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A B S T R A C T

Estimating treatment effects from observational data in medicine using causal inference is a very relevant task
due to the abundance of observational data and the ethical and cost implications of conducting randomized
experiments or experimental interventions. However, how could we estimate the effect of a treatment in
a hospital that has very restricted access to treatment? In this paper, we want to address the problem of
distributed causal inference, where hospitals not only have different distributions of patients, but also different
treatment assignment criteria. Furthermore, it is necessary to take into account that due to privacy restrictions,
personal patient data cannot be shared between hospitals. To address this problem, we propose an adaptation
of the federated learning algorithm FederatedAveraging to one of the most advanced models for the
prediction of treatment effects based on neural networks, TEDVAE. Our algorithm adaptation takes into
account the shift in the treatment distribution between hospitals and is therefore called Propensity Weighted
FederatedAveraging (PW FedAvg). As the distributions of the assignment of treatments become more
unbalanced between the nodes, the estimation of causal effects becomes more challenging. The experiments
show that PW FedAvg manages to reduce errors in the estimation of individual causal effects when imbalances
are large, compared to Vanilla FedAvg and other federated learning-based causal inference algorithms based
on the application of federated learning to linear parametric models, Gaussian Processes and Random Fourier
Features.
1. Introduction

Causal inference is the task of estimating the effect of a variable
(treatment) on a target variable with observational data, which is chal-
lenging due to the misspecification of the causal graph in real data [1,
2]. In particular, the variables that causally determine the treatment
variable can bias the estimation if not considered properly [3].

This definition of causal inference is particularly useful to under-
stand why it is so important in healthcare: it allows one to evaluate
a drug without conducting random control trials (RCTs), which are
usually too expensive and unethical; that is, observational data do not
modify the treatment assignment criteria of physicians. These criteria
depend on the characteristics of the patient (covariates and other
unobserved features).

We are interested in a particular case in which treatment assignment
criteria can also depend on external factors in distributed environments.
That is, settings in which there are several hospitals which act as data
processing information nodes, and the selection treatment criteria is
different in each node. More specifically, we are interested in the prob-
lem of prediction of causal effects of a binary treatment, without having
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a causal graph available when the data are tabular, with numerical
covariates and outcome.

Suppose that we are trying to evaluate the efficiency of a new
medication in several hospitals, but some of these hospitals have re-
strictions in that treatment supply due to the scarcity of that drug (for
example, imagine undeveloped countries with very limited resources).
In that case, doctors will prescribe this drug to a very small number
of patients. However, in hospitals that do not have restrictions on drug
availability (in developed countries), the criterion for treatment assign-
ment is different, and the number of treated patients will be higher.
This imbalance between treated and control patients is a distribution
shift [4] that we call propensity score shift.

This problem could be solved by combining the data of all hospitals,
taking into account the hospital to each patient, and using causal infer-
ence methods. However, for medical purposes, this process is usually
not possible, since privacy restrictions do not allow us to share explicit
data about patients.

After studying current local causal inference techniques and ap-
proaches for distributed privacy-constrained learning, in this paper, we
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propose a framework that combines federated learning with variational
disentangled models to address this challenge. Specifically, we adopt
Federated Averaging (FedAvg) [5], and use TEDVAE (Treatment
Effect with Disentangled Variational Autoencoder) [6] a model of
causal inference that achieves good performance in the estimation of
treatment effects due to the partial discovery of the causal graph due
to the disentanglement of the latent space of a variational autoencoder,
for the estimation of the treatment effect. However, as we explain in
Section 3.1, some biases can arise in the estimation of causal effects
due to the heterogeneity of the treatment assignment in different nodes.
To mitigate the biases of the imbalanced treatment assignment criteria,
an adaptation of FedAvg has been developed, which is the focus of
this article and is called Propensity Weighted FedAvg. This adaptation
achieves better performance than the standard application of FedAvg
and other federated learning-based causal inference algorithms based
on the application of federated learning on linear parametric models,
Gaussian Processes and Random Fourier Features, as we show in Sec-
tion 4 by conducting experiments in semi-synthetic causal inference
datasets in which we modify the imbalance in treatment assignment
distribution between nodes.

Associated with privacy, FedAvg aligns with privacy regulations
in the sense that it maintains user data at their local nodes, without
sharing individual-level data [7]. Therefore, the privacy restrictions
taken into account in this paper imply that individual patient feature
data are not shared. However, its preservation of privacy is not ab-
solute; there is a potential for indirect data leakage through shared
model updates. This limitation requires additional actions such as
differential privacy [8] or encryption [9] to strengthen its compliance
with stringent privacy laws and standards, which is part of the future
work of this paper.

1.1. Related work

In the realm of classical causal inference, one of the most common
strategies to address the prediction of binary treatment effects is the
use of propensity score to mitigate observational biases. In [10], the
reader can find a collection of propensity score methods that have
formed one of the bases of the causal inference field. Among these, we
can find: propensity score weighting, which gives more importance to
the less represented group (between treated and control) to compute
causal effects; propensity score matching [11], which finds similarities
between individuals in the covariate space and computes the average
causal effect by subtracting the outcome of a treated patient and the
outcome of the more similar control patient, and propensity score
stratification [12], which makes subgroups of patients with similar
propensity scores and computes causal effects within each group. How-
ever, all these methods are designed to compute Average Treatment
Effects (ATEs); [13] proposes an extension to estimate heterogeneous
treatment effects. More recent advances include techniques such as
causal forests [14–16], which are an extension of the random forest
algorithm, designed specifically for estimating heterogeneous treat-
ment effects, utilizing a large number of decision trees to model the
variance in treatment effects across different subpopulations; doubly-
robust estimation [17,18] which ensures consistency in ATE estimation
when the potential outcome regression or propensity score estima-
tion is consistent; targeted learning and regularization [19–21], which
performs an iterative process in which potential outcomes are pre-
dicted in one step and a regression is performed on clever variables
calculated from an estimation of the propensity score in other step
and when the contributions of the clever covariates tends to zero,
the model is asymptotically doubly-robust.; Bayesian Additive Regres-
sion Trees (BART) [22,23], using Bayesian non-parametrics for flexible
modeling of outcomes, particularly effective in estimating complex
causal effects; model agnostic algorithms known as meta-learners [24],
which are algorithms to compute individual causal effects and can
2

be adapted to any regression model; balancing representations [25],
which leverages nonlinear representation learning, and neural network-
based approaches such as Treatment-Agnostic Representation Network
(TARNet) (used as module of TEDVAE) [26,27] SITE [28], which
uses neural network representation learning to balance distributions
and [29], which merges the ideas of multi-head learning of TARNet
with targeted learning.

Generative models have also gained attention. CEVAE [30] proposes
the use of a variational autoencoder (VAE) to infer substitute con-
founders and latent information from the covariates; TEDVAE [6] aims
to disentangle the covariates into several latent factors that affect only
treatment, only outcome, or both (confounders) and Intact-VAE [31]
proposes an adaptation of identifiable VAE [32] for causal inference in
the presence of hidden confounders. Generative Adversarial Networks
(GANs) have also been used to infer the distribution of counterfactual
outcomes [33,34].

On the other hand, federated learning [5] has been one of the most
recognized approaches to address decentralized privacy-constrained
training, which is especially interesting in healthcare [35]. In line
with our purposes, [36] study the convergence behavior of federated
learning in non-IID settings, providing insight into how the algorithm
performs when data are unevenly distributed across nodes, and [37]
address robustness, exploring techniques to enhance the reliability of
federated learning under non-IID conditions.

In the federated causal inference domain, various techniques have
been explored, such as parametric linear models [38], which have the
disadvantage of not being able to model complex relationships between
variables and individual heterogeneous effects; Collaborative Linked
Analysis [39], which shares summary statistics to compute average
effects in a communication efficient manner, but does not compute
individual effects, or aggregation techniques [40] which consist of
weighting the estimands by a density ratio to address heterogeneity
across nodes, but only achieves the estimation of average treatment
effects. In [41], an adaptation of Gaussian processes (GP) is studied
to estimate individual causal effects and the application of federated
learning; however, this approach has scalability problems and does not
account for heterogeneity between nodes. Lastly, [42] proposes the
application of Random Fourier Features (RFF), which employs adap-
tive kernel functions to estimate individual effects under unobserved
confounding and the presence of proxy variables, although the hidden
confounding is outside of the scope of this paper. To our knowledge,
only in [42], dissimilarities in the data distribution of the nodes are
considered for estimating individual treatment effects.

During our experiments, we will compare with FedCI and CausalRFF
because they are methods designed to estimate individual effects, as
is our adaptation of TEDVAE. In addition, we will include the work
of [38] because it includes in his article a detailed and clear analytical
work and is indisputably one of the starting points of federated causal
inference.

1.2. Contributions

In our work, we build on these advances and tailor our approach
to the specific challenges of estimating treatment effects in privacy-
constrained distributed settings, where treatment assignment criteria
are different in distinct nodes.

Specifically, the contribution of this paper is threefold:

• We expose the idea of applying federated averaging to an ad-
vanced causal inference models (TEDVAE) and analyze its limita-
tions in cases where the distribution of treatments is unbalanced.
Note that this case is the study of Vanilla FedAvg.

• We develop a modification of FedAvg, called Propensity Weighted
FedAvg, which accounts for the propensity score shift and weights
in a specific manner the outcome regressors. We show that this
method outperforms the standard implementation of FedAvg and

other state-of-the-art methods.
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• We propose a method to evaluate the performance of the different
distributed methods in imbalanced environments. The method
consists in gradually increasing the imbalance in treated/control
patients in each node and evaluating the causal estimation (using
PEHE, introduced in §4) in each node separately, accounting
for the performance degradation at each level of imbalance and
comparing this performance with the centralized model in which
one model is trained with all available data and with isolated
models, where the nodes do not share any information and only
train their models with their local data, as shown in Fig. 7.

Finally, it should be noted that a conference version of our algo-
ithm can be found in [43], where the FedAvg adaptation is proposed

and preliminary results are given. In this publication, an extended
mathematical justification of the algorithm and more detailed results
are given, more scenarios where the imbalances are highlighted, and
the algorithm is tested on more benchmarking datasets.

2. Problem definition

2.1. Local causal inference

Causal inference is a very general concept, generally referring to
the task of solving any type of causal query, from the perspective of
intervention, observation, or control [44]. In our case, we focus on
the task of estimating the effect of treatment on observational data,
since making interventions is usually very costly and even unethical in
medicine.

Consider the data set  = {𝐗𝑖, 𝑇𝑖, 𝑌𝑖}𝑁𝑖=1, where the subindex 𝑖 ∈
 = {1,… , 𝑁} represents the indices of individuals, and 𝑁 = || is
he total number of data points in the data set. Assume that the samples
re i.i.d. observations:  𝑖𝑖𝑑∼ P. In this notation, 𝐗𝑖 ∈ R𝐷𝑥 is a vector of
ovariates (𝐷𝑥 is the number of covariates), 𝑇𝑖 ∈ {0, 1} is the treatment,
nd 𝑌𝑖 ∈ R represents the outcome. Let us also define the Individual
reatment Effect of 𝑇𝑖 on 𝑌𝑖 (𝐼𝑇𝐸 ≡ 𝜏𝑖), following the Neyman–Rubin
otential outcome framework [45], as: 𝜏𝑖 ≡ 𝑌𝑖(𝑇𝑖 = 1) − 𝑌𝑖(𝑇𝑖 = 0).

