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Abstract: In recent years, passive vehicle safety has become one of the major concerns for the
automotive industry due to the considerable increase in the use of cars as a means of daily transport.
Since real crash testing has a high financial cost, finite element simulations are generally used,
which entail high computational cost and long simulation times. In this paper, we make use of
the recent advances in the deep learning field to propose an affordable method to provide reliable
approximations of the finite element simulator model that significantly reduce the computational load
and time required. We compare the prediction performance in crash tests of different models, namely
feed-forward neural networks and bayesian neural networks, as well as two multi-output regression
methods. Our results show promising results, as deep learning models are able to drastically reduce
the engineering costs while providing a feasible first approximation to the passenger’s injuries in a
crash event, thus being a potential game changer in the vehicle safety design process.

Keywords: passive vehicle safety; crashworthiness; finite elements; feed-forward neural network;
bayesian neural network

1. Introduction

In recent years, the use of cars as a means of daily transport has considerably increased.
Even so, despite this increase in car use, in recent decades the number of accidents has
fallen substantially, going from 54,000 road fatalities in 2001 in the European Union to
25,100 in 2018 [1]. This is largely due to the effort car companies invest in making vehicles
safer. However, the decrease in the number of accidents has stagnated the last few years [2],
having become the most common cause of death and injuries. In Europe, the most recent
data show 20,400 road fatalities in 2023; thus, the progression in road fatality reduction is
stalling [3]. Therefore, more changes need to be made in order to achieve the challenging
target of halving the 2020 road accidents and people seriously injured in the European
Union by 2030 proposed in [1].

In order to reach the previous ambitious goal by 2030, a deeper understanding of the
factors influencing an accident must be gathered, and prediction and prevention of traffic
accidents should be further investigated. The recent advances in the machine learning
field are being used to provide insights on many of the factors that contribute to the
road fatalities, such as using machine learning to identify the key variables that have a
significant contribution to fatal road injuries [4], to assess the pavement condition using
image segmentation techniques [5], or, especially, to predict the severity of a crash [6–11].

Nevertheless, one of the most influential factors in a traffic accident and one of the
factors that can have the greatest influence on minimizing passenger injuries is the design
of the passive vehicle safety features, e.g., restraint systems, which are the ones that we
focus on in this work. According to [12], passive vehicle safety elements come into force
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in the event of a collision, helping to minimize the impact received by the passenger
and posterior injuries. Within the passive safety field, the term “crashworthiness” can
be found repeatedly in existing research [13]: in the automotive engineering context, this
term is related to the capacity of the vehicle structure to protect its occupants in the event
of collision. In order to actually assess whether a certain vehicle complies with safety
standards and regulations, and before a new car model is introduced on the market, it must
be subjected to vehicle safety assessment programs, e.g., in Europe, these are conducted by
the European New Car Assessment Program (Euro NCAP). These assessment programs
require the use of Anthropomorphic Test Devices (ATDs), also called crash test dummies,
to determine the capacity of the car to protect its occupants in a crash event. To achieve
that target, test dummies are equipped with a multitude of sensors capable of precisely
capturing different measurements of interest exerted on each body part.

However, real car crash testing demands high financial costs. To reduce the number of
hardware crash tests and to better understand the underlying system, Finite Element (FE)
simulations are widely used, e.g., to reconstruct the collision of a motorcycle and a car [14],
to study the response of a car to a frontal crash [15], and to simulate crash scenarios [16].
Thus, FE is the state-of-the-art technique in the passive safety design process, as a recent
review on crashworthiness shows [13]. FE tools lower monetary costs and speed up the
process to some extent because they can simulate the real world with little error [13], but
at the same time, they entail high computational costs, implying long computational times.
Thus, in order to obtain the measures of interest in the test dummy during a crash event
(i.e., the neck acceleration during a frontal crash), we need to run a FE model, which is
usually solved by a commercial software that acts as a black box, providing only inputs and
outputs of the model. This FE model takes a long time to simulate, consuming a significant
amount of resources. For instance, the data used in the simulations of this paper come
from a FE simulator that takes over 45 h to compute each simulation on 36 CPUs. Due
to these reasons, approximation techniques, also known as meta-models, are applied to
build approximate mathematical models of complex models that provide a rough but fast
approximation to the crash curves [17]. In this work, we propose taking advantage of the
recent advances in deep learning (DL), so we use the approximation capabilities of neural
networks (NNs) in order to estimate the crash curves.

