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Abstract—Competing risks in survival analysis pose a signifi-
cant challenge in healthcare, but few methods effectively address
this problem. Moreover, the use of deep learning techniques
remains limited, with the most prevalent approach, DeepHit,
being non-parametric. This often leads to limitations in inter-
pretability and statistical inference, which are crucial aspects.
We propose a new alternative that harnesses the power of
variational autoencoders and deep learning to tackle survival
analysis with competing risks within a parametric framework.
Our model, CR-SAVAE, allows direct interpretation of covari-
ate effects on survival outcomes and enables researchers to
perform robust statistical analysis compared to non-parametric
approaches, essential for understanding risk mechanisms and
making informed clinical decisions. It provides personalized
medicine insight by accurately estimating the cumulative inci-
dence function and avoiding the need for proportional hazards
assumptions inherent in other models. Through comprehensive
experiments on datasets with varying degrees of censoring and
competing risks, we demonstrate the potential of our approach
to achieve performance comparable to that of DeepHit based
on the concordance index and integrated Brier score. This
study highlights the potential of CR-SAVAE to advance survival
analysis, improve interpretability, and enable more accurate and
personalized clinical decision making in healthcare settings.

I. INTRODUCTION

Survival Analysis (SA) stands out as a key statistical tech-
nique widely used in a variety of disciplines, from medical
research to engineering. In essence, SA techniques focus on
predicting the time to the occurrence of an event of interest.
This area is critical in clinical research, as it allows us to assess
the efficacy of treatments, to understand the prognosis of the
patient, and to identify risk factors. Obtaining information
from SA is crucial to developing clinical guidelines, improving
patient care, and guiding future research.

However, traditional SA models, such as the Kaplan-Meier
(KM) estimator [1] or the Cox model [2], struggle with the
complexities of Competing Risks (CR). CR scenarios (e.g.,
different causes of death), in which patients are susceptible
to multiple potential events with interconnected probabilities,
are common in medical studies. Ignoring CR can lead to
biased estimates and erroneous interpretations, especially in
the evaluation of risk factors and event probabilities [3].
Therefore, specialized methodologies are crucial to effectively
address CR and ensure accurate inferences from survival data.

Consequently, the main approach is based on the Cu-
mulative Incidence Function (CIF) [4], and the Fine-Gray
(FG) [5] model is the most widely used. However, the FG
model, similar to the Cox model, relies on strong assumptions
about the underlying stochastic processes and the form of
the hazard function, which may not consistently align with
the complexities of real-world data. These constraints have
motivated the exploration of Deep Learning (DL) techniques
within the field of SA.

Despite the advances facilitated by DL in SA, as demon-
strated by DeepSurv [6] and SAVAE [7], its application in the
context of CR remains limited. A recent review by [8] that
analyzed 69 DL-based SA models highlighted that only nine
could handle CR. The most popular method is DeepHit [9],
which circumvents the proportional hazards assumption and
outperforms classical methods like FG. However, DeepHit’s
non-parametric nature results in estimated CIF curves for each
patient that lack an analytical expression and are purely nu-
merical, hindering statistical computation. Furthermore, these
CIF curves can exhibit significant variability between patients.
Although the existing literature includes another fully para-
metric DL alternative [10], it focuses on estimating individual
patient survival functions, not CIFs, which are crucial in CR
SA. As described in [11], using survival functions instead of
CIF introduces bias.

In light of the limitations mentioned and the early stage of
DL research in CR, we introduce a novel model, CR-SAVAE,
that addresses these critical gaps. CR-SAVAE empowers clin-
icians with precise and personalized survival predictions, fa-
cilitating informed clinical decision making and customized
treatment plans. Our key contributions are:

• Parametric approach for personalized medicine: Patient-
specific survival parameters for deeper insight and com-
plete statistical calculation (unlike DeepHit).

• Accurate CIF estimation: Direct estimation of CIF for im-
proved prediction accuracy (differentiating it from [10]).

• Flexible handling of time data: Efficiently handles con-
tinuous and discrete survival times, avoiding data loss
from discretization (unlike DeepHit, DeepComp [12], and
CRESA [13]).

• Robustness and flexibility: Models survival times and
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covariates with diverse distributions (independent of the
proportional hazards assumption), leading to more accu-
rate and robust predictions, unlike DeepHit, which uses
Concordance Index (C-index) training.