Conventional causal inference methods [11–15,17,19,22,23,25–28,
5–47] estimate individual conditioning (ITE) and/or average treat-
ent effect (ATE) on covariates, assuming that the data generation
rocess meets the standard causal inference assumptions: (1) uncon-
oundedness, (2) positivity, (3) consistency, and (4) no interference;
ollowing the backdoor criterion [48]:

𝜏(𝐱𝑖) = E[𝑌 |𝑇 = 1,𝐗 = 𝐱𝑖] − E[𝑌 |𝑇 = 0,𝐗 = 𝐱𝑖]
�̂� 𝐸 = E𝐗[E[𝑌 |𝑇 = 1,𝐗 = 𝐱𝑖] − E[𝑌 |𝑇 = 0,𝐗 = 𝐱𝑖]]

(1)

The backdoor criterion consists in conditioning on the variables that
block all backdoor paths between the treatment and the target variable
in the causal graph. Since the causal graph is usually unknown in real
data, conditioning on all covariates can lead to an error by opening
backdoor paths or increasing the variance of the estimator.

The model selected in this paper for local causal inference, TEDVAE,
is shown in Fig. 1. The first stage of this model consists of three
encoders (𝐸𝑇 , 𝐸𝐶 , 𝐸𝑌 ) with the objective of making a partial discovery
of the causal graph by disentangling the latent space, isolating the risk
variables (variables that affect only the outcome: 𝐳𝑦), the confounders
(variables that affect both the assignment of treatment and the out-
come: 𝐳𝑐) and the instrumental variables (variables that only affect the
assignment of treatment: 𝐳𝑡) [49].

Then, from the latent space, three tasks have to be solved: (1)
prediction of treatment assignment through a classificator 𝐶𝑇 , (2)
reconstruction of covariates through a decoder 𝐷, and (3) prediction of
potential outcomes through a well-known causal inference model called
TARNet (Treatment-Agnostic Representation Network) [26]. TARNet
consists of several shared layers (𝐹𝐶 from fully connected), which
are updated for all the datapoints in the training process, and two
heads, one for each potential outcome, which are only updated for
3

v

control/treated individuals, respectively: 𝑅𝑒𝑔𝑌 0 is a regressor used to
predict the outcome without treatment, and 𝑅𝑒𝑔𝑌 1 is used only to
predict the outcome in the treated.

The three components of the latent space must be informative to
reconstruct the covariates, but only instrumental variables and con-
founders are used to predict the assignment of treatment in the clas-
sifier 𝐶𝑇 , and only confounders and risk variables are used to predict
the outcome in TARNet. This is how disentanglement is encouraged.

By conditioning only on confounders and risk variables (Fig. 2),
instead of conditioning on all covariates, both the bias and the variance
of the estimation of treatment effects are reduced [50,51].

To achieve this, in the first place, TEDVAE proposes a modifica-
tion of the standard Evidence Lower Bound (ELBO) [52], which is
composed of an error of covariate reconstruction and three Kullback–
Leibler (𝐷𝐾𝐿) divergence terms, where the priors selected are isotropic
Gaussians (𝑝𝜃 (𝐳) ∼  (𝟎, 𝐈), for 𝐳𝑡, 𝐳𝑐 , 𝐳𝑦), since 𝐷𝐾𝐿 has an analytic
expression.

𝑙ELBO(𝐱, 𝑦, 𝑡;𝛩) = E𝑞𝜙𝐶 𝑞𝜙𝑇 𝑞𝜙𝑌

[

log 𝑝𝜃
(

𝐱 ∣ 𝐳𝑡, 𝐳𝑐 , 𝐳𝑦
)]

− 𝐷𝐾𝐿

(

𝑞𝜙𝑇
(

𝐳𝑡 ∣ 𝐱
)

∥ 𝑝𝜃𝑡
(

𝐳𝑡
)

)

− 𝐷𝐾𝐿

(

𝑞𝜙𝐶
(

𝐳𝑐 ∣ 𝐱
)

∥ 𝑝𝜃𝑐
(

𝐳𝑐
)

)

− 𝐷𝐾𝐿

(

𝑞𝜙𝑌
(

𝐳𝑦 ∣ 𝐱
)

∥ 𝑝𝜃𝑦
(

𝐳𝑦
)

)

(2)

In addition, the objective function of TEDVAE (𝐿TEDVAE) includes
the loss of prediction of treatment and the potential outcomes, respec-
tively.

𝐿TEDVAE(𝛺;) =𝑙ELBO(𝐱𝑖, 𝑦𝑖, 𝑡𝑖;𝛩)

+ 𝛼𝑡E𝑞𝜙𝑇 𝑞𝜙𝐶

[

log 𝑝𝜑𝑡

(

𝑡𝑖 ∣ 𝐳𝑡,𝑖, 𝐳𝑐,𝑖
)

]

+ 𝛼𝑦E𝑞𝜙𝑌 𝑞𝜙𝐶

[

log 𝑝𝜑𝑦

(

𝑦𝑖 ∣ 𝑡𝑖, 𝐳𝑐,𝑖, 𝐳𝑦,𝑖
)

]

(3)

The terms 𝛼𝑡, 𝛼𝑦 ∈ R+ are hyperparameters, that have to be adapted to
encourage disentanglement. Note that the regressors of the potential
outcomes are only updated for treated and control patients, respec-
tively, since we assume that the potential outcome follows the next
Gaussian distribution:

𝑝𝜑𝑦
(𝑦𝑖|𝑡𝑖, 𝐳𝑐,𝑖, 𝐳𝑦,𝑖) =

1

�̂�𝑖
√

2𝜋
𝑒−(𝑥−�̂�𝑖)

2∕2�̂�2𝑖 (4)

here (�̂�𝑖, �̂�𝑖) = 𝑡𝑖 ⋅ 𝑓𝜑𝑌 1
(𝑓𝜑𝑦

(𝐳𝑐,𝑖, 𝐳𝑦,𝑖)) + (1 − 𝑡𝑖) ⋅ 𝑓𝜑𝑌 0
(𝑓𝜑𝑦

(𝐳𝑐,𝑖, 𝐳𝑦,𝑖)).

.2. Distributed causal inference

Suppose that we have 𝐾 information processing nodes, each 𝑘 ∈
1, ..., 𝐾} node with a data set (𝑘) = {𝐗(𝑘)

𝑖 , 𝑇 (𝑘)
𝑖 , 𝑌 (𝑘)

𝑖 }𝑖∈(𝑘)⊂, where
(𝑘) is the set of patient indices, 𝑁 (𝑘) = |(𝑘)

| is the number of samples
rom node 𝑘 and 𝑁 =

∑𝐾
𝑘=1 𝑁

(𝑘), where 𝑁 is the total number of
atients. There are no repeated patients: (𝑘)∩(𝑗) = ∅. Furthermore,
(𝑘)
𝑖 ∈ R𝐷𝑥𝑘 , where 𝐷𝑥𝑘 is the number of covariates of each node,
(𝑘)
𝑖 ∈ {0, 1} and 𝑌 (𝑘)

𝑖 ∈ R. The sets of patient indices treated and control
untreated) patients of node 𝑘 are  (𝑘) and (𝑘). The number of treated
nd control patients in each node is 𝑁 (𝑘)

𝑇 = | (𝑘)
| and 𝑁 (𝑘)

𝐶 = |(𝑘)
|,

espectively. The union of treated and control patients represents all
atients in that node: (𝑘) ∪  (𝑘) = (𝑘).

The objective of federated learning applied to causal inference is
o improve the performance of the prediction of causal effects of a
reatment, having the data distributed in several information processing
odes, where particular information about individuals cannot be shared
ue to privacy constraints. Therefore, the model of node 𝑘 does not
ave access to any datapoint of node 𝑗 when 𝑘 ≠ 𝑗.

Data collected at the different nodes can be distributed non-identic-
lly ((𝑗) 𝑖𝑖𝑑∼ P(𝑗), (𝑘) 𝑖𝑖𝑑∼ P(𝑘), P(𝑗) ≠ P(𝑘), with 𝑗, 𝑘 ∈ {1,… , 𝐾}, 𝑗 ≠
). Let us define three conditions related to the distribution of the
ariables, to study in distributed causal inference [38]:
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Fig. 1. TEDVAE local model. ◦ represents sampling and ⊗ the product. Gray boxes belong to VAE (with parameters 𝛩). The rounded blue box with 𝑓 (𝑥) represents the factor
to train each head of TARNet separately: 𝑅𝑒𝑔𝑌 0 only is updated for individuals with 𝑇 = 0 and 𝑅𝑒𝑔𝑌 1 only is updated for individuals with 𝑇 = 1. Since the whole model can
be considered as a neural network as well, all the boxes will be referenced in this text as modules of the whole network. 𝑀 ∶ 𝜗 express the name of the module (𝑀) and its
parameters (𝜗). The output of any module 𝑀 with parameters 𝜗 with input 𝐱𝑖 is expressed as 𝑓𝜗(𝐱𝑖).
Fig. 2. TEDAVE causal graph.

Condition 1. The set of covariates is the same in all nodes: 𝐷𝑥𝑗 = 𝐷𝑥𝑘,
∀𝑗 ≠ 𝑘.

Condition 2. The covariate distribution is stable between nodes:
𝑝(𝑗)(𝐗) = 𝑝(𝑘)(𝐗), ∀𝑗 ≠ 𝑘.

Condition 3. The propensity score is stable between nodes:
𝑝(𝑗)(𝑇 |𝐗) = 𝑝(𝑘)(𝑇 |𝐗), ∀𝑗 ≠ 𝑘.

2.3. Conditions of our problem

In this text, we assume that Condition 1 holds, but not necessarily
Conditions 2 and 3. We want to focus on a scenario in which some
underdeveloped countries do not have access to some drugs. This
strategy can help estimate the effect of a treatment from data in
developed countries. This imbalance causes very important changes in
the propensity score and in the distribution of covariates.

In addition, we assume that the classical assumptions of causal
inference are satisfied for the joint dataset  = {𝐗𝑖, 𝑇𝑖, 𝑌𝑖}𝑁𝑖=1 ∼ P𝑑𝑎𝑡𝑎.
Ideally, the causal effects of 𝑇 on the outcome could be estimated
from the union of all datasets, as if all data were located in the same
centralized node.

However, we consider that individual-level data cannot be shared
between nodes, so this joint distribution is not available in each node.
Due to the distribution shift across nodes, the estimated causal effect
will be different in each node, and none of them will have to coincide
with the estimate in the centralized case (see Fig. 3).

Furthermore, the decentralization of information implies that the
number of samples in each node is less than the total number of
samples, which increases the variance of the estimators in datasets
with a limited number of samples. We must take into account that due
to propensity score shift, it is more difficult to meet the assumption of
positivity in each isolated node even when the assumption is met for
the entire dataset .
4

Fig. 3. Schema of treatment imbalance in nodes. Our method is designed to address
imbalances in the assignment of treatment between nodes. We assume that the entire
population meets the standard assumptions of causal inference and that the proportion
of treated and control patients is balanced. However, by dividing the population into
different nodes, these conditions are violated.