In several fields where FE simulations are used, machine learning tools are being
applied due to their advantages. In [18], the authors review several applications in the
biomedical field, such as modeling tissue deformation, and report significant gains in
simulation time compared to FE methods. In [19], the authors show that brain injury can
be predicted using DL tools and report significant time gains compared to FE simulations.
Another field where these ideas are applied is in the civil engineering field to predict the
behavior of complex structures, such as a dam in a seismic scenario [20] or the structural
level strength of composite laminates [21]. However, in vehicle safety, we are only aware of
the use of DL techniques to evaluate the crash response of a mechanical bump absorber [22],
but to the best of our knowledge, we are the first ones to propose the use of DL to predict
the crash severity on a test dummy. Our results show that the significant savings in time
and computational resources make our proposed procedure a potential game changer in
the passive safety design process, as DL can be used to approximate crash curves in order
to accelerate the design process compared with relying solely on FE methods.

Hence, the main contributions of this paper are as follows:

• We propose several architectures based on DL to evaluate the severity of a crash,
taking as input the parameters of the restraint system. Namely, we propose using
feed-forward NNs (FFNNs) and bayesian NNs (BNNs).

• We also discuss the important topic of uncertainty by making use of BNNs, which not
only provide a predicted output but also a measure of the uncertainty of that output
that can be used to identify situations where minimal changes do have a strong impact
on the crash severity and focus the design in such situations.
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• In order to assess the performance of the proposed models, we use real data from
FE simulations in the BMW Passive Safety Department. Due to the computational
load required for each of these simulations, we only have 140 crash test sequences to
validate our DL models, which, however, show very promising results, both in terms
of good prediction capability and a significant reduction in computational load. FE
models require 36 CPUs and more than 45 h of processing time, but DL models train
in minutes using a GPU.

• In order to facilitate the replicability and foster future research, we publish the data
from the FE simulations used in this paper along with the code needed to replicate
our results, so that future research can use our code and/or data as a baseline.

The rest of the paper goes as follows: in Section 2 we present the input and output
data used in this work; in Section 3 we explain the theoretical foundations of the algorithms
used; and then in Section 4 we present the most relevant results from our research; and
finally, in Section 5 we draw the conclusions that stem from this work.

2. Material

In order to find the parametric function that best approximates crash responses, the
data used in this paper comes from a Full Frontal Crash model and is generated using a
commercial FE simulator. The data obtained using this FE simulator is {xi, yi}N

i=1, where
i ∈ {1, 2, ..., N} indexes the number of input–output vectors generated, x ∈ R4 are the
input parameters, and y ∈ RM represent the output curve. Hence, note that our problem
consists of predicting y given x, which is a multi-output regression problem due to the fact
that y is a vector of dimension M, where M is the number of time steps simulated. Due to
the computational requirements of FE models, we generate N = 140 pairs of input–output
data, which take 45 h of processing using 36 CPUs. Let us delve into more detail on the
meaning of x and y.

2.1. Input Data

Each input data vector xi consists of four parameters that give information on the
settings of the restraint system, more precisely, on (1) settings of the passenger airbag,
(2) the knee airbag, (3) the belt configuration, and (4) the airbag time-to-fire. We sampled
them using a uniform distribution with values normalized between 0 and 1, as seen in
Figure 1. Note that these parameters do not depend on time.

