible 'walls' to limit
the simulation area, or import geometry based on height maps
directly into the 3D engine. Some examples of scenarios
created for NauSim can be seen in Fig. 2.

B. Sensor/contoller/actuator model

Sensors are the initial layer of a drone’s architecture,
responsible for gathering crucial environmental data that
informs the drone’s decision-making processes during
autonomous missions and training. This includes both real-
world sensors—such as GPS units, accelerometers, and
cameras—and virtual sensors designed for simulation and
machine learning applications. To accurately simulate real
conditions on a drone, sensors operate in a separate thread
where the update rate of each sensor is defined independently.
This approach reflects the variability in how different sensors
collect data. For example, a GPS unit might update its position
data once per second, while an accelerometer might provide
data hundreds of times per second. This allows for more
accurate modeling of real-world scenarios Also, running the
sensors in a separate thread, the simulator can minimize the
impact of computationally expensive sensor simulations on
overall performance.

Sensors are defined as independent components and can
be reused in new simulated robot models. There is no
distinction between ‘simulated’ and ‘real’ sensors (defined as
an ‘interface’ for accessing data from the corresponding
hardware’), which makes it possible, once an ML model has
been trained, to switch transparently between the sensors used
in the simulator for training and their real counterparts.

.The controller layer acts as the drone's brain, processing
input data from sensors to determine the drone's state and plan
necessary actions, including navigation and obstacle
avoidance. It abstracts the interaction with the environment
through actuators, allowing the same controller software to
function in both simulated and real-world scenarios.
Controllers can vary from simple, ad hoc solutions to complex
algorithms. The simulator has been designed in such a way

Fig.2. Examples of different scenes developed for NauSim, as they

appear in the simulator.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

that the control functionalities of a drone can be extended
through the deployment of a hierarchy of controllers. The role
of a parent controller is to select which child controller is
deployed at a given moment; this allows, for example,
seamless transitions between manual and autonomous control.

Actuators form the final layer, executing commands from
the controller to physically alter the drone’s position and
orientation. They include motors and servos that respond to
controller directives. In simulations, actuators replicate real-
world behaviors by converting commands into values that the
simulation engine can process. In real applications, actuator
interfaces connect directly to the drone’s hardware, often
managed through external control libraries like MAVLink
[20] and ROS2 [21], ensuring effective integration into the
drone's operational framework.

C. Physics engine

Interaction with the virtual world in robotic simulations
relies on physical models that replicate the behaviors and
dynamics of real-world objects. These models translate
commands from virtual actuators into changes in the robot's
position, orientation, and other physical attributes within the
simulated environment. For example, when a virtual actuator
adjusts motor power levels, the physical model calculates the
resulting movement based on principles like Newtonian
mechanics and inertia. NauSim allows for the development of
various robot models with different complexity levels, as long
as they can be considered a description of the motion of rigid
bodies underwater. As an alternative, Panda3D integrates an
interface with two independent external physical models;
Open Dynamics Engine (ODE) [22] and Bullet [23].

III. USE CASES

The development of this simulator is framed within the
NAUTILUS project (Swarms of uNderwAter aUTonomous
vehIcLes gUided by artificial intelligence: ItS time has come).
This project aims to develop swarms of small, low-cost
autonomous vehicles responsible for managing coordinated
activities, supporting research in the area, providing services
such as positioning, data collection, and battery recharging for
fixed or mobile nodes deployed without direct human
intervention. The swarm will act as a single, decentralized

system where collective information will be disseminated
among the individuals. The swarm will autonomously decide
where to deploy each individual and adapt its spatial coverage
based on the environmental state and its needs.