3. Method of federated learning for causal inference

Definitions. Let us define some terms for the explanation of this
section: the parameters of neural networks are expressed in Greek
letters, as Fig. 1 shows. Each box in Fig. 1 is a neural network. The
letter 𝛺(𝑘) refers to the set of all the parameters of the neural network
model (TEDVAE) of node 𝑘 and 𝛺 = {𝛺(1),… , 𝛺(𝑘)} refers to the set of
parameters of the models of all nodes. Let us define the parameters of
the VAE as 𝛩(𝑘) = {𝜙(𝑘)

𝑇 , 𝜙(𝑘)
𝐶 , 𝜙(𝑘)

𝑌 , 𝜃(𝑘)}, and the set of all parameters in
node 𝑘 is 𝛺(𝑘) = {𝛩(𝑘), 𝜑(𝑘)

𝑇 , 𝜑(𝑘)
𝑌 , 𝜑(𝑘)

𝑌 1, 𝜑
(𝑘)
𝑌 0}.

We also include the concept of central server, which is a node that
coordinates the averaging process. The superscript 𝑆 refers to the server
parameters. Furthermore, consider that 𝑁𝑆

𝑇 and 𝑁𝑆
𝐶 are the sum of

treated and control patients in all nodes, respectively: 𝑁𝑆
𝑇 =

∑

𝑘 𝑁
(𝑘)
𝑇

and 𝑁𝑆
𝐶 =

∑

𝑘 𝑁
(𝑘)
𝐶 .

Methodology. We propose applying FedAvg with a star topology
as presented in Fig. 4, to our local causal inference model, TEDVAE, to
improve performance in the prediction of treatment effects.
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Fig. 4. FedAvg schema.

The prediction problem in federated learning has a global objective
function to minimize:

(𝛺;) ≡
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝐿(𝑘)

TEDVAE(𝛺
(𝑘);(𝑘)) (5)

where 𝐿(𝑘)
TEDVAE is the objective function of the local nodes.

To minimize the global function, FedAvg computes several iter-
ations (𝑛𝑟𝑜𝑢𝑛𝑑𝑠 iterations) composed of two stages: (1) local models
train several epochs locally (𝑛𝑙𝑜𝑐𝑎𝑙 epochs), (2) local nodes send their
parameters to a server, which makes an average and re-send them to
the nodes.

𝛺𝑆
𝑡+1 =

𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝛺(𝑘)

𝑡+1 (6)

3.1. Limitation of FedAvg

FedAvg has demonstrated robustness and convergence guarantees
in convex problems [5]. When data is IID in the nodes, the weights that
reduce the variance and the bias of the training process are proportional
to the number of samples of each node, as shown in Eq. (6) [53].
However, the violations of Conditions 2 and 3 make the data non-
IID due to propensity score shift, so the divergence between centralized
weights and averaged weights is greater than in IID setting [54].

Although the performance of standard FedAvg has been satisfac-
tory compared to other Federated methods for Causal Inference, we
have found that we can improve training by introducing a specific
adaptation to deal with unbalanced treatment assignment criteria.

The intuition is as follows. The averaging process in FedAvg is
computed by weighting the parameters of each node by the number
of samples in that node. This averaging gives more weight to the
parameters of the model with less variance, in order to reduce the
variance of the averaged estimator. However, our causal inference
model includes two regressors to predict both potential outcomes: 𝑅𝑒𝑔0
to predict 𝑌 (𝑇 = 0) and 𝑅𝑒𝑔1 to predict 𝑌 (𝑇 = 1). These regressors are
only updated for control and treated patients, respectively. Therefore,
its variance is inversely proportional to the number of control and
treated patients, rather than the total number of samples at each node.
In our setting, the data are non-IID, specifically, there is propensity score
shift. As the imbalance in the propensity score increases, the difference
between training samples in those regressors becomes larger, though
the number of samples in each node was the same.
5

To clarify this premise, let us develop the global function, particu-
larizing the objective function of TEDVAE.

(𝛺;) ≡
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝐿(𝑘)

TEDVAE(𝛺
(𝑘);(𝑘))

=
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁

{

𝑙ELBO (𝐱(𝑘)𝑖 , 𝑦(𝑘)𝑖 , 𝑡(𝑘)𝑖 ;𝛩(𝑘))

+ 1
𝑁 (𝑘)

∑

𝑖∈(𝑘)

𝛼𝑡
[

log 𝑝(𝑘)𝜑𝑇

(

𝑡(𝑘)𝑖 ∣ 𝐳(𝑘)𝑡,𝑖 , 𝐳
(𝑘)
𝑐,𝑖

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑇 (𝜑

(𝑘)
𝑇 ,𝜙(𝑘)𝑇 ,𝜙(𝑘)𝐶 ;(𝑘))

+ 1
𝑁 (𝑘)

𝑇

∑

𝑖∈ (𝑘)

𝛼𝑦 log 𝑝(𝑘)𝜑𝑌 1
(𝑦(𝑘)𝑖 |𝑡(𝑘)𝑖 = 1, 𝐳(𝑘)𝑐,𝑖 , 𝐳

(𝑘)
𝑦,𝑖 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑌 1(𝜑

(𝑘)
𝑌 ,𝜑(𝑘)

𝑌 1 ,𝜙
(𝑘)
𝑌 ,𝜙(𝑘)𝐶 ;(𝑘))

+ 1
𝑁 (𝑘)

𝐶

∑

𝑖∈(𝑘)
𝛼𝑦 log 𝑝(𝑘)𝜑𝑌 0

(𝑦(𝑘)𝑖 |𝑡(𝑘)𝑖 = 0, 𝐳(𝑘)𝑐,𝑖 , 𝐳
(𝑘)
𝑦,𝑖 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑙𝑌 0(𝜑

(𝑘)
𝑌 ,𝜑(𝑘)

𝑌 0 ,𝜙
(𝑘)
𝑌 ,𝜙(𝑘)𝐶 ;(𝑘))

}

(7)

Note that we have differentiated four terms:

• 𝑙ELBO: loss function of the VAE. Updates all VAE modules: 𝛩. All
individuals in the dataset contribute to this loss.

• 𝑙𝑇 : loss function of treatment prediction. Encourage latent spaces
𝐳𝑡, 𝐳𝑐 to be informative in predicting treatment. This term updates
the encoder parameters 𝐸𝑇 and 𝐸𝐶 and the treatment classifier
𝐶𝑇 . All individuals in the dataset contribute to this loss.

• 𝑙𝑌 0: loss function of the prediction of the potential outcome for
𝑇 = 0. Updates the encoders 𝐸𝐶 and 𝐸𝑌 , the shared layers of
TARNet (𝐹𝐶) and the regressor 𝑅𝑒𝑔0. Only control individuals
contribute to this loss.

• 𝑙𝑌 1: loss function of the prediction of the potential outcome for
𝑇 = 1. Updates the encoders 𝐸𝐶 and 𝐸𝑌 , the shared layers of
TARNet (𝐹𝐶) and the regressor 𝑅𝑒𝑔1. Only treated individuals
contribute to this loss.

The modules of predictors of potential outcomes 𝑅𝑒𝑔0 and 𝑅𝑒𝑔1
are the only modules that are not updated for all samples in the node
datasets (see Appendix B for local updates of all parameters). As a
consequence, the parameters on the server after the averaging process
for these modules are:

𝜑𝑆
𝑌 0𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝜑(𝑘)
𝑌 0𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁

(

𝜑(𝑘)
𝑌 0𝑡

− 𝜂∇𝜑𝑌 0
1

𝑁 (𝑘)
𝐶

∑

𝑖∈(𝑘)
𝑙𝑌 0(⋅)

)

= 𝜑𝑆
𝑌 0𝑡

− 𝜂
𝐾
∑

𝑘=1
∇𝜑𝑌 0

∑

𝑖∈(𝑘)

𝑁 (𝑘)

𝑁 ⋅𝑁 (𝑘)
𝐶

𝑙𝑌 0(⋅)

𝜑𝑆
𝑌 1𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝜑(𝑘)
𝑌 1𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁

(

𝜑(𝑘)
𝑌 1𝑡

− 𝜂∇𝜑𝑌 1
1

𝑁 (𝑘)
𝑇

∑

𝑖∈ (𝑘)

𝑙𝑌 1(⋅)
)

= 𝜑𝑆
𝑌 1𝑡

− 𝜂
𝐾
∑

𝑘=1
∇𝜑𝑌 1

∑

𝑖∈ (𝑘)

𝑁 (𝑘)

𝑁 ⋅𝑁 (𝑘)
𝑇

𝑙𝑌 1(⋅)

(8)

where 𝜂 is the learning rate and (⋅) represents the arguments of the
functions that can be consulted in Eq. (7).

These factors are particularly problematic in our scenario, where
the propensity score is not constant at different nodes (Condition 3).
Consider the two-node scenario of Fig. 5, where 𝑁 (1) = 𝑁 (2). This
scenario is intended to represent a real case where node 1 is a hospital
in an underdeveloped country, where there is no access to treatment
(there is only one patient treated) and node 2 is a hospital where
treatment is provided according to unbiased medical criteria.

Due to the imbalance in treatment assignment, we can observe that
𝑁 (1)∕𝑁 (1)

𝑇 ≫ 𝑁 (2)∕𝑁 (2)
𝑇 . This fact implies that the contributions of

patients treated at node 1 to the averaged gradients are much higher
than the contributions of patients treated at node 2. This may lead to
an increase in the variance of the averaged estimator and bias if the
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Fig. 5. Two nodes imbalanced scenario. Number of patients in each node. Node 1 is
very unbalanced: 1 treated patient, 272 untreated; node 2 is balanced: 101 treated
patients, 172 untreated patients. There is the same number of patients in each node,
273 patients in total in each node.

Fig. 6. Error (Mean and 95% CI) in treatment effect estimation (PEHE) in an very
imbalanced scenario. Lower is better. Centralized trains with all the data in a single
model; Vanilla FedAvg is standard FedAvg without address imbalances; Isolated trains
separated models in each node with their local data, and PW FedAvg (Ours) is the best
distributed strategy because it considers the imbalance.

samples from node 1 do not represent the entire distribution of treated
patients.

In Fig. 6 we can observe the error committed in the estimation of
treatment effects (PEHE, see Section 4), comparing the centralized case
with the standard FedAvg implementation, using the IHDP database
(see Section 4.1) and the scenario of Fig. 5. It can be seen that the
error in the estimation, both in node 1 (very unbalanced) and in node
2 (balanced), increases. In contrast, the error committed when training
in isolation is much higher in the unbalanced node, whereas it remains
low in the balanced node. In view of these observations, we have
developed an adaptation of the FedAvg algorithm, which weights
differently the contributions of the nodes differently in the regressors
of the potential outcomes: Propensity weighted FedAvg. We detail our
proposal in the next section (Section 3.2).