Figure 1. Correlation matrix plot for the four input parameters (passenger and knee airbag, belt con-
figuration and airbag time-to-fire). We obtain N = 140 crash responses using a uniform distribution
over these four parameters.



Appl. Sci. 2024, 14, 9296 4 of 17

2.2. Output Data

Each output data yi consists of a discrete time curve, i.e., yi is an M-dimensional vector,
with M = 1150 in our case. We use yi to refer to the i output curve and yj

i to refer to
the j time step of the i curve, where i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., M}. Each curve yi
represents some measurements of interest of the dummy in the car crash event, which are
the neck y-moment of the passenger and the resultant head acceleration. We select these two
measurements due to their significance for determining passenger injuries. An overview
of the shape of each of these curves can be seen in Figure 2, where we can observe that
these curves have a very non-linear shape, with one or two peaks of different amplitudes
in different time steps, which means that the prediction problem is not immediate.

Figure 2. Representation of output crash responses for the neck y-moment (left) and the head
acceleration (right) for each of the N = 140 curves present in our data. The horizontal axis represents
the time, where we note that each curve is composed of M = 1150 time steps. Note that the first
curves may or may not have a second peak starting at t ≈ 0.9, while the second may present a second
peak of varying amplitude at t ≈ 1, which indicates a complex behavior.

3. Theoretical Background

Since our aim is to find the parametric functions that best approximate crash re-
sponses, we will carry out a comparison between selected multi-output regression methods.
We devote this section to introducing the basic theory needed to understand each of
these methods.

3.1. Baseline Models

In order to benchmark the results of the DL methods that we propose, we select two
methods to compare with, namely, the Stacked Single-Target (SST) method and a modified
Ensemble of Regression Chains (ERC), both of them being state-of-the-art methods in
multi-output regression [23,24]. It is important to note that these two methods build an
independent regression model for each time step in the output curve y.

3.1.1. Stacked Single-Target

An SST regressor consists of training a Single-Target regressor for each element of
the output curve [23], which means that each Single-Target regressor takes as input xi and
estimates yj

i . Thus, we need M regressors that share the same input x and have as targets a
different time step of the output curve y. Under this approach, the multi-output regression
problem is broken down into single-output regression problems, and thus, any regression
methods could be applied. In mathematical terms, we have that each of the M Single-Target
regressors solves the following problem:

ŷj
i = f (xi), j ∈ {1, 2, ..., M} (1)

where f represents the chosen regressor. The total output curve is estimated by a global
model created by stacking each of the individual predictions: ŷi =

[
ŷ1

i , ŷ2
i , ..., ŷM

i
]
. Due

to the significant computational effort that is required to train M = 1150 regressors, we
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choose to implement each Single-Target regressor as an independent Linear Regressor to
predict each of the time steps of the output curve.

3.1.2. Ensemble of Regression Chains

This method is similar to the previous one in that it builds a classifier for each time
step of the output, but the difference now is that the inputs differ for each of these classi-
fiers. Namely, this method considers as input to each regressor, in addition to the input
parameters x, some previous time steps of the output curve [24]. Although we could
consider all previous time steps for predicting, we implement a modified scheme in which
we consider a window of a limited number of previous targets instead of all the previous
targets. Moreover, for each target, the best model is selected in terms of some evaluation
metrics (R-squared and Mean Squared Error (MSE)) out of different combinations of the
four input parameters and the previously predicted targets within the proposed window.
In mathematical terms, we have that each of the M regressors solves the following problem:

ŷj
i = f

(
xi, yj−L

i , yj−L+1
i , ..., yj−1

i

)
, j ∈ {1, 2, ..., M} (2)

where f represents the chosen regressor and L is the window size used. Again, the total
output curve is estimated by a global model created by stacking each of the individual
predictions: ŷi =

[
ŷ1

i , ŷ2
i , ..., ŷM

i
]
.