• Competitive performance: Demonstrates competitive per-
formance in terms of the C-index and the integrated Brier
Score (iBS) against DeepHit on real datasets.

II. BACKGROUND

A. Survival Analysis

SA predicts the time to an event, often death in clinical set-
tings. Given a dataset of N patients {xi, ti, li}Ni=1, each patient
i has a set of covariates xi (such as clinical, demographic or
genomic data) used for prediction, the time of event occurrence
ti, and li is the event label indicating right-censoring.

In single-risk SA, li is the event or censoring, represented as
0 or 1, respectively. Censoring may indicate that the patient has
not experienced the event during the time when the data were
collected, that the patient has left the study, etc. The survival
function S(t|x) = P (T > t|x) = 1 − F (t|x) predicts the
probability of an event given the covariates x, where F is the
Cumulative Distribution Function (CDF), and T the random
variable that models the survival time (we use capital T for the
random variable and t for its realizations). It meets three key
properties: (1) S(t = 0|x) = 1, that is, there is no event at the
study start; (2) limT→∞ S(T |x) = 1, all patients experience
the event eventually; (3) S is monotonically decreasing, i.e.,
it decreases as time increases (fewer patients remain). Note
that the second condition is hindered by the bias introduced
by censoring, since we cannot observe patients indefinitely.

However, a more realistic scenario involves CR, where
patients face multiple possible events. Here, li ∈ {0, 1, ..., L}
with L possible risks and censoring marked by 0. CR SA aims
to predict the survival time for each of the risks, which are
said to ”compete” among them because if one risk happens, the
rest cannot take place. Note that the Kaplan-Meier estimator
is known to be biased [11] in the presence of CR, so instead
of estimating S(t|x), CIF must be used:

CIFk(t|x) = P (T ≤ t, l = k|x). (1)

The CIF represents the probability of experiencing an event
k ∈ {1, 2, ..., L} before time t and any other event l ̸= k. The
sum of CIFs for all risks equals the incidence of all competing
events, and unlike single-risk settings, individual CIFs do not
need to reach 1 as time increases.

B. SAVAE

SA is heavily based on Cox-based models, but their limita-
tions, particularly the proportional hazards assumption, restrict
their applicability in complex real-world scenarios. While non-
parametric methods like DeepHit overcome this limitation,
they lack interpretability and analytical traceability. We pro-
pose SAVAE as a compelling alternative, providing flexibility
from non-parametric models while retaining the essential
aspects of parametric models. Unlike DeepHit, SAVAE allows
for fewer modeling restrictions and offers parametric benefits

Fig. 1. SAVAE model. The shadowed circle refers to the latent variable and
white circles refer to the observables. Note that the probabilities pθ1 (x|z) and
pθ2 (t|z) denote the generative models and qϕ(z|x) denotes the variational
approximation to the posterior, since the true posterior p(z|x) is unknown.

by selecting suitable survival distributions. Therefore, in our
research, we use SAVAE to harness its potential to address the
limitations of existing models.

SAVAE is a single-risk approach that leverages Variational
Autoencoders (VAEs) to predict the time-to-event distribution
based on covariates. It combines a latent variable z with
observed covariates x and time-to-event t. Using conditional
independence, two models, pθ1(x|z) and pθ2(t|z), are used to
jointly model the variable distribution. Effectively, knowing
z allows the independent generation of x and t. Through a
variational distribution qϕ(z|x), SAVAE estimates the predic-
tive distribution based on covariates, approximating the true
posterior p(z|t, x). The chosen distribution family and opti-
mized parameters determine the quality of the approximation.
SAVAE is depicted in Fig. 1. It has three loss components:

• DKL(q(z|x)||p(z)). Kullback-Leibler divergence: Mea-
sures the similarity between the latent space distribution
q(z|x) and a prior isotropic Gaussian distribution p(z),
where p and q denote probability density functions.

• Covariate reconstruction loss: Represents the log-
likelihood for each of the m covariates, p(xm|z), requir-
ing an appropriate distribution selection. SAVAE trains
using the negative log-likelihood for differentiability.