3.2. Propensity weighted FederatedAveraging.

We propose an approach to improve the performance of the stan-
dard (from now Vanilla) FedAvg, which leverages Propensity score
weighting [10,12,55] and is based on the idea of averaging with a higher
weight the modules that have trained with a greater number of samples.

Although theoretical guarantees on the convergence of this algo-
rithm are not available [36] due to the complex nonconvex objec-
tive function of TEDVAE, we experimentally prove, on benchmarking
datasets for Causal Inference, that our approach achieves better metrics
than both Vanilla FedAvg and other distributed approaches for Causal
Inference.

The proposed algorithm, called Propensity weighted FedAvg, is an
adaptation of the averaging process in the central server.
6

𝜏

This adaptation consists of two steps on the central server: (1)
isolate the parameters of the 𝑅𝑒𝑔0 and 𝑅𝑒𝑔1 regressors for each node
and (2) perform the averaging process separately in the regressors
following Eq. (9).

𝜑𝑆
𝑌 0𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)
𝐶

𝑁𝑆
𝐶

𝜑(𝑘)
𝑌 0𝑡+1

= 𝜑𝑆
𝑌 0𝑡+1

− 𝜂
𝐾
∑

𝑘=1

1
𝑁𝑆

𝐶

𝜑(𝑘)
𝑌 0𝑡

𝜑𝑆
𝑌 1𝑡+1

=
𝐾
∑

𝑘=1

𝑁 (𝑘)
𝑇

𝑁𝑆
𝑇

𝜑(𝑘)
𝑌 1𝑡+1

= 𝜑𝑆
𝑌 1𝑡+1

− 𝜂
𝐾
∑

𝑘=1

1
𝑁𝑆

𝑇

𝜑(𝑘)
𝑌 1𝑡

(9)

Note that now the contribution of all control patients is the same for
𝑅𝑒𝑔0 and the contribution of all treated patients is the same for 𝑅𝑒𝑔1.

The rest of the modules of the networks are averaged weighted by
the number of samples of each node, since all of them are updated for
all individuals in a dataset. That is, being 𝜗 any module of TEDVAE,
except the regressors 𝑅𝑒𝑔0 and 𝑅𝑒𝑔1:

𝜗𝑆𝑡+1 =
𝐾
∑

𝑘=1

𝑁 (𝑘)

𝑁
𝜗(𝑘)𝑡+1 = 𝜗𝑆𝑡+1 − 𝜂

𝐾
∑

𝑘=1

1
𝑁

𝜗(𝑘)𝑡 (10)

We experimentally demonstrate in Section 4 that our method out-
performs the Vanilla FedAvg when nodes are imbalanced. The imple-
mentation of the algorithm and the experiments conducted in Section 4
can be found in https://github.com/aalmodovares/federated_tedvae.

4. Experiments on benchmark datasets

Several experiments have been conducted on benchmark datasets in
order to give a complete review of the performance of this algorithm.

The objective, when using a federated learning technique, is to
improve the performance of both nodes by training in isolation only
with their own data (Fig. 7(a)). On the other hand, the upper bound
of performance is found in centralized training (Fig. 7(b)), where all
patients are considered to be in a single node and a single model is
trained. Therefore, the results of our algorithm must be between these
two limits, better results mean being closer to the centralized training.

The comparison will be carried out comparing our implementa-
tion of Propensity Weighted FedAvg on TEDVAE (PW FedAvg) with
centralized TEDVAE (Centralized), which trains with all dataset ();
the node-wise isolated training (Isolated), in which each node trains
with their data separately, without sharing any information; the Vanilla
FedAvg implementation (Vanilla FedAvg), which does not consider
propensity imbalances; the Federated Causal Inference method of [41],
based on Gaussian Processes (FedCI); the CausalRFF method of [42]
based on Random Fourier Features (CausalRFF) and the federated
approach of [38] (Fed MLE).

Since the data used are semi-synthetic, the true values of both
potential outcomes are known, and the performance of the model is
evaluated using precision of estimating heterogeneous effects (PEHE) [22].
PEHE is the mean squared error between predicted and true individual
causal effect causal effects, which is expressed as:

PEHE = E𝑋 [(𝜏(𝑥) − 𝜏(𝑥))2], (11)

where 𝜏(𝑥) is the estimated treatment effect for subgroup 𝑥, and 𝜏(𝑥)
is the true treatment effect for that subgroup. The true causal effect of
treatment for patient 𝑖 is the difference between the two true potential
outcomes of that patient:

𝜏(𝑥𝑖) = 𝑦1,𝑖 − 𝑦0,𝑖 (12)

where 𝑦𝑡,𝑖 is true the potential outcome individual 𝑖 for each treatment
𝑡. Note that we only have access to both potential outcomes because
the data are semi-synthetic.

On the other hand, the predicted causal effect of individual 𝑖 is
computed by:

̂(𝑥 ) = 𝑡 (𝑦 − �̂�(0, 𝑥 )) + (1 − 𝑡 )(�̂�(1, 𝑥 ) − 𝑦 ) (13)
𝑖 𝑖 1,𝑖 𝑖 𝑖 𝑖 0,𝑖

https://github.com/aalmodovares/federated_tedvae
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Fig. 7. Lower and upper bound of performance. In isolated training (worst case), there is no communication between nodes. In contrast, in the centralized case (better case), a
single model trains with all samples.
where 𝑡𝑖 is the treatment given to the individual 𝑖, and �̂�(𝑡, 𝑥𝑖) is the
predicted outcome for individual 𝑖, treated with treatment 𝑡. Note
that the predicted Individual Treatment Effect (ITE) is computed using
the factual outcome and the counterfactual outcome predicted by our
model.

The given results are out-of-sample measurements of PEHE and
absolute ATE errors after the training process. The test set used for the
inference of potential outcomes is the same for all nodes.

4.1. Datasets

4.1.1. IHDP
Infant Health and Development Program (IHDP) represents a well-

established benchmark dataset introduced by [22]. In reality, IHDP
is a set of semi-synthetic datasets, where the outcomes are generated
as functions of the covariates, described in [56], which can be found
in [57]. There are two settings to generate the outcomes: (1) setting A,
where both potential outcomes are linear combinations of the features
and the causal effect is homogeneous and (2) setting B, where one of
the potential outcomes is an exponential combination of covariates and
treatment, so the causal effects are heterogeneous. We have used 100
replications of the dataset. Since the parameters of the functions that
generate the outcome are random variables, each replication gener-
ates the potential outcomes of different functions, resulting from the
sampling process of these parameters. This dataset has 25 covariates
(𝐷𝑥 = 25), a binary treatment (𝑇 ∈ {0, 1}), and a continuous simulated
outcome (𝑌 ∈ R). The dataset includes 747 samples: 139 treated
individuals and 608 control individuals.

The true causal effect is computed from noiseless versions of poten-
tial outcomes. Experiments have been performed for both settings of
the datasets.

4.1.2. ACIC16
Atlantic Causal Inference Conference 2016 (ACIC16) [58]: The unit

contains 4802 samples, 58 covariates (𝐷𝑥 = 58), a binary treatment
(𝑇 ∈ {0, 1}) that depends on the covariates (𝑝(𝑇 |𝐗) ≠ 𝑝(𝑇 )) and a
continuous outcome (𝑌 ∈ R) simulated with an exponential function.
The datasets have been downloaded from [59]. For this study only
one of the 77 realizations (each realization has different levels of
variability of the effect of treatment, connections between outcomes
and assignments, and overlap levels), setting 2, which has a polyno-
mial model for treatment assignment and an exponential model for
outcome generation [58]. Ten replications of the data set were used.
We remove categorical covariates following [60,61]. The experiment
carried out with this dataset is similar to the first one conducted on
IHDP datasets: there are two nodes with the same number of patients,
and the imbalance increases. The test set has 200 samples with the
original distribution of treated patients and is the same for all nodes.
7

Fig. 8. Imbalances levels IHDP 1. From balanced to completely unbalanced. The
same number of patients in each node. Level 0 (balanced): 51/222 treated/control
patients at each node. Level 1: 11/262 treated/control patients in node 1, 91/182
treated/control patients in node 2. Level 2: 1/272 treated/control patients in node 1,
101/192 treated/control patients in node 2. Level 3: 0/273 treated/control patients in
node 1, 102/191 treated/control patients in node 2.

4.2. Experiments

The experiments conducted used the previous datasets with differ-
ent combinations of imbalances.

4.2.1. IHDP 1: Two imbalanced nodes
In this experiment, there are two nodes. Experiments are conducted

following the imbalance levels in Fig. 8. ‘‘Imbalance 0’’ is the situ-
ation in which the two nodes have the same distribution of treated
and untreated patients. The remaining levels increase the imbalance,
decreasing the number of treated patients in node 1. In all imbalances,
both nodes have the same number of samples. ‘‘Imbalance 3’’ is the
extreme case in which there are no treated patients in node 1. A
hundred samples have been reserved to test the models after training.
The same test set has been used for both nodes. Therefore, the training
set has, in total, 546 patients (102 treated, 444 control).

Table 1 and Fig. 9 show that the PEHE achieved by both implemen-
tations of FedAvg are always between the centralized performance and
the isolated performance for large imbalances.

First, observing PEHE in node 1, we note that the isolated errors
become very high for larger imbalances. Although Vanilla FedAvg
achieves lower errors than the SOTA methods, the gap with respect to
centralized training also increases with greater imbalances. Our method
(PW FedAvg) achieves significantly better results than Vanilla FedAvg.

On the other hand, in node 2, isolated training performs well, since
node 2 is balanced in terms of treatment assignment. The performance
of Vanilla FedAvg worsens when the imbalance grows, due to the ac-
tion of node 1. Our algorithm manages not to decrease the performance
in the balanced node with respect to isolated training. Namely, PW
FedAvg achieves better results than the other methods in both nodes:
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Table 1
√

PEHE out-of-sample results in IHDP setting B: mean(std). Lower is better. The mean and standard deviation are from the 100 replications of IHDP. - denotes that the specific
method does not work without treated patients at a node. Imbalance 0 is the scenario in which both nodes have the same number of treated patients. In the other imbalances, the
number of treated and control groups is becoming more and more different at different nodes. a/b represents treated/control patients in each node. Results in bold represent the
best results from a one-way t-test with 𝑝 < 0.05. Our method, PW FedAvg, is marked with *. Observe that our method consistently obtains the best results among all distributed
methods.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
51/222 51/222 11/262 91/182 1/272 101/192 0/273 102/191

Setting B

TEDVAE

Centralized 2.10(0.18)
PW FedAvg* 2.58(0.44) 2.63(0.44) 3.09(0.52) 2.35(0.38) 3.42(0.63) 2.32(0.33) 3.45(0.62) 2.29(0.37)
Vanilla FedAvg 2.72(0.49) 2.66(0.56) 3.58(0.80) 2.78(0.55) 4.09(0.81) 2.96(0.50) 3.95(0.89) 2.59(0.41)
Isolated 2.69(0.43) 2.71(0.46) 3.75(0.71) 2.36(0.37) 5.54(1.36) 2.28(0.32) 5.74(0.93) 2.25(0.35)

