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Abstract—The rising use of machine learning in various fields
requires robust methods to create synthetic tabular data that
preserve key characteristics while mitigating data scarcity chal-
lenges. State-of-the-art approaches, such as CTGAN and TVAE,
face difficulties with the intricate structures inherent in tabular
data, which often comprise continuous and discrete features with
non-Gaussian distributions. To address these limitations, we pro-
pose a novel approach based on Variational Autoencoders (VAEs)
enhanced with a Bayesian Gaussian Mixture (BGM) model.
Unlike other methods that alter the Gaussian prior of the VAE,
our approach trains the VAE conventionally and then applies
the BGM model to the learned latent space. This allows for a
more accurate representation of the underlying data distribution
during data generation. Moreover, our model offers enhanced
flexibility by accommodating various differentiable distributions
for individual features, enabling the handling of continuous
and discrete data types. Thorough validation on three real-
world datasets, including medically relevant ones, demonstrates
significant outperformance compared to CTGAN and TVAE. Our
model shows promise as a valuable tool for synthetic tabular data
generation across diverse domains, particularly in healthcare.

I. INTRODUCTION

Despite significant advances in Machine Learning (ML)
models, their efficacy relies heavily on access to extensive,
high-quality training data. However, data scarcity, particularly
in emerging fields such as healthcare care, impedes model
development, validation, and progress in solving crucial chal-
lenges. Addressing this need for abundant and reliable data is
paramount to unlocking the full potential of ML.

Recent years have witnessed a notable increase in research
on synthetic data generation techniques. The past decade has
seen the publication of numerous deep learning (DL)-based
generative models for homogeneous data types such as images,
audio, or text [1]–[3]. However, research [4] suggests that the
generation of heterogeneous tabular data remains a significant
challenge within DL. Tabular datasets are characterized by
dense and sparse features, weaker or more complex corre-
lations compared to spatial or semantic data. Additionally,
tabular data often include missing values, outliers, and incon-
sistencies. Furthermore, preprocessing methods used for Deep
Neural Networks (DNNs) can lead to information loss. This
presents a critical challenge considering the widespread use
and importance of tabular data in various fields.

Despite the aforementioned challenges, late advances in
deep generative models offer promising solutions for data
generation. In particular, Generative Adversarial Networks
(GANs) show potential to generate synthetic tabular data.
However, early vanilla GAN-based approaches [5], [6] strug-
gled with mixed data types and specific feature values, limiting
their use with imbalanced datasets as demonstrated in [7].
Conditional GANs, such as [8] and CTGAN [9], offer a
more promising approach, using a conditional vector during
generation to specify the desired labels. Although the state-
of-the-art CTGAN handles both categorical and numerical
features, it can struggle to converge with continuous data [10].

While GANs dominate the scene, autoencoders, particularly
Variational Autoencoders (VAEs) [11], offer an alternative
to generate synthetic tabular data [9], [12]. In addition to
CTGAN, the authors in [9] proposed TVAE that achieves
superior performance and potentially becomes a state-of-the-
art solution alongside CTGAN. However, there are limitations
in TVAE’s sampling process due to its Gaussian assumption,
which might not hold for complex real-world data. Further
exploration of alternative sampling techniques is necessary.

Building upon existing work in data generation and address-
ing the limitations of GANs, this paper proposes a novel VAE-
based model inspired by TVAE. Our model incorporates key
advancements that differentiate it from the state-of-the-art:

• While TVAE assumes a Gaussian latent space for data
sampling, our model employs a Gaussian Mixture model
(GMM) within the VAE architecture. This avoids the
potential limitation of a strictly Gaussian distribution
imposed by the training process divergence term in VAEs
[13].