• Time reconstruction loss: Accounts for censoring by
considering only the uncensored time points (li = 1)
for log-likelihood calculation and censored time points
(li = 0) for survival function estimation:

log p(ti|zi) = I(li = 1) log p(ti|zi)+I(li = 0) logS(ti|zi)
(2)

where I is the indicator function. SAVAE is parametric,
which means that, given the covariates of a patient xi, it
outputs the parameters of the chosen time distribution for
that patient. Hence, it is possible to analytically obtain the
log-likelihood of that distribution, as well as the survival
function and any statistic that depends on the estimated
parameters.
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Thus, the total loss of SAVAE for N patients is expressed as:

LS =− 1

N

N∑
i=1

[
−DKL(q(zi|xi)||p(z)) +

∑
m

log p(xm
i |zi)

+I(li = 1) log p(ti|zi) + I(li = 0) logS(ti|zi)

]
(3)

III. COMPETING RISKS SAVAE

SAVAE can be extended to the CR setting by estimating the
joint survival function based on Eq. 1 and the Total Probability
Theorem:

S(t|x) =1− F (t|x) = 1− P (T ≤ t|x) = 1−
L∑

k=1

CIFk(t)

=1−
L∑

k=1

P (T ≤ t, l = k|x)

=1−
L∑

k=1

P (T ≤ t|l = k, x) · P (l = k|x),

(4)

which requires: (1) the conditional survival probability, P (T ≤
t|l = k, x), estimated using separate decoders for each risk,
trained with Eq. 2 for both censored and uncensored data; and
(2) the probability of risk P (l = k|x), estimated jointly with
the latent variable z using the SAVAE architecture.

Information about censored data is incorporated by exploit-
ing the fact that no event occurred before the censoring time
t. This is reflected in Eq. 5 for censored patients.

log (S(ti|xi)) = log

(
1−

L∑
k=1

CIFk(ti)

)
(5)

The CIF for each risk (Eq. 6) is then estimated by combining
the conditional survival probability and the risk probability.

CIFk(t) = P (T ≤ t|l = k, x) · P (l = k|x) (6)

To estimate the risk probability P (l = k|x), CR-SAVAE
uses a neural network classifier that takes the latent repre-
sentation z of the SAVAE architecture as input. The classifier
outputs pθ(l|z), representing the probability of each risk given
the latent representation of the patient. The classifier assumes a
categorical distribution and is trained using the log-likelihood
of this distribution, considering only uncensored patients (Eq.
7).

1

N

N∑
i=1

I(li ̸= 0) log p(li|zi) (7)

Fig. III visually compares the architectures of SAVAE and
CR-SAVAE, highlighting the additional components of CR-
SAVAE to handle competing risks. Notably, SAVAE becomes a
special case of CR-SAVAE in the single-risk setting, requiring
only a single decoder for time and omitting the risk classifier.

x E z ...

DC

DT1

DTL

C

Fig. 2. Schema comparing SAVAE and CR-SAVAE. Rectangles represent
Neural Networks, and shadowed elements are common to SAVAE and CR-
SAVAE. E means Encoder, z is the latent space, DC is the covariate decoder,
DTk is the time decoder for risk k estimation P (T ≤ t|l = k, x), and C is
the classifier estimating P (l = k|x). Note that SAVAE is CR-SAVAE with a
single risk and without classifier.

Hence, the total loss for CR-SAVAE is:

LCRS =− 1

N

N∑
i=1

[
−DKL(q(z|xi)||p(z)) +

∑
m

log p(xm
i |zi)

+

L∑
k=1

(
I(li = k) log p(ti|li = k, zi)

)
+I(li = 0) log

(
1−

M∑
k=1

CIFk(ti)

)

+I(li ̸= 0) log pθ(li|zi)

]
(8)

where we note that the differences to SAVAE lie in time
estimation, as the KL term and the covariates reconstruction
loss are identical to SAVAE loss (3). Finally, note that accord-
ing to (1), once we have estimated P (T ≤ t|l = k, x) and
P (l = k|x), we can estimate the CIF as in (6), which will be
needed to calculate the performance metrics.

IV. EMPIRICAL VALIDATION

To test the performance of CR-SAVAE, we run a
benchmark on three publicly available datasets. The code
and datasets needed to replicate our results are avail-
able at https://github.com/Patricia-A-Apellaniz/cr-savae. These
datasets are:

• Melanoma. It contains 205 patients who had malignant
melanoma and underwent surgery at the University Hos-
pital of Odense (Denmark) between 1962 and 1977. For
each patient, the dataset collects 7 covariates, such as age,
sex, tumor thickness, and whether it was ulcerated or not.
There are two competing risks: dying from melanoma and
dying from other causes.