SOTA
CausalRFF 4.51(1.70) 4.49(1.70) 5.75(1.67) 5.66(1.65) 5.84(1.16) 5.30(1.20) 5.86(1.27) 5.39(1.27)
FedCI 3.78(1.64) 3.67(1.66) 3.82(1.81) 4.05(1.85) 4.81(2.00) 3.89(1.80) 5.72(1.25) 3.80(1.90)
Fed MLE 5.64(1.08) 5.64(1.08) 5.66(1.10) 5.66(1.10) 5.55(0.96) 5.55(0.96) – -

Setting A

TEDVAE

Centralized 0.85(0.35)
PW FedAvg* 0.84(0.60) 0.86(0.60) 0.80(0.58) 0.86(0.67) 0.82(0.58) 0.88(0.64) 0.84(0.63) 0.88(0.65)
Vanilla FedAvg 0.88(0.79) 0.86(0.75) 0.82(0.66) 0.89(0.72) 1.06(0.70) 1.16(0.74) 1.20(0.67) 1.30(0.73)
Isolated 0.84(0.61) 0.86(0.57) 0.97(0.55) 0.84(0.64) 2.15(0.88) 0.87(0.65) 3.80(1.23) 0.86(0.65)

SOTA
CausalRFF 1.31(2.70) 1.30(2.68) 1.29(2.79) 1.22(2.78) 1.50(2.77) 1.27(2.82) 1.83(2.57) 1.24(2.72)
FedCI 1.59(2.18) 1.67(2.16) 1.74(1.81) 1.33(1.53) 2.67(2.88) 1.21(1.50) 2.74(1.28) 1.32(1.05)
Fed MLE 3.42(1.93) 3.42(1.93) 3.36(2.01) 3.36(2.01) 3.30(2.05) 3.30(2.05) – –
Fig. 9. Mean and 95% confidence interval of PEHE estimation across 100 realizations
of IHDP setting B. Propensity weighted FedAvg (Ours) reduces the error for larger
imbalances in both nodes, comparing with Vanilla FedAvg.

in node 1 achieves a reduction of the errors due to the imbalance and in
node 2 achieves similar performance than the isolated training, which
is close to the centralized node, since the patients are balanced in that
node.

Both versions of FedAvg (Vanilla and our Propensity Weighted) show
a decrease in errors with respect to the rest of the state-of-the-art
(SOTA) methods. This fact is due to the flexibility of the local causal
inference method.

Note that there is a slight reduction in PEHE in Vanilla FedAvg
at the most extreme imbalance (when there are no patients treated at
node 1). This is because the 𝑅𝑒𝑔1 at node 1 is not updated locally at
any time. Therefore, it is not overfitted. When averaging between the
regressors of node 1 and node 2, the convergence of 𝑅𝑒𝑔1 is slower,
but it only trains on the samples of node 2, which is the only node that
has treated patients.

4.2.2. Ablation study on IHDP 1
We perform an ablation study to ensure that sharing the parameters

of all network modules is the best option, to reduce the amount of
data transmitted in case that sharing fewer parameters offers the same
results. Table 2 compares the performance of sharing all TEDVAE sub-
modules (PW FedAvg), with sharing only some of them. For example,
‘‘Regressors & Encoder’’ is the implementation of FedAvg sharing and
8

averaging only the encoder and regressor parameters. In cases where
the regressors are shared, Propensity Weighted FedAvg has been used.

Analyzing the results, we can see that the share of all modules (All)
is between the best performers in both nodes in all combinations of im-
balances. When the treatment assignment is balanced (Imbalance 0), all
combinations offer similar performance. However, when the imbalance
increases, sharing all the modules is the best option, especially in node
1. Sharing only the regressors and the encoder (Regressors & Decoder)
is the combination that is closest to the performance of sharing all the
modules in node 1. However, Regressors & Decoder sharing produces
the worst results in node 2, which is the balanced nodes. For that
reason, sharing all the modules is the best option to achieve the lowest
errors in both nodes.

4.2.3. IHDP 2: Two small balanced nodes
In this experiment, there are two balanced nodes with a small num-

ber of patients (83 patients in each node). This experiment proves the
performance of our algorithm where Conditions 2 and 3 of our problem
are fulfilled. Note that if these conditions are met, the distribution of
patients in both nodes is the same and Vanilla FedAvg should work
similar to PW FedAvg.

Table 3 shows the PEHE distributions. Both settings of IHDP have
been included to observe the difference estimation errors depending
on the data generation process. The errors committed in setting B are
considerably larger than those committed in setting A, since setting
A follows a linear data generation process and the treatment effect is
homogeneous. In contrast, the effects of the treatment on setting B are
highly non-linear and heterogeneous, making them especially difficult
to predict when there is a small amount of data.

On the other hand, comparing the performance of distributed al-
gorithms, in Table 3 it can be seen that the results are similar in
Vanilla FedAvg as in Propensity Weighted FedAvg, since there is no
imbalance in the nodes. In Setting A, both FedAvg implementations
and isolated training perform very similar to centralized training, since
the prediction task is very simple and the data in each node produce
good estimates of the causal effect. However, all TEDVAE approaches
perform better than SOTA methods.

In Setting B, it can be observed that there is more difference
between the centralized training and both FedAvg approaches, since the
surface of the treatment effects is more complex. Both Vanilla and PW
FedAvg achieve similar results and perform significantly better than
isolated training and SOTA methods.

Then, it is sensible to use PW FedAvg even when the data are

balanced between nodes.



Computers in Biology and Medicine 178 (2024) 108779A. Almodóvar et al.

t
t
b
g
t
i
t

w
c

Table 2
Ablation study.

√

PEHE (Mean(std)) out-of-sample results in IHDP setting B. Lower is better. Results in bold represent the best results from a one-way t-test with 𝑝 < 0.05. Sharing
all modules is particularly necessary when the imbalances are high between nodes, which is a realistic condition of our problem. Each row represents a different combination of
shared parameters. For example, ‘‘All’’ means that all modules have been shared, while ‘‘Regressors & Encoder’’ means that only the parameters of the regressors and the encoders
of each node have been shared and averaged.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Shared Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
modules 51/222 51/222 11/262 91/182 1/272 101/192 0/273 102/191

All 2.58(0.44) 2.63(0.44) 3.09(0.52) 2.35(0.38) 3.42(0.63) 2.32(0.33) 3.45(0.62) 2.29(0.37)
Regressors & Encoder 2.68(0.45) 2.64(0.45) 3.51(0.63) 2.39(0.37) 4.43(1.13) 2.34(0.34) 4.29(1.00) 2.30(0.35)
Regressors & Decoder 2.78(0.46) 2.78(0.43) 3.39(0.57) 2.55(0.36) 3.64(0.60) 2.54(0.36) 3.71(0.67) 2.52(0.33)
Regressors 2.63(0.45) 2.65(0.46) 3.51(0.69) 2.35(0.32) 4.30(0.97) 2.35(0.31) 4.36(1.17) 2.29(0.35)
Encoder & Decoder 2.74(0.43) 2.73(0.46) 3.78(0.77) 2.39(0.38) 5.68(1.57) 2.33(0.33) 5.73(0.98) 2.29(0.37)
Encoder 2.75(0.45) 2.73(0.48) 3.82(0.78) 2.38(0.36) 5.59(1.39) 2.33(0.31) 5.79(1.10) 2.30(0.33)
Decoder 2.71(0.47) 2.71(0.45) 3.77(0.75) 2.37(0.38) 5.65(1.43) 2.31(0.32) 5.83(0.97) 2.29(0.34)
Table 3
Out-of-sample

√

PEHE (Mean(std)) results for the original distribution sampled dataset of 83 samples in each
node for IHDP setting A and B respectively. Lower is better. Imbalances are not specified, since in both
nodes there are the same number of treated and control patients, respectively. Therefore, the distribution of
patients is balanced between the nodes. With equilibrated nodes, Propensity Weighted and Vanilla FedAvg
have similar metrics. Results in bold represent the best results from a one-way t-test with 𝑝 < 0.05. Our
method, PW FedAvg, is marked with *.

Setting A Setting B

Node 1 Node 2 Node 1 Node 2

TEDVAE

Centralized 1.16(0.26) 3.07(0.72)
PW FedAvg* 1.18(0.31) 1.20(0.31) 3.55(0.86) 3.41(0.69)
Vanilla FedAvg 1.15(0.37) 1.15(0.29) 3.61(0.80) 3.50(0.72)
Isolated 1.21(0.41) 1.27(0.29) 4.83(0.81) 4.64(0.65)

SOTA
CausalRFF 2.99(1.73) 2.96(1.72) 6.88(1.39) 6.80(1.37)
FedCI 2.56(0.45) 2.63(0.83) 4.88(1.95) 4.94(2.16)
Fed MLE 3.56(1.25) 3.53(1.23) 5.58(1.68) 5.64(1.81)
Table 4
Three imbalanced nodes.

√

PEHE (Mean(std)) out-of-sample results in IHDP setting B. Lower is better. In both node 1 and node 2, the PW FedAvg is the distributed algorithm
with the best performance (excluding the centralized method, which acts as a lower bound). A representation of the imbalances can be consulted in Appendix A. Results in bold
represent the best results from a one-way t-test with 𝑝 < 0.05. Our method, PW FedAvg, is marked with *. Observe that our method consistently obtains the best results among
all distributed methods when there are imbalances between nodes.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
33/148 33/148 33/148 9/172 9/172 81/108 1/180 1/180 97/92 0/181 0/181 99/90

TEDVAE

Centralized 2.10(0.18)
PW FedAvg * 2.57(0.44) 2.63(0.42) 2.60(0.43) 3.07(0.58) 3.12(0.57) 2.31(0.40) 3.54(0.65) 3.51(0.62) 2.28(0.38) 3.68(0.85) 3.68(0.92) 2.30(0.40)
Vanilla FedAvg 2.58(0.41) 2.62(0.44) 2.63(0.46) 3.61(0.57) 3.58(0.52) 2.85(0.41) 4.26(0.83) 4.26(0.84) 3.13(0.52) 4.26(0.79) 4.32(0.88) 2.83(0.42)
Isolated 2.52(0.46) 2.57(0.46) 2.54(0.49) 3.99(0.76) 4.04(0.75) 2.57(0.36) 6.01(1.74) 5.86(1.94) 2.53(0.39) 5.74(0.98) 6.03(0.93) 2.55(0.37)

SOTA
CausalRFF 3.80(1.38) 3.98(1.12) 4.27(1.81) 4.31(1.78) 4.26(1.73) 4.19(1.59) 4.40(1.85) 4.48(1.90) 4.28(1.94) 4.51(2.01) 4.74(2.07) 4.37(2.11)
FedCI 3.60(2.26) 3.29(1.56) 3.57(1.94) 4.12(1.81) 3.96(1.59) 3.73(1.53) 4.49(2.70) 4.55(2.65) 3.68(1.59) 4.54(1.27) 4.57(1.22) 3.68(0.99)
Fed MLE 5.66(0.98) 5.66(0.98) 5.66(0.98) 5.56(0.91) 5.56(0.91) 5.56(0.91) 5.60(1.03) 5.60(1.03) 5.60(1.03) – – –
4.2.4. IHDP 3: Three imbalanced nodes
This experiment counts with more hospitals (nodes), to expand the

multinode evaluation. In the proposed scenario, we have two hospi-
tals where the treated patients decrease progressively, while in the
other hospital (good node) the numbers increase. The total number of
samples is the same in all nodes. Table 4 shows conclusions similar
to those of previous experiments. When the nodes are balanced, all
approaches of FedAvg have similar results to isolated training. Note
hat in this case, the distance with centralized training is greater than in
he two-node experiment. This is because there, although the nodes are
alanced, there are fewer patients in each node. When the imbalance is
reater, we can observe that the gap between isolated and centralized
raining increases in nodes 1 and 2, while it remains almost unchanged
n node 3. PW FedAvg achieves lower errors than Vanilla FedAvg and
he isolated training in both nodes when imbalances increase.