• While prior research explored non-Gaussian latent spaces
in VAEs [14], [15], these approaches require modifica-
tions to the training process, increasing complexity. In
contrast, our model leverages the learned latent represen-
tation after conventional VAE training and subsequently
applies a GMM. Thus, we are able to generate better
synthetic data while keeping the VAE training complexity,
adding only the BGM after the VAE has been trained

• We propose a more flexible GMM compared to [16]
where a fixed number of components is used in a pre-
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Fig. 1: Bayesian VAE vanilla model. z represents the latent
variable, while x denotes the observable. pθ(x|z) and qϕ(z|x)
are the generative model and the variational approximation to
the unknown true posterior p(z|x), respectively.

trained VAE limited to non-tabular data. Our GMM learns
the optimal number of components directly from the
tabular data.

• To validate the effectiveness of our model, we per-
formed a comprehensive evaluation using three real-world
datasets, including two in the medically relevant domain,
given the significance of data generation in this field.
We compare our model’s performance against state-of-
the-art solutions like CTGAN and TVAE, employing
discriminative and ML utility metrics.

II. METHODOLOGY

A. Variational Autoencoder

The VAE was first introduced by [11] as a probabilistic
generative model to perform Bayesian inference on datasets
consisting of i.i.d. samples. The core principle lies in learning a
probabilistic generative model to capture the underlying latent
structure within the data. Formally, a VAE assumes a data
generation process that involves two steps for each sample
{xi}Ni=0: (1) sampling a latent variable zi from a prior distribu-
tion p(z), which is usually assumed to be isotropic Gaussian,
and (2) generating the observed data xi from a conditional
distribution pθ(x|z), where θ represents the model parameters.
Due to the inherent difficulty of estimating the true posterior
density, VAEs employ variational methods. These methods
involve defining an approximation, a variational distribution
qϕ(z|x) parameterized by ϕ, and optimizing its parameters to
closely resemble the true posterior (Fig. 1). This optimization
typically involves maximizing the Evidence Lower Bound
(ELBO), which provides a lower bound on the data’s marginal
log-likelihood. For any sample xi, the ELBO expression is:

log pθ(xi) ≥ −DKL(qϕ(z|xi)||p(z))
+Eqϕ(z|xi) [log pθ(xi|z)] = L(xi, θ, ϕ),

(1)

where DKL denotes the Kullback-Leibler (KL) divergence.
The challenge of computing the gradient of the ELBO with
respect to ϕ is addressed by the reparameterization trick. This
technique allows ELBO estimation using samples from a sim-
ple distribution p(ϵ). In essence, a deterministic transformation
gϕ is applied to the noise term ϵ, resulting in the latent variable
z = gϕ(x, ϵ). This ensures that z follows the variational
distribution qϕ(z|x) while ϵ remains drawn from p(ϵ).

The VAE implementation consists of an encoder and a
decoder, both implemented using DNNs. The encoder approx-
imates the true posterior distribution p(z|x) with a variational

distribution qϕ(z|x), parameterized by ϕ. The parameters of
this distribution are obtained by applying a deterministic
transformation gϕ to the input data x combined with random
noise ϵ. The resulting latent variable z is input to the decoder,
which aims to reconstruct the original data by estimating the
conditional distribution pθ(x|z), parameterized by θ.

B. Gaussian Mixture model

The GMM offers a probabilistic framework for clustering
data points based on Gaussian distributions. Formally, given
the same dataset X = {xi}Ni=0 that contains N samples with
m features each, the GMM assumes that the data originate
from a mixture of K Gaussian distributions. Each component
within this mixture is characterized by its mean vector µk,
covariance matrix

∑
k, and mixing coefficient πk. These

parameters collectively define the shape, location, and con-
tribution of each Gaussian component to the overall mixture.
The likelihood of observing a data point x as a weighted sum
of the densities of individual Gaussian components is:

p(x) =

K∑
k=1

πkN (x | µk,Σk), (2)

where N (x|µk,Σk) represents the probability density function
of a multivariate Gaussian distribution with mean µk and
covariance matrix

∑
k. Estimating the model parameters,

µk,
∑

k, and πk, is typically achieved by iterative opti-
mization algorithms. The commonly employed Expectation-
Maximization (EM) algorithm provides a widely used ap-
proach for this task.