As mentioned, both SST and ERC build an independent regression model for each
time step in the output curve y, but we know that there is a significant correlation between
predicted outputs, as can be seen in Figure 2. While the SST method does not account for this
correlation, the ERC does by taking as an additional input a window of previous outputs.

3.2. Deep Learning Models

Due to the proven ability of DL models to find complex relationships between in-
put–output pairs in a multitude of different problems by creating hierarchical intercon-
nected layers consisting of many units, we consider two different architectures to address
the multi-output regression problem at hand. We now proceed to introduce the two DL
architectures chosen, based on FFNNs and BNNs, and also explain why another popular ar-
chitectural choice, Recurrent NNs (RNNs), does not provide an advantage to our problem.

3.2.1. Feed-Forward Neural Networks

FFNNs, also known as Multi-Layer Perceptrons (MLPs), are the most basic DL archi-
tectures. FFNNs are able to model complex relationships between input–output pairs by
composing together many functions [25] and natively support multi-output regression
problems. Moreover, as the universal function approximation theorem states [26], under
mild conditions, they are capable of finding the function that relates input to output with a
certain level of precision.

FFNNs consist of interconnected layers composed of different numbers of neurons, in
which the information is progressively broken down into features and flows in one direction.
In Figure 3, we show a schematic diagram of a three-layered FFNN for illustration purposes.
On it, the following are differentiated: the input layer, which is responsible for receiving
the input vector and passing it to the next layer; the hidden layer, which performs all the
computations; and finally, the output layer, which generates the predicted values. Each
layer consists of many units, called neurons, that are fully connected with the immediately
adjacent layers in one direction; note that we may add many hidden layers, which tends to
increase the prediction performance when enough data are available [25].
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x1

x2

x3

x4

Input layer

h1

h2

...

hP

Hidden layer

y1

y2

...

yM

Output layer

Figure 3. Three-layered FFNN for our problem, where each circle represents a neuron, and neurons
are grouped in layers; for easier view, we have drawn a single hidden layer of dimension P. Note
that each neuron takes as input all the neurons of the previous layer and computes a single output
using the expression (3).

The fundamental computational unit of a neural network is referred to as a neuron, or
unit. As described in [27], a neuron is composed of three main elements: the connecting
links, weighted by a numerical value known as weight, wji, which indicates the relevance
of such connection in the output value; the summing junction, which sums all the incoming
input values; and the activation function, φ(·), which limits the dynamic range of the output
value, which depends itself on the chosen function. Some of the most applied activation
functions are the linear function, the Sigmoid, the Hyperbolic tangent or the Rectified
Linear Unit. In addition, there is a scalar value known as bias, bi. Moreover, each neuron
has a single output and receives many inputs. Thus, the output is a non-linear combination
of all the inputs, and the equation that computes the output value ξ

j
i of neuron i in layer

j can be described as

ξ
j
i = φ

(
P

∑
k=1

wk,iξ
j−1
k + bi

)
(3)

where ξ
j−1
k are the input values to layer j neurons, i.e., the output of the P neurons of the

previous layer j − 1, and φ represents the activation function chosen.
The most popular method to train FFNNs is the Back-Propagation (BP) algorithm. The

training proceeds in two phases [27]: the forward and the backward propagation. In the
former, weights and biases are randomly initialized, and input values are passed through
the layers performing operation 3 on each neuron until the output layer is reached. Then,
the error between the predicted value and the actual value is computed. This error is
propagated backwards towards the input layer, and the weights and bias values of each
neuron are adjusted until the error converges to an acceptable level. This is referred to as
the backward propagation and is an optimization problem in which a certain loss function
has to be minimized by adjusting the weights and biases of the NN. As a loss function, we
use the Mean Squared Error (MSE), which is widely used in regression problems and is
described by the following equation:

MSE =
1

NM

N

∑
i=1

M

∑
j=1

(
yj

i − ŷj
i

)2
(4)

where yj
i represents the true values and ŷj

i are the predictions of the network for trajectory i
and time step j. Detailed computations of the Back-Propagation algorithm are presented
in [25,27]. The optimization algorithm that we use is Adam [28]. It is a first-order method
based on gradient, whose name is derived from the estimation of the adaptive momentum.