A similar experiment has been conducted with 5 different hospitals,
here there are two good nodes and 3 bad nodes. The results can be
9

onsulted in Appendix A.
4.2.5. ACIC16: Two imbalanced nodes
To diversify the study datasets and verify that the results can be

extrapolated to other data, the last experiment was conducted with the
ACIC16 dataset ACIC16. In this case, there is no good node, since the
original distribution of patients has been selected completely balanced:
in total, there are 800 treated and 800 control patients. Therefore,
in Imbalance 0, both nodes have the same number of treated and
control patients. When the imbalance increases, node 1 loses treated
patients and gets control patients, and in node 2 the contrary is true.
A representation of these imbalances can be found in Appendix A. The
number of patients is always the same. The test set is the same for both
nodes and contains 200 samples, 100 treated and 100 control patients.

Observing Table 5, we can see that in Imbalance 0, both FedAvg
approaches and isolated training have similar performance and are
close to centralized training. However, in Imbalance 1, the PEHE is
greatly increased because both nodes have very few samples of a type.
Although the increase in PEHE is also noticeable in PW FedAvg (in
Imbalance 3 is three times the PEHE in the centralized case), the
difference with respect to centralized training is always smaller than
in Vanilla FedAvg and isolated training, and the reduction in PEHE

achieved with Propensity Weighting increases as the imbalance grows.
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Table 5
√

PEHE out of sample results in ACIC2016: mean(std). Lower is better. The mean and standard deviation are from the 10 replications of the dataset. The metrics worsen enormously
as the imbalances grow, since in this experiment there is no balanced node. Results in bold represent the best results from a one-way t-test with 𝑝 < 0.05. Our method, PW FedAvg,
is marked with *. PW FedAvg is the best distributed algorithm in imbalanced scenarios.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
400/400 400/400 25/775 775/25 1/799 799/1 0/800 800/0

TEDVAE

Centralized 0.97(0.24)
PW FedAvg* 0.99(0.33) 0.98(0.30) 1.96(0.94) 1.93(0.95) 2.91(1.23) 2.86(1.18) 2.95(1.38) 2.89(1.36)
Vanilla FedAvg 1.04(0.29) 1.05(0.29) 2.17(0.49) 2.15(0.55) 3.42(0.89) 3.44(0.99) 4.20(1.27) 4.08(1.24)
Isolated 1.01(0.35) 0.98(0.37) 2.25(0.79) 2.12(0.68) 4.48(1.35) 4.65(1.40) 5.19(1.30) 5.39(1.38)

SOTA
CausalRFF 3.76(1.23) 3.79(1.26) 4.14(1.92) 4.54(2.45) 3.62(2.44) 4.23(2.21) 5.01(2.02) 4.91(1.79)
FedCI 3.56(5.92) 2.78(4.73) 3.00(5.07) 4.47(6.49) 5.13(7.30) 4.49(7.47) 6.37(3.34) 5.19(2.78)
Fed MLE 4.10(0.94) 4.10(0.94) 4.08(1.04) 4.08(1.04) 3.85(0.93) 3.85(0.93) – –
More details of the results can be consulted in Appendix A, where
measurements of ATE error and more representations of these experi-
ments can be found as well.

5. Conclusion

This study emphasizes the importance of distributed causal infer-
ence for estimating the effect of treatment in environments where the
distributions of treated/control patients are imbalanced across nodes
due to external factors. This problem is particularly interesting in the
healthcare domain, which is a privacy-constrained setting in which in-
dividual patient data cannot be shared. We addressed the challenge by
implementing an algorithm for federated learning in conjunction with a
deep model of causal inference based on variational autoencoders. The
main contribution of this paper is to propose a framework for Federated
Learning applied to one of the most advanced Causal Inference methods
and develop an adaptation of FedAvg to the propensity score shift
problem, called Propensity Weighted FedAvg.

We showed empirically, by benchmarking data sets for causal infer-
ence, that our adaptation bridges the gap between centralized training
and isolated training and the standard implementation of FedAvg in
the task of predicting causal effects. It also outperforms other state-of-
the-art methods for distributed causal inference, since the complexity of
the causal inference model allows to model complex non-linear surfaces
of treatment effects. The most important drawback of this method
is that the amount of data shared is much larger than in the other
methods, and the training process must be synchronous.

In future work, there are three research lines. First, advanced pri-
vacy preservation techniques must be studied and tested in combination
with FedAvg must been studied and tested. Second, this algorithm
can be tested with other powerful causal inference methods in which
the prediction of both potential outcomes is performed in different
modules, such as [62,63]. However, the next challenge is to solve the
problem of covariate set mismatching. In medical data there is usually
heterogeneity of data, and it is common to have different multidomains
in each node (images, analysis, demographic and social data...); so it
is also common that not all hospitals have access to the same kind of
data. We can relate this difficult challenge to other latent models such
as [64,65], which take into account this characteristic of the data.
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Appendix A. Imbalances and results representations

In this section, we give a visual representation of the imbalances
proposed for the experiments, in order to see more clearly how the
imbalances between treated/control patients are created in each node.
In addition, visual representations of the results tables are included.

Although in tables the mean and standard deviation of the
√

PEHE
are presented, in the following figures the mean and the 95% confi-
dence interval computed using bootstrap across the 100 realizations are
plotted.
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Table 6
ATE error out of sample results in IHDP setting B. Lower is better. The results in bold represent the best results from a one-way t-test with 𝑝 < 0.1. Our method, PW FedAvg, is
marked with *. For larger imbalances, PW FedAvg is better than Vanilla FedAvg in the balanced node and better than Isolated training in the unbalanced node.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
51/222 51/222 11/262 91/182 1/272 101/192 0/273 102/191

Centralized 0.36(0.25)
PW FedAvg* 0.48(0.34) 0.49(0.36) 0.66(0.49) 0.38(0.32) 0.82(0.65) 0.35(0.23) 0.84(0.66) 0.39(0.31)
Vanilla FedAvg 0.56(0.44) 0.51(0.39) 0.85(0.67) 0.57(0.47) 1.16(0.92) 0.78(0.55) 1.23(0.69) 0.71(0.31)
TV Iso 0.59(0.39) 0.53(0.41) 1.02(0.81) 0.39(0.30) 2.51(1.73) 0.40(0.27) 3.19(1.21) 0.38(0.32)

CausalRFF 0.99(0.62) 0.99(0.84) 1.13(0.30) 1.14(0.31) 1.72(1.28) 0.97(0.90) 1.40(1.22) 0.97(0.60)
FedCI 1.02(0.33) 0.99(0.33) 0.96(0.36) 1.01(0.37) 1.16(0.40) 0.98(0.36) 1.17(0.24) 0.85(0.30)
Fed MLE 1.69(0.93) 1.69(0.93) 1.69(0.89) 1.69(0.89) 1.63(0.81) 1.63(0.81) – –
Table 7
|ATE error| (Mean(std)) Out-of-sample results in IHDP setting A. Lower is better. The results in bold represent the best results from a one-way t-test with 𝑝 < 0.1. Our method,
W FedAvg, is marked with *. For larger imbalances, PW FedAvg is better than Vanilla FedAvg in the balanced node and better than Isolated training in the unbalanced node.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
51/222 51/222 11/262 91/182 1/272 101/192 0/273 102/191

Centralized 0.15(0.10)
PW FedAvg* 0.13(0.11) 0.15(0.14) 0.19(0.15) 0.16(0.16) 0.23(0.16) 0.16(0.13) 0.25(0.22) 0.19(0.14)
Vanilla FedAvg 0.18(0.23) 0.19(0.20) 0.20(0.16) 0.23(0.17) 0.49(0.30) 0.51(0.29) 0.65(0.35) 0.62(0.31)
Isolated 0.18(0.15) 0.20(0.14) 0.37(0.29) 0.17(0.14) 1.54(0.79) 0.15(0.11) 3.47(1.06) 0.18(0.15)

CausalRFF 0.72(0.86) 0.74(0.82) 0.84(0.97) 0.77(0.91) 1.26(1.01) 0.75(0.97) 1.98(1.00) 0.69(0.88)
FedCI 0.52(0.44) 0.53(0.43) 0.45(0.36) 0.47(0.31) 0.73(0.58) 0.44(0.30) 0.77(0.22) 0.43(0.22)
Fed MLE 1.07(0.80) 1.07(0.80) 1.05(0.89) 1.05(0.89) 0.94(0.86) 0.94(0.86) – –
Table 8
Three imbalanced nodes.|ATE error| out of sample results in IHDP setting B. Lower is better. The results in bold represent the best results from a one-way t-test with 𝑝 < 0.1. Our

ethod, PW FedAvg, is marked with *. For larger imbalances, PW FedAvg is better than Vanilla FedAvg in the balanced node and better than Isolated training in the unbalanced
ode.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
33/148 33/148 33/148 9/172 9/172 81/108 1/180 1/180 97/92 0/181 0/181 99/90

Centralized 0.35(0.26)
PW FedAvg* 0.47(0.33) 0.59(0.37) 0.50(0.39) 0.71(0.51) 0.75(0.52) 0.40(0.32) 0.73(0.86) 0.72(0.82) 0.44(0.34) 0.81(0.88) 0.80(0.96) 0.44(0.29)
Vanilla FedAvg 0.47(0.39) 0.54(0.43) 0.54(0.42) 0.75(0.59) 0.67(0.45) 0.48(0.31) 1.20(0.98) 1.18(1.03) 0.68(0.54) 1.23(0.85) 1.24(0.92) 0.44(0.33)
Isolated 0.72(0.50) 0.72(0.52) 0.64(0.54) 1.29(0.94) 1.20(0.71) 0.51(0.29) 2.94(2.10) 2.72(2.29) 0.53(0.30) 3.16(1.00) 3.43(1.29) 0.51(0.33)

CausalRFF 1.16(0.61) 1.26(0.56) 1.32(0.50) 1.37(0.71) 1.28(0.62) 1.29(0.59) 1.17(0.82) 1.24(0.63) 1.13(0.56) 1.50(0.70) 1.36(0.70) 1.24(0.60)
FedCI 2.61(2.81) 2.37(2.05) 2.25(2.55) 2.48(2.45) 3.20(2.15) 2.25(2.06) 2.71(2.35) 3.56(3.27) 2.19(2.10) 2.63(0.85) 3.35(0.72) 1.88(0.60)
Fed MLE 2.22(0.80) 2.22(0.80) 2.22(0.80) 2.06(0.77) 2.06(0.77) 2.06(0.77) 2.11(0.80) 2.11(0.80) 2.11(0.80) – – –
Table 9
|ATE error| (Mean(std)) out-of-sample results in ACIC2016: mean(std). Lower is better. Mean and standard deviation comes from the 10 replications of the dataset. The results in
old represent the best results from a one-way t-test with 𝑝 < 0.1. Our method, PW FedAvg, is marked with *. For larger imbalances, PW FedAvg is the best distributed strategy.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
400/400 400/400 25/775 775/25 1/799 799/1 0/800 800/0