GMMs are known to be universal approximators for con-
tinuous densities [17], and we will rely on that property.
However, GMMs face the challenge of needing K as a
parameter, i.e., it has to be predetermined before training. To
overcome this issue, K can be estimated using a Dirichlet
process [18] using Variational Inference tools. This approach,
called Bayesian Gaussian Mixture (BGM), has the advantage
of automatically adjusting K from the data.

C. Contribution

This work introduces a novel approach to data generation
by integrating a BGM into a standard VAE architecture. This
integration leverages the strengths of both models: the VAE’s
ability to learn a latent representation of the data z, and the
BGM’s flexibility in modeling complex distributions, poten-
tially non-Gaussian, within this latent space. Fig. 2 depicts
our model.

Previous models such as TVAE implicitly assume that the
latent space z aligns with the prior Gaussian distribution.
Therefore, to generate new samples of z, sampling from the
prior distribution, which is isotropic Gaussian, suffices. The
reason is the presence of the KL divergence term in the loss
function 1. However, this assumption may not hold because
of complex dependencies and correlations in real-world data.
These factors are represented by the other term in the loss
function, the marginal log-likelihood distributions. This term
can push the latent space away from a Gaussian distribution.

1887



Fig. 2: Proposed model architecture. It is built on a standard VAE. After training, the latent space z is modeled using a GMM.
This creates a new space zGM , which serves as the basis for generating new distribution parameters and ultimately sampling
new data points.

In other words, the VAE loss 1 has two components: the
log-likelihood of the reconstructed data, which allows the
reconstruction of samples from the latent space with high
fidelity, and the KL divergence, which acts as a regularizer
in the latent space. The KL divergence limits the complexity
of the latent space, so it can be thought of as the allowed latent
representation complexity. As it is typical to use an isotropic
Gaussian as prior, due to the KL being analytical, there is an
equilibrium between having a good reconstruction with a low-
complexity latent space representation. In practice, the actual
latent space learned need not be an isotropic Gaussian (as we
will show experimentally), and thus sampling z from the prior
may not provide the best results in generating new samples.

Therefore, our key contribution lies in employing a BGM
for the sampling process of new tabular data. Unlike TVAE,
our model does not assume that the actual latent space
follows the isotropic Gaussian prior: instead, we additionally
model the already learned latent space z as a mixture of
K Gaussian distributions, each characterized by its mean,
covariance matrix, and mixing coefficient. Notably, if z is
truly an isotropic Gaussian, the BGM would still be able to
effectively approximate it, as it corresponds to the case where
K = 1.

III. EXPERIMENTAL ANALYSIS

To validate our approach, we used three diverse publicly
available datasets. The first serves as a well-established bench-
mark commonly used in tabular data. This selection allows
for comparison of our approach’s performance with existing
methods on a familiar task and data distribution. The remain-
ing two datasets originate from Survival Analysis (SA) in the
medical domain, where data scarcity and privacy concerns
pose significant challenges. This focus aligns with the potential
real-world impact of our approach, as synthetic data generation
is valuable in domains where acquiring and sharing real data
can be difficult or ethically problematic. Each dataset provides
a unique combination of data types and target variables:

• Adult: The Adult dataset [19] provides information from
32,561 people to predict whether a person makes more
than $50K a year. It is an extract from the 1994 Census
database [20]. We obtained the data from [21] and used

10,000 for our experiments. This dataset contains 14 fea-
tures with mixed data types (categorical, binary, integer).

• Metabric: The Molecular Taxonomy of Breast Cancer
International Consortium (Metabric) [22] comprises 9
clinical and genetic features from 1,904 breast cancer
patients. Pre-processed data from [23] include binary and
decimal values and survival information. This selection
allows us to evaluate the model’s ability to handle survival
data, a common target variable in medical research.