A. BlueROV2

As a vehicle, NAUTILUS uses the popular BlueROV2
[25] in its heavy configuration (Fig. 3). This version of the
ROV features four thrusters for horizontal locomotion and
four thrusters for vertical locomotion, allowing six degrees of
freedom in maneuvers. The vehicle is controlled by a
Raspberry Pi and integrates an inertial measurement unit
(IMU), a magnetometer, and a pressure sensor on an external
expansion board (the "Navigator"). The vehicle's software is
distributed as open source, allowing it to work with a wide
variety of hardware, such as sonar sensors, cameras, and an
inertial navigation system. Moreover, although the
BlueROV2 is a tethered underwater vehicle, the use of open-
source code opens the possibility of extending the vehicle's
control software to convert it into a UUV.

As an extension to the basic sensor configuration, each
vehicle has been equipped with an echo-sounding device and
a mechanical scanning sonar for navigation and image
acquisition. Developing realistic models of these sensors is
part of the simulator's development.

For the physical model simulation of this vehicle a version
of the mathematical simulation models of BlueROV2
dynamics developed in [26] has been implemented. The
model developed use the associated measured maneuvering
coefficients used presented in that, pending specific
experimental validation for the NAUTILUS vehicles. A full
discussion of the physical model is beyond the scope of this
article, particularly in view of the general model's complexity.

B. Use case: Flocking

One of the first controllers implemented in NauSim was a
PID controller based on virtual GPS positioning. A
Proportional-Integral-Derivative (PID) controller is a control
mechanism for dynamic feedback systems used in industrial
and engineering applications. It is designed to minimize the
error between the desired and actual state by adjusting the
control inputs through three types of actions: the proportional
component, which adjusts the output proportionally to the
current error; the integral component, which takes into
account the accumulation of past errors to eliminate steady-
state deviations; and the derivative component, which predicts
accumulation of past errors to eliminate steady-state
deviations; and the derivative component, which predicts
future errors based on the rate of change.

Using this PID controller, a scenario is proposed where
one of the drones acts as a leader and six others as followers.
The leader drone is configured to move, by means of a PID
controller, along a predetermined route, defined by a series of
points. In the rest of the drones, over the PID controller a
modification to the classical flocking rules is implemented, in
order to maintain a formation. These rules include maintaining
a safe distance to avoid collisions, aligning their direction and
speed with the leader and nearby drones, and staying close to
the center of the group. As the leader drone navigates the
terrain, the followers dynamically adjust their positions to
create a cohesive and synchronized flight pattern. Results of
running this scenario can be seen in Fig. 4.

Fig. 3. Photography of the BlueROV2 in its heavy configuration.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

Of course, this scenario is not intended to be realistic, since
its execution depends on two of the major problems faced by
AUVs, communication and positioning. However, by
modifying the transfer rate, noise and accuracy of the
communication module and the virtual positioning sensors, it
is possible to have a baseline to assess the performance needs,
robustness and reliability of the system under various
conditions.

C. Use case: Sonar simulation

While a basic approach is relatively simple to implement,
the complexities associated with sub-acoustic acoustic
phenomena such as reflections, propagation characteristics
and scattering make a realistic implementation a very complex
task, especially in the area of high-frequency sonar with which
AUVs are often equipped. However, in an autonomous drone
the sonar is one of its main windows to the world, so a realistic
simulation of this contributes directly to the development of
these vehicles and associated marine technologies, providing

a tool with which to virtually test these sonar systems in
various navigation and data acquisition scenarios.

Thus, based on the method presented in [25], a sonar
model based on Screen Space Reflections (SSR) has been
developed. SSR is a method commonly used in the generation
of real-time 3D graphics to compute realistic reflections in the
environment. SSR approximates reflections by tracing rays in
screen space, rather than in the entire 3D scene, which
significantly reduces the computational burden. By capturing
the interactions of sound waves with objects and surfaces in
the screen space, the use of SSR can effectively represent
realistic reflections and refractions of sonar signals, as well as
alternative paths and secondary reflections, all in real time. A
comparison of the results with real sampling can be seen in
Fig. 5.