Appl. Sci. 2024, 14, 9296 7 of 17

3.2.2. Bayesian Neural Networks

It is important to note that FFNNs are deterministic: given a certain input, they always
provide the same output. They also do not account for the uncertainty of the prediction,
i.e., they do not provide any measurement of their certainty of the given prediction, which
is known as calibration in the literature [29]. In order to address both issues, we use BNNs,
whose main difference to FFNNs is that the weights and biases, instead of being a scalar, are
now considered a Gaussian random variable with mean and variance. Thus, the training
differs, and it is now based on an algorithm called Bayes By Backpropagation [30], based
on the Bayes’ Theorem.

The fact that the weights and biases in a BNN are random variables means that each
time that we provide an input to a BNN, the weights are sampled according to their
distribution, and thus, the output will differ even if the input is the same. This means that
we can predict several outputs for a fixed input, and by studying the distribution of the
outputs, we can assess whether the BNN is confident in its prediction (i.e., low variance) or
not. That has been shown to improve the calibration of the network [29], and it is useful
because it allows identifying the outputs where the BNN has a lower certainty, which
is important to our problem, as we will see in Section 4. Moreover, it allows controlling
the prediction error, which is something that must be controlled even in the case of using
FE [13].

3.2.3. Recurrent Neural Networks

Finally, and for completeness, we also discuss RNNs in this part of our study, as these
are specialized in treating time sequences. The main difference between a FFNN and a
RNN lies in the fact that an RNN has a feedback loop, as seen in Figure 4. Mathematically,
RNNs are specialized in processing time series information: for each input element of the
input sequence, xt, it produces an output yt and a hidden state ht that contains information
that is then introduced as an additional input for xt+1. This means that there are two
actual inputs: xt and ht−1, and thanks to the information contained in h, the RNN is
able to propagate information through time. They are trained with the Back-Propagation
Through Time (BPTT) algorithm [31], which allows obtaining a meaningful value of the
hidden state so that it feedbacks past decisions to have relevance for future ones. There are
many possible RNN architectures, being Long-Short Term Memory (LSTM) [32] one of the
most popular.

Although RNNs are widely applied in sequential problems, in our case, they do not
provide better results than FFNNs. This is due to a subtle fact that is related to how RNNs
are used to feedback information through the hidden state h: in general, when RNNs are
applied, the output sequence is conditioned on previous information that impacts the next
outputs. Let us illustrate this with the text captioning problem, as shown in [33–35], where
an image is processed and the caption text is automatically generated using an LSTM.
Given the image features x, we want to generate a sequence of words y that captions the
text. Since the output y is the probability of choosing a certain word, note that it does
matter whether the first word y1 of our text is “A” or “He,” as in the former case, the next
word must be a noun or an adjective, whereas in the latter it should be a verb. So note
that y2, the second word in the caption, depends on the sampled word y1: the hidden state
h1 contains that information, which is new and needed to predict y2. Hence, to compute
the next work, we not only need the previous distribution over words, but the actual
word sampled.

However, in our problem, which, recalling it once again, consists of finding the
function that best relates multi-dimensional input parameters to the corresponding output
response, this sampling of random variables is not present. But, in contrast, the hidden
state that would be present in the RNN network would not add any new information
that was not already present at the outset, since the hidden state would be a deterministic
transformation of the input parameters x. Hence, the hidden state is nothing more than a
more complex transformation of the input values due to the architecture of RNN, but it
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does not add any new information. That is why there is no benefit in applying RNNs to
address the proposed problem in this paper, so we do not report their results in Section 4,
because they are not better than those provided by FFNNs.

x

RNN

y

h

Figure 4. Illustration of the structure of an RNN, where we emphasize that, apart from the input x
and the output y, we have a hidden state h. For each time step t, the network takes as input xt and
the previous hidden state, ht−1, and produces two outputs, yt and ht. Note that the RNN is able to
propagate information through time thanks to the hidden state ht.