• STD: This dataset deals with Sexually Transmitted Dis-
eases (STD) information from 877 patients. The dataset
was downloaded from KMsurv [24] R package. It has 23
features with categorical, integer and binary data types.
The target variable focuses on survival information.

The code for our approach is publicly available on https:
//github.com/Patricia-A-Apellaniz/vae-bgm data generator.

Our experimental setup involves two models. The VAE
architecture consists of a simple encoder with a hidden layer of
rectified linear units (ReLU) and a hyperbolic tangent output
layer. The decoder mirrors this structure with a ReLU hidden
layer, a 20% dropout layer, and an output layer with activation
functions adjusted to the covariate distributions. We fix the
latent space dimensionality (number of Gaussian distributions)
to 5 and the number of hidden neurons to 50. During the
training of 1,000 epochs and a batch size of 500, an early stop
is configured based on the validation loss. The GMM employs
a Dirichlet process prior with a fixed maximum number of
components set to the dimensionality of the latent space
(in this case, 5) and individual general covariance matrices
for each component. For training and evaluation, data are
divided into 80% training and 20% validation sets. Due to the
sensitivity of VAEs to initial conditions, 15 training runs with
different seeds are performed. The final results are averaged
from the 3 seeds with the best performance.

Fig. 3 verifies our hypothesis that the actual latent space
learned by the VAE does not need to follow the prior distribu-
tion, so our choice of BGM is justified. The figure compares
the latent spaces obtained using three different approaches:
(1) the original latent space from VAE, obtained by passing
the dataset samples through the encoder, (2) latent space
sampled using a BGM (ours), and (3) latent space sampled
using the prior isotropic Gaussian (TVAE). We can clearly
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(a) Adult (b) Metabric (c) STD

Fig. 3: Latent space comparison. 300 samples from each VAE, TVAE, and proposed model’s latent space are shown. The
BGM-modeled latent space (orange) closely aligns with z (blue) compared to the TVAE’s (green). This demonstrates the
importance of BGM for capturing the latent space distribution and potentially leading to higher-quality generated samples.

see that the BGM-modeled latent space aligns closely with
the original VAE latent space in all three cases. In contrast,
the TVAE latent space exhibits less dispersion, suggesting
that the Gaussian assumption does not accurately capture the
underlying distribution of the real-world data. This visually
confirms our hypothesis that the latent space in real-world
datasets often deviates from a Gaussian distribution, which
justifies the use of BGM for a more accurate representation in
the sampling process.

Let us now confirm that intuition with benchmarks on the
data. Due to the lack of standardized metrics, the evaluation
of data generation models requires a multifaceted approach.
We use a combination of resemblance and utility-based eval-
uations. Resemblance is assessed through a Random Forest
(RF) discriminator that measures the similarity of the joint
distribution between real and synthetic data. In an ideal
scenario of high model performance, the RF accuracy should
be close to a random guessing rate (around 0.5), indicating
that it can not distinguish between real and synthetic data.
Furthermore, we use the technique proposed in [21] to validate
the marginal distributions and the correlation between pairs
of columns. Utility evaluation, tailored to the type of task,
involves the Cox Proportional Hazards (Coxph) model [25]
and the Concordance Index (C-index) [26] for SA, and the RF
discriminator for classification tasks. This evaluation considers
two scenarios: training and testing on real data (benchmark)
and training on synthetic data with real data testing. This
assessment ensures that the generated data exhibit high resem-
blance (capturing feature distributions and correlations) and
utility (supporting robust statistical inference). To benchmark
our model’s performance, we compared it with CTGAN and
TVAE, the current state-of-the-art models for synthetic data
generation. For a coherent comparison, TVAE and our model
are implemented in the same way, but we add the BGM
sampling to ours. All models were evaluated using the same
methodology for a fair and consistent comparison.