Using this simulation and as a form of validation, a simple
algorithm has been developed to determine the distance of
vertical walls and prominent obstacles using the signal from a
mechanical sonar. The sonar return signal is treated as a
numerical array, and the most prominent area of the signal is
identified as the largest subarray sum in the signal, where the
subarrays are represented by fixed windows, once the noise
has been removed.

The vehicle was submerged in a capsule-shaped saltwater
pool, measuring 1.64 meters in length, 1.52 meters in width,
and 65 centimeters in depth. The pool had hemispherical ends
with a radius of 76 centimeters. A two meters range, 360-
degree sonar cycle was performed, resulting in 400 samples
(the resolution of mechanical of the sonar is in gradians). This
experiment was repeated using a virtual model of the pool in
the simulator. The results can be seen in Fig. 6.

Compared to the distances to the pool perimeter, the
results obtained using the real sonar signal have a root mean
square error of 0.0118, with the mean distance to the perimeter
in the 400 samples series being 7.98 centimeters. The results
for the simulated sonar signal exhibit a mean square error of
0.007, with a mean distance to the perimeter of 6.42
centimeters. The mean difference between the real and virtual
results is 12.1 centimeters. Overall, and considering the

Fig.4. Flocking simulation using NauSim. The trajectories followed by

each drone are shown as dotted lines. The leader's trajectory is shown

in light green.

Fig. 5. Sonar simulation compared to real data. The left side shows the virtual scenario together with the real data (video and sonar overlay). On the
right side the sonar simulation results are shown. Real and simulated results are visualized using PingViewer™.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

limitations of sonar and the discrepancies that may exist
between the virtual model and the real world, the differences
between the real and simulated results can be considered to be
within the range of distance resolution expected for the
method.

D. Use case: Wall-tracking

We propose the design of a wall-tracking controller, where
the output will be deployed on the target vehicle. The test
scenario is a swimming pool, so we can assume flat walls and
right angles. The wall tracker acts as a state machine where
the vehicle first orients itself towards the first structure it
encounters, approaches a predetermined distance from it and
starts moving parallel to the structure, maintaining the
distance. If it detects a blockage in its path, it rotates until the
obstacle disappears and starts again in the initial state. If it
misses the wall or is unable to maintain its orientation, the
vehicle starts again in the initial state.

The main constraints in this scenario are the result of the
limitations of mechanical sonar, which is used to detect walls.
A mechanical sonar needs to physically move the head to
sample at a given angle; to cover the necessary arc of view for
this controller is required so that there will only be one
complete update of the world around the vehicle every 2
seconds. Taking into account the maximum speed of the drone
this means more than 2 meters of distance travelled.
Moreover, the nature of sonar makes it difficult to differentiate
between giving a distance to an obstacle if other sources of
reflections are present, such as the ground or the air-water
boundary. Having straight walls makes the task easier, but the
detecting algorithm (see previous subsection) has to be

properly validated. Therefore, the sonar simulation presented
in the previous section has been used in the validation of the
controller, modified to take into account the delay imposed by
the hardware.

The controller has been developed entirely using NauSim.
As a consequence of the modular nature of the simulator, the
deployment of this controller in a non-simulated environment
has only required changes to the configuration file to replace
the simulated sonar sensor and the virtual actuator with their
real counterparts, as both virtual and real modules share the
same interface.

Figure 7 illustrates a comparison between the route
traversed by a simulated vehicle in a virtual representation of
the test setting and an approximation of the route followed by
the real vehicle, utilizing the same controller. Although a
direct comparison is not feasible due to the discrepancies in
the initial conditions, it can be seen that the controller's
behavior is analogous in both environments. Therefore, the
obtained trajectories are comparable; the vehicle moves
within the selected distance ranges without drifting out of the
sonar range or colliding with the wall. Upon detecting a
change of orientation, in both cases, it reorients itself
successfully and continues to track the wall in the new
direction. Based on these results, it can be concluded that the
deployment of a simulator-developed controller on the target
hardware was a success.