4. Results

We are now ready to show the performance results of the proposed methods in our
problem, which we do in this section. First, in Section 4.1, we compare FFNNs to the
proposed baseline methods; then, in Section 4.2, we compare the performance of FFNNs
and BNNs; and finally, in Section 4.3, we discuss the results obtained.

In order to assess the predictive performance, we use three different metrics widely
used in regression problems:

• Mean Squared Error, which has already been introduced in (4). IT is widely used as
it heavily penalizes large deviations in the predicted values from the ground truth,
but the units of the MSE are not the ones of the target since they are squared. It goes
between 0 and +∞, and the lower, the better.

• Mean Absolute Error (MAE), which is computed as the average absolute error between
the ground truth and the predicted values. It gives an idea of the error in the units of
the target. It goes between 0 and +∞, and the lower, the better.

• The R2 metric, also called coefficient of determination, determines how well the model
fits the data (goodness of fit). It goes between 0 and 1, and the higher, the better.

4.1. Baselines vs. Feed-Forward Neural Network

We start by comparing our baseline methods to the FFNN. In order to find the most
optimized architecture for the FFNN in terms of the number of layers, the number of
neurons per layer, and the activation per layer, we have used Hyperas [36] to find the best
candidate parameter out of 2000 possible combinations. In order to preprocess the input
data for the FFNN, we normalize the values of the data between 0 and 1.

The baseline methods are the SST method introduced in Section 3.1.1 and the ERC
presented in Section 3.1.2. Let us remind that for SST, each regressor takes as input the
four input parameters, whereas for ERC, we consider as input different combinations of
the four input parameters and the immediately previous time steps, which increases the
input dimensionality. To keep it bounded, we only test combinations using four previous
time steps.

Finally, regarding the ERC method, we note that during the training phase, real values
of previous time steps are considered as input, while during the prediction phase, we
introduce as input the previously predicted values. It is important to note that we are
trying to propose an efficient model to replace FE simulations due to their long computing
times, and although the methods proposed in here are not even comparable in terms of
required time, these methods are computationally inefficient and require more time both in
the training and prediction stages, while providing worse results than FFNNs, as seen in
the next sections.
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4.1.1. Neck y-Moment

We first present results corresponding to the neck y-moment. This particular curve
is interesting because of the two different behaviors that are present in t ≈ 0.9 that can
be observed in Figure 2. Models are expected to identify whether the direction of the
second peak goes upwards or downwards. The training parameters are depicted in Table 1.
Moreover, the optimized architecture that has been found with Hyperas is in Table 2.

Table 1. Selected training parameters for FFNN.

Parameter Selected Value

Learning rate 10−3

Optimizer Adam
Objective function MSE
Number of epochs 350
Batch size 100, all training samples
Validation split 0.1

Table 2. Selected hyperparameters for FFNN in the neck y-moment.

Parameter Selected Value

Number of layers 5
Neurons per layer (1024, 512, 64, 1024, 1150)
Activation per layer (ReLU, ReLU, Sigmoid, ReLU, Linear)

Once the model has been trained, its performance is assessed with the validation set.
Two predicted curves for the three different models are presented in Figure 5. It can be
observed that the two proposed multi-output regression models are incapable of accurately
predicting the behavior of the second peak, while the FFNN does. This is also reflected
in the evaluation metrics presented in Table 3, where it can be observed that FFNNs offer
the best performance, while SST and ERC provide similar results, worse than the FFNN,
as expected.