Centralized 0.18(0.14)
PW FedAvg* 0.35(0.23) 0.35(0.22) 0.50(0.68) 0.65(0.74) 0.98(0.95) 1.13(1.04) 1.10(1.10) 1.00(0.93)
Vanilla FedAvg 0.34(0.21) 0.34(0.21) 0.90(0.39) 0.93(0.44) 1.55(0.87) 1.65(0.89) 1.76(1.00) 1.65(0.98)
Isolated 0.29(0.26) 0.28(0.23) 0.92(0.53) 0.88(0.48) 2.06(1.08) 2.10(1.15) 2.55(1.19) 2.62(1.42)

CausalRFF 0.59(0.44) 0.67(0.02) 1.45(0.82) 1.65(1.01) 1.32(0.91) 1.60(0.86) 1.48(0.98) 1.41(0.83)
FedCI 2.11(1.18) 1.96(0.95) 2.20(1.01) 1.99(1.30) 2.43(1.46) 2.40(1.49) 2.67(0.67) 2.44(0.43)
Fed MLE 3.10(0.94) 3.10(0.94) 3.08(1.04) 3.08(1.04) 2.85(0.93) 2.85(0.93) – –
h
a
a
F
s
A

A

A.1. IHDP 1. Two imbalanced nodes

A.1.1. Setting B
The PEHE results that compare our adaptation of FedAvg (TV

edAvg PA) with the isolated training, Vanilla FedAvg and state-of-
he-art methods are shown in Fig. 11(a), which is the same figure that
e can observe in Section 4 (see Fig. 10).

In Fig. 11(b) and Table 6, we can observe the mean absolute errors
n the ATE estimates. We can observe similar conclusions to the PEHE
valuation: when the nodes are balanced, both FedAvg approaches
11

erforms similar and close to the isolated training in both nodes; a
owever, as the imbalance increases, the ATE error of Vanilla FedAvg,
nd specially of isolated training, increases in node 1 and PW FedAvg
chieves to reduce these errors. On the other hand, in node 2, PW
edAvg also achieves lower errors than Vanilla FedAvg and performs
imilar training to isolated training, very close to centralized training.
ll TEDVAE approaches achieve better metrics than SOTA methods.

The results of ATE can also be observed in Table 7.

.1.2. Ablation study in IHDP 1 (setting B)
In addition, in this IHDP experiment with two nodes and imbal-
nced data, an ablation study has been performed, to unveil which
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Fig. 11. Mean and 95% confidence interval of metrics across 100 realizations of IHDP
setting B using two nodes. Our algorithm brings the gap between Centralized training
and both Vanilla FedAvg and isolated training in both PEHE and ATE metrics.

modules of the whole model are necessary to average. The measure-
ments in

√

PEHE performance for the ablation study are in Fig. 12(a).
The names of each experiment correspond to the shared and averaged
modules. For example, in the case of TV FA Reg-Enc, both the encoders
and the regressors are shared and averaged in the central server, while
the decoder is trained only locally. In cases where regressors weights
are shared, the Propensity Weighted FedAvg has been used. PW FedAvg
refers to the case in which the parameters of all modules are shared
(All in Table 2). The behavior of these curves has been explained in
Section 4. Fig. 12(b) shows the mean absolute error measurements in
ATE for each combination of shared parameters, but the differences are
not significant between the different configurations.

As we can see in Fig. 12(a), the performance of sharing all modules
is better than in the cases where we only share some modules. Partic-
ularly, the cases in which we do not do the average in the regressors
weights are the worst performers.

A.1.3. Setting A
Now, we include the PEHE and ATE error results for setting A of

IHDP, with two nodes and increasing the imbalance. First, the PEHE
line plot is presented in Fig. 13(a). As in setting B, setting A shows that
the PEHE achieved by PW FedAvg falls between centralized training
and Vanilla FedAvg at both node 1 and node 2 as the imbalances in-
crease. The mean absolute errors in the ATE estimates can be observed
in Fig. 13(b). As the imbalance increases, the errors of Vanilla FedAvg
becomes greater in both nodes 1 and 2. Our algorithm achieves lower
12
Fig. 12. Metrics of Ablation study over 100 replications of IHDP. Sharing all the
modules is the best option, especially in the unbalanced node. Sharing only Regressors
and Decoder also shows a good performance, but significantly worse that sharing all
modules in unbalanced node.

errors in both nodes and its errors are close to isolated training in node
2 (good node).

The information of ATE errors of Fig. 13(b) can also be consulted
in Table 7 for both Setting A and Setting B.

A.2. IHDP 3. Three imbalanced nodes

The proposed imbalances for the three-node scenario can be ob-
served in Fig. 14. There are two bad nodes (nodes 1 and 2), where
the number of treated patients is becoming very low in larger imbal-
ance levels, while the distribution of treated/control patients is more
balanced in node 3.

The results are collected in Fig. 15 and Table 8. Regarding PEHE, we
can observe that the incremental jumps of PEHE when the imbalances
increase are higher due to the small number of data in each node. The
slope of the PEHE and ATE error curve in PW FedAvg is greater than
in the two-node case. However, it can be seen that it is a significant
improvement compared to Vanilla FedAvg, the isolated case, and the
state-of-the-art methods at nodes 1 and 2 in both PEHE and ATE. On
the other hand, in node 3, the performance of PW FedAvg is similar
to the isolated case and significantly better than Vanilla FedAvg and
SOTA methods for larger imbalances. Note, again, that there is a slight
reduction in PEHE and ATE errors in the most extreme imbalance
because the regressors of treated patients (Reg1) are never updated
locally at the bad nodes.



Computers in Biology and Medicine 178 (2024) 108779A. Almodóvar et al.
Fig. 13. Metrics (Mean and 95% CI) over 100 replications of IHDP setting A. PW
FedAvg remains very close to the centralized case, being the best strategy in unbalanced
scenarios.

A.3. ACIC2016. Two imbalanced nodes

The ACIC experiment is based on balanced datasets in terms of the
number of patients: in total there are 800 treated patients and 800
control patients. Data are divided into two nodes with the same number
of patients. In imbalance 0, both nodes have 400 treated patients and
400 untreated patients. As the imbalances become larger, node 1 loses
treated patients and gains untreated patients, while the opposite is true
for node 2. Therefore, in that case, there is no clearly good node that
has a balanced distribution of treatment allocation at high levels of
imbalances (see Fig. 16).

Regarding the analysis of the results, PEHE and the mean absolute
error in ATE are presented in Fig. 17. The performance of both the
isolated training and FedAvg approaches is similar to the centralized
case in Imbalance 0 for both nodes, since the treatment distribution is
balanced and the number of samples is relatively large. However, as
the imbalance grows, the PEHE and ATE errors increase. PW FedAvg
achieves better metrics in both PEHE and ATE errors than Vanilla
FedAvg, isolated training and SOTA methods in both nodes for larger
imbalances.

Numeric information on ATE errors can also be observed in Table 9.

A.4. IHDP 4. Five nodes IHDP

In this experiment there are five nodes, three of them are becoming
worse due to the lack of treated patients, while the other two become
more balanced. The performance of Propensity Weighted FedAvg is
better than Vanilla FedAvg (see Fig. 18). However, we note that the
performance is worse than in other experiments, since the number of
samples in each node is very low due to the split of the data. A plot of
the PEHE and |ATE error| is presented in Fig. 19. It can be observed,
that, although the differences are smaller, PW FedAvg is still the best
distributed alternative for larger imbalances (see Fig. 19 and Table 10).
13
Appendix B. Full equations of local optimization and averaged
parameters

Here are detailed the full equations of the optimization process of
TEDVAE.

First, the local update of the parameters of each module of TEDVAE
local models is in Eq. (14). Regressors 𝑅𝑒𝑔0 and 𝑅𝑒𝑔1 can be observed
to be updated only for treated and control patients, respectively. On
the other hand, the rest of the modules are updated for all patients.
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(14)

Then, the equations resulting from the averaging process, applying
Vanilla FedAvg, can be consulted in Eq. (15).
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(15)

It is important to note the contribution of each patient to the
averaged gradients. In Reg0 and Reg1 regressors (with parameters
phi0 and phi1, respectively), the gradients corresponding to the control
patients of node 𝑘 are multiplied by a factor 𝑁 (𝑘)∕𝑁 (𝑘)

𝐶 , and the same
is true for the treated group, multiplied by 𝑁 (𝑘)∕𝑁 (𝑘)

𝑇 . In contrast, we
can observe that, in the rest of the modules, patients from all nodes
contribute equally to the averaged gradient.
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Fig. 14. Imbalances levels in the experiment of three nodes. In this case, five levels of imbalances are presented. Level 0 (balanced): 33/148 treated/control patients in each
node. Level 1: 25/156 treated/control patients in node 1 and 2, 49/132 treated/control patients in node3. Level 2: 17/164 treated/control patients in node 1 and 2, 65/124
treated/control patients in node3. Level 3: 9/172 treated/control patients in node 1 and 2, 81/108 treated/control patients in node3. Level 4: 1/180 treated/control patients
in node 1 and 2, 97/92 treated/control patients in node3. Level 5: 0/181 treated/control patients in node 1 and 2, 99/90 treated/control patients in node3. The imbalance is
increasing, while the number of patients in each node remains the same.

Fig. 15. Metrics (Mean and 95% CI) in three nodes experiment. Larger imbalance level correspond to a larger different of treated/control patients in each node. PW FedAvg
(Ours) outperforms other distributed methods in larger imbalances.
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Fig. 16. Imbalances of the two-nodes ACIC experiment. Level 0 (balanced): 400/400 treated/control patients in each node. Level 1: 25/775 treated/control patients in node 1,
775/25 treated/control patients in each node. Level 2: 1/799 treated/control patients in node 1, 799/1 treated/control patients in node 2. Level 3: 0/800 treated/control patients
in node 1, 800/0 treated/control patients in node 2.

Fig. 17. Metrics in ACIC 2016 dataset. Our Propensity Weighted FedAvg brings the gap between centralized and Vanilla FedAvg in both nodes in both PEHE and ATE errors.

Fig. 18. Imbalances for five nodes experiment with IHDP Setting B. Level 0 (balanced): 20/88 treated/control patients in each node. Level 1: 5/103 treated/control patients in
node 1, 2 and 3; 40/73 treated/control patients in nodes 4 and 5. Level 2: 1/107 treated/control patients in node 1, 2 and 3; 49/68 treated/control patients in nodes 4 and 5.
Level 3: 0/108 treated/control patients in node 1, 2 and 3; 50/67 treated/control patients in nodes 4 and 5.
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Table 10
PEHE and |ATE error| (Mean(std)) Out-of-sample results of five nodes experiment with IHDP Setting B. Lower is better. The results in bold represent the best results of a one-way t-test with 𝑝 < 0.05 in the PEHE table and 𝑝 < 0.1 in
the ATE table. Our method, PW FedAvg, is marked with *. Note that, because the total training data have been spread over more nodes, the metrics of the distributed algorithms are worse than in the other experiments already at
the equilibrium position. Therefore, the differences between Vanilla and Propensity Weighted FedAvg are not as noticeable as in other experiments because the amount of data at each node is small and the errors committed are greater.

Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node1 Node2 Node3 Node4 Node5 Node1 Node2 Node3 Node4 Node5 Node1 Node2 Node3 Node4 Node5 Node1 Node2 Node3 Node4 Node5
20/88 20/88 20/88 20/88 20/88 5/103 5/103 5/103 40/73 40/73 1/107 1/107 1/107 49/68 49/68 0/108 0/108 0/108 50/67 50/67

PE
H

E

Centralized 2.10(0.18)
PW FedAvg* 3.32(0.53) 3.34(0.53) 3.30(0.49) 3.36(0.44) 3.27(0.45) 3.64(0.68) 3.62(0.71) 3.58(0.72) 3.07(0.54) 2.94(0.53) 3.82(1.00) 3.87(0.92) 3.83(0.87) 2.96(0.48) 2.98(0.50) 3.83(0.76) 3.88(0.80) 3.86(0.78) 3.08(0.49) 3.02(0.51)
Vanilla FedAvg 3.32(0.54) 3.32(0.49) 3.32(0.52) 3.31(0.44) 3.29(0.51) 3.83(0.66) 3.82(0.74) 3.78(0.69) 3.27(0.54) 3.12(0.73) 4.10(0.69) 4.19(0.76) 3.32(0.49) 3.30(0.47) 3.49(0.51) 4.05(0.74) 4.08(0.75) 4.04(0.76) 3.28(0.51) 3.24(0.53)
Isolated 3.55(0.61) 3.58(0.61) 3.57(0.53) 3.57(0.51) 3.56(0.65) 4.63(1.11) 4.53(1.04) 4.48(1.14) 3.12(0.48) 3.00(0.51) 6.68(1.91) 6.61(2.06) 6.46(2.13) 2.98(0.43) 3.03(0.43) 5.99(1.11) 6.18(1.10) 5.97(1.08) 3.12(0.53) 3.04(0.52)

CausalRFF 5.20(1.01) 4.95(1.21) 5.28(0.73) 5.15(0.91) 4.90(0.76) 4.77(0.71) 5.36(0.63) 5.20(1.26) 5.05(0.84) 5.08(1.19) 5.07(1.12) 5.35(1.16) 5.25(1.08) 5.14(0.54) 5.42(0.97) 5.42(1.03) 5.18(0.92) 5.21(0.85) 5.28(0.81) 5.47(1.65)
FedCI 4.54(1.84) 4.63(1.58) 4.41(1.69) 4.70(1.65) 5.07(2.28) 4.97(1.69) 5.06(1.78) 5.27(2.31) 4.88(1.87) 5.08(2.17) 5.38(2.05) 4.77(1.45) 5.48(2.32) 4.82(1.50) 5.42(1.72) 5.58(2.05) 4.97(1.45) 5.68(2.32) 4.72(1.50) 5.32(1.72)
Fed MLE 5.67(0.95) 5.67(0.95) 5.67(0.95) 5.67(0.95) 5.67(0.95) 5.66(1.09) 5.66(1.09) 5.66(1.09) 5.66(1.09) 5.66(1.09) 5.60(0.97) 5.60(0.97) 5.60(0.97) 5.60(0.97) 5.60(0.97) – – – – –

AT
E

Centralized 0.35(0.26)
PW FedAvg* 0.66(0.45) 0.64(0.54) 0.59(0.52) 0.63(0.57) 0.58(0.51) 0.70(0.53) 0.68(0.58) 0.73(0.51) 0.55(0.44) 0.54(0.44) 0.88(0.94) 0.92(0.88) 0.87(0.80) 0.55(0.48) 0.59(0.49 0.79(0.61) 0.78(0.64) 0.79(0.72) 0.50(0.38) 0.54(0.38)
Vanilla FedAvg 0.63(0.37) 0.68(0.48) 0.70(0.49) 0.68(0.44) 0.69(0.55) 0.94(0.56) 0.84(0.56) 0.93(0.52) 0.74(0.42) 0.75(0.40) 3.16(2.12) 3.14(2.16) 2.96(2.14) 0.54(0.41) 0.57(0.45) 0.83(0.50) 0.86(0.58) 0.86(0.53) 0.68(0.39) 0.75(0.38)
Isolated 0.74(0.65) 0.69(0.53) 0.73(0.53) 0.78(0.62) 0.88(0.59) 1.61(1.21) 1.45(1.17) 1.38(1.09) 0.66(0.44) 0.49(0.39) 0.74(0.65) 0.69(0.53) 0.73(0.53) 0.78(0.62) 0.88(0.59) 3.12(1.24) 3.45(1.29) 3.18(1.32) 0.60(0.46) 0.58(0.43))

CausalRFF 2.66(0.42) 2.57(0.48) 2.70(0.31) 2.68(0.38) 2.56(0.32) 2.47(0.30) 2.71(0.25) 2.64(0.51) 2.58(0.35) 2.59(0.50) 2.57(0.43) 2.67(0.47) 2.62(0.43) 2.57(0.24) 2.71(0.41) 2.66(0.43) 2.55(0.38) 2.57(0.35) 2.60(0.33) 2.67(0.68)
FedCI 2.69(2.29) 2.97(2.16) 2.65(2.18) 3.06(2.01) 3.38(2.81) 3.17(2.21) 3.35(2.23) 3.46(2.86) 3.07(2.38) 3.32(2.61) 3.73(2.66) 2.95(1.86) 3.85(2.76) 2.73(2.13) 3.56(2.34) 4.25(0.89) 3.99(0.63) 4.30(1.01) 2.01(0.65) 2.27(0.75)
Fed MLE 3.23(0.80) 3.23(0.80) 3.23(0.80) 3.23(0.80) 3.23(0.80) 3.12(0.87) 3.12(0.87) 3.12(0.87) 3.12(0.87) 3.12(0.87) 3.17(0.82) 3.17(0.82) 3.17(0.82) 3.17(0.82) 3.17(0.82) – – – – –
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Fig. 19. Metrics of five nodes experiment with IHDP Setting B. Although the performance of PW FedAvg is close to the rest of other algorithms due to the sparsity of samples in
each node, it is still the best distributed strategy for imbalanced data.
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Fig. 20. Schema of one averaging process of Propensity Weighted FedAvg in server for
two nodes.

For that reason, our adaptation, Propensity Weighted FedAvg, mod-
ify the average of the parameters of the regressors 𝑅𝑒𝑔0 ad 𝑅𝑒𝑔1, by
applying Eq. (9). The average in the rest of parameters is not modified
(see Table below).

Vanilla FedAvg Propensity Weighted FedAvg
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Finally, an illustration of the averaging process performed by our
Propensity Weighted FedAvg in a two-node scenario is shown in Fig. 20.

Appendix C. Hyperparameters, data shared and time consumption

C.1. Hyperparameters

Hyperparameters of TEDVAE:

• Number of layers of each submodule: 3
18
• Number of neurons of each layer: 128
• Non-linear activation functions (in hidden layers): ReLU
• Number of epochs: 200 (20 rounds)
• Number of epochs between averaging processes: 10
• Hyperparameters 𝛼𝑡 = 𝛼𝑦 = 100

C.2. Amount of data transmitted

These hyperparameters for IHDP datasets, with 25 input covariates,
make a total of 224181 trainable parameters. Each parameter is coded
using 8B. Therefore, each node has to share with the server 1.71 MB
in each averaging process. In the same way, the server transmits 1.71
MB to each node after the averaging process.

We define the direction nodes→server as upload and the inverse as
download, for understanding.

Taking into account the number of epochs of the training process
and the federation intervals, this sharing process must be performed 20
times. Therefore, the total amount of data transmitted in the training
of our algorithm is:

• upload: 34.2 MB × 𝑛𝑛𝑜𝑑𝑒𝑠
• download: 34.2 MB

However, the comparison methods share information only once. The
total amount of data transmitted for each method is:

• CausalRFF: The total number of parameters of the network, for
IHDP dataset is 305687. Then, in each iteration are shared:
305687 × 8 B = 2.33 MB. Using 10000 iterations, as defined in
the original code:

– upload: 22.77 GB × 𝑛𝑛𝑜𝑑𝑒𝑠
– download: 22.77 GB

• FedCI: First of all, it is needed to share the first four moments of
each variable (𝑌 0 and 𝑌 1 separately) in each node: (𝑛𝑐𝑜𝑣 + 1 + 1
+ 1) × 4 × 8 B
In the training process, in each iteration, all the parameters of the
net are shared. With the architecture of the model available and
IHDP dataset, each source has 310017 parameters. Then, in each
iteration, the following is shared: 310017 × 8 B = 2.36 MB
Using 2000 iterations, the total amount of data shared is:

– pretrain: 896 B
– upload: 4.61 GB × 𝑛𝑛𝑜𝑑𝑒𝑠
– download: 4.61 GB

• Fed MLE: From nodes to central server, the Hessian and the
coefficients for treatment and outcome regression are shared. The
Hessian is a matrix of shape (𝑛𝑐𝑜𝑣 + 1 + 1) × (𝑛𝑐𝑜𝑣 + 1 + 1).
There are (𝑛𝑐𝑜𝑣 + 1) coefficients for treatment regression and (𝑛𝑐𝑜𝑣
+ 1 + 1) coefficients for outcome regression. Then, the central
server computes the set of adjusted coefficients for treatment and
outcome regressions and send them to the nodes. This model only
share the parameters once. Therefore, the total amount of data
transmitted for IHDP, where 𝑛𝑐𝑜𝑣 = 25 is:

– upload: (27 × 27 + 26 + 27) × 8 B × 𝑛𝑛𝑜𝑑𝑒𝑠 = 9.11 kB × 𝑛𝑛𝑜𝑑𝑒𝑠
– download: (26 + 27) × 8 B = 53 B

C.3. Time consumption

As can be expected, the federated training in TEDVAE takes more
time in training than the centralized training, and also than isolated
training, where sharing and averaging parameters are not needed.

However, the training and inference time of Federated TEDVAE is
much shorter than the CausalRFF and FedCI training time. Finally,
training and inference in Fed MLE are much faster than in the other
algorithms (see Table 11).
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Table 11
Training and inference time in seconds (s). Mean(std) come from 100 realizations
of IHDP. Measures of single-thread execution on CPU AMD Ryzen 9 5950X 16-Core
Processor.

Training time Inference time

Cen TV 18.75(1.44) 3.80(0.11)
Iso TV 33.53(1.51) 8.50(0.15)
Fed TV 49.24(0.80) 8.49(0.18)
CausalRFF 566.1(56.3) 216.7(19.6)
FedCI 252.0(20.8) 3.21(0.83)
Fed MLE 3.02(0.05) 0.00(0.00)
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