• MGUS2. This dataset contains 1, 348 patients who
had monoclonal gammopathy of unknown significance
(MGUS). Each patient has 5 covariates and there are two
competing risks: evolution of the situation to plasma cell
malignancy, or death related to other causes.

• EBMT. It contains 8, 966 transplanted patients from the
European Society for Blood and Marrow Transplantation
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TABLE I
DATASETS USED FOR BENCHMARKING

Name CR Risk proportion
Melanoma 2 0.65/0.28/0.07
MGUS2 2 0.29/0.08/0.63
EBMT 6 0.63/0.13/0.09/0.02/0.02/0.01/0.1

The study includes diverse CR scenarios (quantity and proportion),
alongside censored patients (first position proportion), demonstrating

CR-SAVAE’s performance across different data settings.

(EBMT), each with 5 covariates. We randomly sam-
pled 1, 000 patients for our benchmark. There are six
competing risks in this dataset, which are death from
relapse, Graft-Versus-Host-Disease, bacterial infection,
viral infection, fungal infection, or other cause of death.

A summary of each dataset can be seen in Table I, where we
emphasize that they have been chosen to represent different
conditions in real medical datasets: having two or more risks,
different levels of censoring and a marked imbalance between
risks. We use 5-fold cross-validation for every dataset, using
an 80% of the data to train the algorithms, and another 20%
to obtain the results in the article. For CR-SAVAE, we model
the time using a Weibull distribution. This means that each
time decoder outputs the scale parameter λ > 0 and the shape
parameter α > 0. The log-likelihood and survival function for
the Weibull distribution are:

log p(t) = log(α)− log(λ) + (α− 1) log

(
t

λ

)
−
(
t

λ

)α

logS(t) = −
(
t

λ

)α

(9)

We remark that CR-SAVAE is a parametric method, where
it is possible to change the time distribution to any other
distribution, as long as the log-likelihood and the survival
function are differentiable. Although we have chosen the
Weibull distribution because it does not assume proportional
hazards, other distributions like Log-Normal, Inverse Gaus-
sian, and more can be used. This highlights the advantage of
CR-SAVAE: being fully parametric, we can change the time
distribution to the one desired and obtain parameter estimates
for each patient.

As a concrete example with the Weibull time distribution,
after training CR-SAVAE, we can input the covariates of a
patient xi and obtain (αi, λi) for each of the k risks, as well
as θk, the probability of each risk for that concrete patient.
Then, we can compute the analytical, personalized CIF as
CIFk(t) = (1−e(−t/λi)

αi
)θk. Since CR-SAVAE estimates the

distribution parameters, we can obtain not only the CIF curve,
but any statistic that depends on these parameters, yielding
personalized predictions for each individual patient.

Regarding the VAE parameters, we use a latent dimension
of 5 and hidden layers consisting of 64 neurons. We train using
minibatches of 32 patients and opted for the Adam optimizer
with a learning rate of 1e− 3. We train using a maximum of

TABLE II
MELANOMA. RESULTS OBTAINED COMPARING DEEPHIT AND CR-SAVAE

Risk Method C-index iBS
1 CR-SAVAE 0.6318± 0.0731 0.2415± 0.0291
1 DeepHit 0.666± 0.0303 0.2929± 0.0198
2 CR-SAVAE 0.632± 0.0963 0.322± 0.1432
2 DeepHit 0.6848± 0.1243 0.1876± 0.0469

Data is average ± standard deviation. A two-sided unequal variance
T-Test [17] comparing the means of every metric and the risk yields a
p-value higher than 0.01, which means that neither of the two methods

tested is significantly better than the other.

2000 iterations, but if the validation loss does not improve in
30 epochs, we early stop the training.

To evaluate the performance of CR-SAVAE we compared
it with DeepHit in terms of the time-dependent C-index [14]
and the iBS [15].

1) The C-index assesses the concordance between the CIF
predicted by a patient at event time and that of unexperienced
patients, considering the event timing and censoring. The C-
index is calculated as

Cindex ≈

∑
i ̸=j Ak,i,j · I

(
CIFk(t|xi) ≤ CIFk(t|xj)

)
∑

i ̸=j Ak,i,j
,

(10)

where Ak,i,j is the indicator function of comparable pairs (i, j)
for the event k.