IV. CONCLUSIONS

In this work, we present NauSim, a simulation
environment designed to provide researchers and students
with a platform for testing, developing, and verifying sensor
configurations and control algorithms in underwater vehicles,
with a particular focus on machine learning (ML)-based
controllers. NauSim accommodates a variety of use cases,
including rapid virtual prototyping, design testing, and control
algorithm development for both individual robots and large
heterogeneous swarms. Section III highlights several real-
world applications of the simulator. The first case study
emphasizes swarm robotics, demonstrating NauSim's
capability to simulate the collective operation of multiple
robots. The second example showcases the simulator's ability
to support complex sensor simulations, while the third case
study illustrates the practical application of a controller
developed using NauSim in a real-world context,
underscoring the simulator's role as a bridge between virtual
models and target hardware.

It is important to note that NauSim is still under
development (currently in revision 62). Future work will focus
on expanding the range of sensors, actuators, and simulation
control tools to enhance realism and visual appeal. Plans
include introducing a realistic underwater camera view,
increasing the variety of simulated sonars, and extending the
communication module to reflect specific underwater
communication devices. To improve usability and facilitate
general use of the simulator, a series of example scenes will
be added to showcase its capabilities. Additionally, as
development progresses, comprehensive documentation will
be created to detail the features that have been implemented.

REFERENCES

[1] Y. Allard, E. Shahbazian and A. Isenor . “Unmanned underwater
vehicle (UUV) information study”. Defence Research and
Development Canada, (2014).

Fig.6. Results of the distance tests, conducted in both a real-world

setting and a virtual replica of the scenario, presented in relation to the

pool contour. The main dimensions of the pool are included for

reference.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

[2] J. Liniger, A. L. Jensen, S. Pedersen, H. Sørensen and C. Mai, "On the
Autonomous Inspection and Classification of Marine Growth on
Subsea Structures," OCEANS 2022 - Chennai, Chennai, India, 2022

[3] S. Hu., A. Feng, J. Shi, J. Li, F. Khan, H. Zhu, and, G. Chen,
“Underwater gas leak detection using an autonomous underwater
vehicle (robotic fish)”. Process Safety and Environmental
Protection, 167, 89-96. 2022

[4] B. Chemisky, E. Nocerino, F. Menna, M. M. Nawaf and P. Drap, "A
Portable Opto-Acoustic Survey Solution For Mapping Of Underwater
Targets", The International Archives of the Photogrammetry Remote
Sensing and Spatial Information Sciences, vol. XLIII-B2-2, pp. 651-
658, jun 2021.

[5] R. Rofallski, C. Tholen, P. Helmholz, I. Parnum and T. Luhmann,
"Measuring Artificial Reefs Using A Multi-Camera System For
Unmanned Underwater Vehicles", The International Archives of the
Photogrammetry Remote Sensing and Spatial Information Sciences,
vol. XLIII-B2-2, pp. 999-1008, aug 2020.

[6] E. Nocerino, M. M. Nawaf, M. Saccone, M. B. Ellefi, J. Pasquet, J.- P.
Royer, et al., "Multi-Camera System Calibration Of A Low-Cost
Remotely Operated Vehicle For Underwater Cave Exploration", The
International Archives of the Photogrammetry Remote Sensing and
Spatial Information Sciences, vol. XLII-1, pp. 329-337, sep 2018

[7] L. Cheng, X. Tan, D. Yao, W. Xu, H. Wu, Y. Chen, “A Fishery Water
Quality Monitoring and Prediction Evaluation System for Floating
UAV Based on Time Series”. Sensors , 21, 4451. 2021

[8] J. Betancourt, W. Coral, J. Colorado. “An integrated rov solution for
underwater net-cage inspection in fish farms using computer vision”.
SN Applied Sciences 2 (12), 1946. 2020

[9] D. Y. Kwon, J. Kim, S. Park, and S. Hong . “Advancements of remote
data acquisition and processing in unmanned vehicle technologies for
water quality monitoring: An extensive review”. Chemosphere,
140198. 2023