Figure 5. Comparison between predicted curves for the three proposed methods and the real curve
chosen for two different test samples for the neck y-moment. “Real” stands for the ground truth,
“Dense” for the FFNN prediction, “Baseline” for SST prediction, and “75 metamodels” for ERC
prediction. Note that the best prediction is clearly given by the FFNN method, which is the one that
best predicts the second peak in the first curve.
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Table 3. Evaluation metrics comparison between SST, ERC, and FFNNs for the neck y-moment
output curve.

Metric SST ERC FFNN

R2 (higher is better) 0.842 0.850 0.965
MSE (lower is better) 1.258·10−3 1.203·10−3 2.331·10−4

MAE (lower is better) 1.435·10−2 1.382·10−2 6.669·10−3

Finally, Figure 6 represents the average MSE distribution for all testing samples along
time, in which it can be observed that around t = 1, the error is greater, which corresponds
to the second peak seen in Figure 2. Note that this is to be expected: this is the most
complex region of the signal to predict, and FFNNs accumulate their error here. However,
as noted before, the network does not output a measure of the uncertainty in this region, as
BNNs do.

Figure 6. Average MSE as a function of time for the neck y-moment output response. Note that the
error peaks in the part where the predicted signal becomes more complex, as seen in Figure 2.

4.1.2. Resultant Head Acceleration

We now show the results obtained in the resultant head acceleration prediction. As
the previous output response was selected due to the two different behaviors it has around
t = 1, this one is selected due to the relevance it has in determining the passenger injuries:
it predicts whether an impact of the head with the dashboard has occurred. The training
parameters are the same as the ones used before and are depicted in Table 1. In addition,
the optimized architecture can be found in Table 4.

Table 4. Selected hyperparameters for FFNN in the resultant head acceleration.

Parameter Selected Value

Number of layers 5
Neurons per layer (512, 512, 64, 1024, 1150)
Activation per layer (ReLU, Tanh, Sigmoid, ReLU, Linear)

After training the model, new output curves are predicted with the testing set, and
two predicting examples are represented in Figure 7. These two curves correspond to the
same two test samples presented in Figure 5, so both figures have been predicted with the
same set of input parameters. The evaluation metrics are presented in Table 5, where it is
shown that FFNNs, once again, performed better than the baseline methods. Moreover, as
it can be observed in the predicted curves depicted in the first part of Figure 7, the FFNN
is not able to perfectly fit the second peak of the curve. However, it is able to determine
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that a large-scale second peak has occurred, unlike the other two methods. Thus, it can be
concluded that the FFNN is capable of detecting whether an impact of the head with the
dashboard has happened.

Figure 7. Comparison between predicted curves for the three proposed methods and the real curve
chosen for two different test samples for the head acceleration. “Real” stands for the ground truth,
“Dense” for the FFNN prediction, “Baseline” for SST prediction, and “75 metamodels” for ERC
prediction. Note that the best prediction is clearly given by the FFNN method, which is able to predict
the occurrence of a large peak in the first curve, while the other methods fail to predict it.

Table 5. Evaluation metrics comparison between SST, ERC, and FFNNs for the resulting head
acceleration output curve.

Metric SST ERC FFNN

R2 (higher is better) 0.976 0.977 0.993
MSE (lower is better) 1.043·10−3 1.013·10−3 3.153·10−4

MAE (lower is better) 1.340·10−2 1.309·10−2 8.543·10−3

Finally, the mean MSE value along time for all test samples is presented in Figure 8,
where it can be observed that, for this output response, the MSE error is concentrated
before reaching t = 1, which again corresponds to the most complex region of the data, as
observed in Figure 2.

Figure 8. Average MSE as a function of time for the head acceleration output response. Again, note
that the error peaks in the parts of the curve where the behavior becomes more complex to predict.
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4.2. Feed-Forward Neural Network vs. Bayesian Neural Network

As our aim is to find a reliable model to predict output responses for some new input
parameters, we would like to determine how reliable the predictions given by the models
are, and to that purpose, we use BNNs. By applying these networks, we will know in
which parts of the output curves the model is more doubtful and to what extent by having
confidence intervals. We use the same hyperparameters (number of layers, neurons per
layer, and activations) that we found for FFNNs (Tables 2 and 4), and again, we normalize
the data between 0 and 1.