2) The iBS measures the overall discrepancy between the
predicted and observed CIFs for each patient over time,
considering the possibility of multiple events. Being G(·) the
survival function corresponding to censoring and 1/G(t) the
Inverse Probability of Censoring Weighting (IPCW) [16], the
iBS is calculated as iBS(tmax) =

1
tmax

∫ tmax

0
BS(t)dt, where

BS(t) is defined as

BS(t) =
1

N

N∑
i=1

[
(1− CIFk(t|xi))

2/G(ti)

·I(ti < t, di = 1) + (CIFk(t|xi))
2/G(t) · I(ti ≥ t)

] (11)

The results of CR-SAVAE compared to DeepHit can be seen
in Tables II, III and IV, where we report the average metric
across folds, plus the standard deviation. For each triplet of
dataset, risk and metric, we run an unequal variance T-test [17]
to check whether the means of DeepHit and our model were

TABLE III
MGUS2. RESULTS OBTAINED COMPARING DEEPHIT AND CR-SAVAE

Risk Method C-index iBS
1 CR-SAVAE 0.6369± 0.0446 0.3403± 0.0972
1 DeepHit 0.5919± 0.0478 0.2686± 0.0617
2 CR-SAVAE 0.5672± 0.0427 0.3505± 0.027
2 DeepHit 0.6359± 0.0174 0.1865± 0.0823

Data is average ± standard deviation. A two-sided unequal variance
T-Test [17] comparing the means of every metric and the risk yields a
p-value higher than 0.01, which means that neither of the two methods

tested is significantly better than the other.
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TABLE IV
EMBG. RESULTS OBTAINED COMPARING DEEPHIT AND CR-SAVAE

Risk Method C-index iBS
1 CR-SAVAE 0.5645± 0.0333 0.2459± 0.0231
1 DeepHit 0.57± 0.029 0.257± 0.0257
2 CR-SAVAE 0.5737± 0.0612 0.2592± 0.0184
2 DeepHit 0.5248± 0.0263 0.2489± 0.024
3 CR-SAVAE 0.5867± 0.096 0.1987± 0.0135
3 DeepHit 0.7106± 0.1197 0.1647± 0.0155
4 CR-SAVAE 0.5729± 0.0567 0.2006± 0.0176
4 DeepHit 0.7108± 0.1246 0.1811± 0.0229
5 CR-SAVAE 0.7411± 0.1111 0.2± 0.0092
5 DeepHit 0.6007± 0.0796 0.1649± 0.0219
6 CR-SAVAE 0.5519± 0.0214 0.2363± 0.02
6 DeepHit 0.5946± 0.0408 0.2683± 0.0208

Data is average ± standard deviation. A two-sided unequal variance
T-Test [17] comparing the means of every metric and the risk yields a
p-value higher than 0.01, which means that neither of the two methods

tested is significantly better than the other.

significantly different, and we found no significant evidence
of this (i.e. p-values higher than 0.01). This means that CR-
SAVAE is a viable alternative to DeepHit in the CR SA setting,
since it provides similar metrics and is also a parametric
method, such as [10]. Since DeepHit is non-parametric, it
may provide higher metrics results compared to a parametric
alternative, as highlighted in [9]. In fact, parametric methods
are considered to provide good results when they match the
performance of DeepHit, as shown in [10]. Thus, our proposed
CR-SAVAE provides very promising results, matching the
performance of a non-parametric method as DeepHit, with all
the advantages of being parametric: it facilitates hypothesis
testing, confidence interval estimation, and other statistical
analysis. DeepHit’s approach lacks this interpretability.

V. CONCLUSIONS

CR-SAVAE, a parametric competing risk survival analysis
model, demonstrates performance comparable to DeepHit, a
widely used non-parametric model, on metrics like the C-index
and iBS. However, the parametric nature of CR-SAVAE offers
significant advantages. CR-SAVAE supports rigorous statisti-
cal analysis, including hypothesis testing, confidence interval
estimation, and other procedures essential for research and
decision-making. Moreover, our model accurately estimates
the cumulative incidence function and robustly handles both
continuous and discrete time data. This flexibility expands
its potential in real-world healthcare settings. Furthermore,
its parametric structure also offers computational advantages
compared to non-parametric approaches. Future research aims
to leverage the VAE architecture of CR-SAVAE for broader
healthcare applications. Potential directions include using the
latent space for patient clustering and synthesized patient data
generation, further expanding the utility of the model beyond
traditional SA. Furthermore, investigating explainability using
standard techniques such as SAGE [18] would significantly
improve the interpretability of the model, a critical priority in
artificial intelligence in healthcare.
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