The resemblance results of the proposed model compared
to CTGAN and the VAE-based Gaussian sampling model can
be seen in Tables I and II. Table I reports the accuracy and

its Confidence Intervals (CI) obtained by the RF for each
model. For VAE-based models, the table shows the average
of the three best seeds and the CIs are calculated based on
the ones obtained for each seed. The results show that our
model consistently outperformed the other two models by a
significant margin in all datasets, indicating superior generative
capabilities and robustness. Furthermore, the results of the
column analysis in Table II confirm the superiority of our
model in terms of similarity to ground truth values.

Table III presents the validation results for each ML task
based on the dataset. For the Adult dataset, the accuracy is
reported, as it is a classification dataset, while the C-index
metric is used for the other two datasets. Similarly to the
previous evaluation, we present the average value for the
three best performing random seeds in the case of TVAE and
our proposed method. The “Real-Real” value represents the
benchmark. The benchmark results are the upper bound in
performance, where training and testing are performed using
real data. Then, for each generative model, we also show the
results for these ML tasks training with synthetic data and
testing with real data to assess whether the generated data are
useful for the intended purpose of the dataset. The results in
this validation stage indicate that, in general, the performance
metrics obtained using data generated by each model (TVAE
and ours) are comparable to the results obtained using real

TABLE I: Resemblance evaluation using RF

Dataset CTGAN TVAE Our model
Adult 0.75 (0.74, 0.76) 0.78 (0.74, 0.81) 0.68 (0.64, 71)

Metabric 0.73 (0.70, 0.76) 0.77 (0.74, 0.80) 0.67 (0.62, 0.71)
STD 0.94 (0.91, 0.96) 0.77 (0.70, 0.82) 0.64 (0.57, 0.70)
Accuracy and 99% CI. Lower is better. Best values are in bold.

TABLE II: Resemblance evaluation using column analysis [21]

Dataset CTGAN TVAE Our model
Adult 0.87 0.87 0.93

Metabric 0.89 0.88 0.92
STD 0.86 0.87 0.95

Higher is better: a score of 1 means that the patterns captured for real
and synthetic data are exactly the same. Best values are in bold.
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TABLE III: ML task-related results comparing CTGAN, TVAE, and our model

Dataset Benchmark CTGAN TVAE Our approach
Adult 0.80 (0.79, 0.82) 0.79 (0.77, 0.80) 0.80 (0.77, 0.82) 0.79 (0.76, 0.81)

Metabric 0.58 (0.53, 0.63) 0.57 (0.52, 0.62) 0.60 (0.54, 0.65) 0.60 (0.54, 0.65)
STD 0.64 (0.57, 0.70) 0.54 (0.47, 0.61) 0.54 (0.46, 0.60) 0.65 (0.55, 0.75)

Accuracy results for Adult. C-index results for Metabric and STD. Note that all the methods tested
provide useful data for the tasks tested, as the results fall in the CI of the benchmark,

data. This suggests that the generated data exhibit sufficient
utility and quality for practical ML applications.

IV. CONCLUSIONS

This work proposes a novel approach to generate synthetic
tabular data by integrating a BGM into a VAE architecture.
Our experiments demonstrate that the proposed model out-
performs the state-of-the-art models CTGAN and TVAE on
several validation criteria. This superior performance can be
attributed to two key strengths. First, our model effectively
captures the diverse distributions present in the data, both
at the individual feature level (marginal) and across features
(joint). Unlike many existing models that struggle with mixed
data types, our approach handles various data types effectively.
Second, the incorporation of the BGM enables high-quality
sampling from an approximation of the VAE’s latent space.
This is crucial, as TVAE’s assumption of a Gaussian latent
space can lead to worse performance with real-world data
that often deviates from this distribution. Looking ahead,
several promising lines for future research exist. One di-
rection involves exploring the privacy implications of data
generation, particularly in sensitive domains like healthcare.
Analyzing privacy concerns and developing secure methods
to share synthetic data in medical settings is a valuable area
of investigation. Furthermore, we propose investigating novel
federated learning strategies based on synthetic data sharing
rather than trained model information. This approach could
improve collaboration and knowledge sharing among entities
while protecting sensitive information.
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