[10] M. Prats, J. Pérez, J. J. Fernández and P. J. Sanz, "An open source tool
for simulation and supervision of underwater intervention
missions," 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura-Algarve, Portugal, 2012

[11] M. M. M. Manhães, S.A. Scherer, M. Voss, L. R. Douat, and T.
Rauschenbach. “UUV simulator: A gazebo-based package for
underwater intervention and multi-robot simulation” Oceans 2016
Mts/Ieee Monterey (pp. 1-8). Ieee. September. 2016

[12] M. von Benzon, F. Sørensen, E. Uth, J. Jouffroy, J. Liniger, and S.
Pedersen, “An open-source benchmark simulator: Control of a

bluerov2 underwater robot,” in Journal of Marine Science and
Engineering. 2022, vol. 10, no. 12, 2022

[13] P.D. de Cerqueira Gava, C. L. Nascimento Júnior, J. R. Belchior de
França Silva, and G. J. Adabo.”Simu2VITA: A general purpose
underwater vehicle simulator”. Sensors, 22(9), 3255. 2022

[14] E. Potokar, S. Ashford, M. Kaess and J.G. Mangelson. “HoloOcean:
An underwater robotics simulator”. In 2022 International Conference
on Robotics and Automation (ICRA) (pp. 3040-3046). IEEE. 2022

[15] A. Amer, O. Álvarez-Tuñon, H.I. Ugurlu, J.L.F. Sejersen, Y. Brodskiy,
E. Kayacan, 2023. “Unav-sim: A visually realistic underwater robotics
simulator and synthetic data-generation framework”. In: 21st
International Conference on Advanced Robotics (ICAR). IEEE, pp.
570–576. 2023

[16] G, Liu,. L. Chen, K. Liu, and Y. Luo, “A swarm of unmanned vehicles
in the shallow ocean: A survey”. Neurocomputing, 531, 74-86. (2023).

[17] S. Sultonov “Importance of python programming language in machine
learning”. International Bulletin of Engineering and Technology 3 (9),
28–30. 2023

[18] S. Raschka, J. Patterson, C. Nolet. “Machine learning in python: Main
developments and technology trends in data science, machine learning,
and artificial intelligence” Information 11 (4), 193. 2020

[19] M. Goslin, M.R. Mine,. “The panda3d graphics engine.” Computer 37
(10), 112–114. 2004

[20] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith and M.
Khalgui, "Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey,"
in IEEE Access, vol. 7, pp. 87658-87680, 2019

[21] S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall.
“Robot operating system 2: Design, architecture, and uses in the
wild.” Science robotics, 7(66), eabm6074. 2022

[22] R. Smith, et al., 2005. Open dynamics engine. (2005)

[23] E. Coumans, 2015. “Bullet physics simulation.” In: ACM SIGGRAPH
2015 Courses. p. 1.

[24] B. Robotics “BlueROV2: The world’s most affordable high-
performance ROV. BlueROV2” Datasheet; Blue Robotics: Torrance,
CA, USA. (2016).

[25] C. J. Wu, 2018. “6-dof modelling and control of a remotely operated
vehicle”.Ph.D. thesis. 2018

[26] R. Cerqueira, T. Trocoli, G. Neves, S. Joyeux, J. Albiez and L. Oliveira,
“A novel GPU-based sonar simulator for real-time
applications”. Computers & Graphics, 68, 66-7

Fig. 7. Comparison between the route traversed by a simulated vehicle (red dotted line) in a virtual representation of the test environment and an

approximation of the route followed by the real vehicle (black dotted line), using the same controller. Additionally, the figure includes frames from a

test conducted in a real-world environment, situated at a location approximating the route of the real vehicle.

Authorized licensed use limited to: UNIV DE LAS PALMAS. Downloaded on February 11,2025 at 11:17:30 UTC from IEEE Xplore. Restrictions apply.