In BNNs, since weights follow a probability distribution, different predictions are
obtained for the same set of input parameters. This means that we can obtain a prediction
average and confidence interval, which in this work is obtained using the 3σ rule of the
normal distribution, in which the 99.73% of values lie. This phenomenon can be assumed
due to the central limit theorem, which states that, having n independent random variables
drawn for any distribution with known mean µ and variance σ2 greater than 0 and finite,
the normalized sum of these independent random variables can be characterized by a
normal distribution:

Z = lim
n→∞

(
X̄ − µ

σ√
n

)
→ N(0, 1) (5)

being X̄ the sample mean and n the number of samples. In our case, we will test using
n = 100 different draws of the output for each input in order to obtain a good estimate of
the confidence intervals.

In order to present the results, once again, we divide this section into two parts: the
first one will present the results obtained for the neck y-moment, and the second part will
present the ones obtained for the resultant head acceleration.

4.2.1. Neck y-Moment

We train both an FFNN and a BNN using the architecture from Table 2, using the
training parameters presented in Table 6. The parameters considered are based on the ones
used in [37], which are, in turn, based on the ones presented in [30].

Table 6. Selected training parameters for BNNs.

Parameter Selected Value

Learning rate 10−4

Optimizer Adam
Objective function MSE
Number of epochs 150
Batch size 100, all training samples
Validation split 0.1
µweight Normal (0, 0.1)
µbias Normal (0, 0.1)
ρweight Normal (−5, 0.05)
ρbias Normal (−5, 0.05)
ϵ Normal (0, 0.1)
σ1 e−1

σ2 e−6

Scale Mixture of ... Two Gaussian distributions

From the previous results, we already expect to have more uncertainty around t = 1,
as was the time value where a greater MSE value was obtained when training FFNNs in
Figure 6. The obtained results are depicted in Figure 9 for the same samples that we have
used in previous Figures. As it can be seen in both Figure 9 and the results presented in
Table 7, having a measure of uncertainty provided by BNN leads to a slight reduction in
accuracy. This is noticeable in the second curve in Figure 9, where it can be seen that FFNN
fits better the real curve. Even so, this reduction in accuracy is not very noticeable, as seen
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in Table 7, and is the cost of providing a measure of the uncertainty of the models, as noted
in [30]. However, we also highlight the importance of having a measure of uncertainty
for the design process, as we already know where the BNN is unsure about the outcome,
and this uncertainty guides the design process, as it provides information about regions
of the neck y-moment where minimal changes in the input may cause dramatic changes
in the output.

Figure 9. Comparison between predicted curves of the BNN and FFNN and the real curve chosen for
two different test samples for the neck y-moment, where the average curve between the 100 predic-
tions of the BNN is presented in red, the prediction of FFNN in green, the real values in black, and
the BNN confidence interval in blue. Note that the parts where the curve becomes less predictable
have a higher uncertainty in the BNN (see Figure 2), indicating the regions where the prediction is
less certain.

Table 7. Evaluation metrics comparison between FFNN and BNN for the mean value of 100 predic-
tions for the neck y-moment output curve.

Metric FFNN BNN

R2 0.965 0.944
MSE 2.331·10−4 3.653·10−4

MAE 6.669·10−3 8.051·10−3

4.2.2. Resultant Head Acceleration

The parameters used to train the network for this output response are the ones already
presented in Table 6, except for the number of epochs, which in this case is increased to 200,
and the architecture optimized for this output response is, again, the one used before and
shown in Table 4.

The obtained predictions are depicted in Figure 10, where we plot the predictions for
the same two samples as in previous Figures. Using this Figure and Table 8, once again,
it can be seen that there is a slight reduction in accuracy when using these networks, but
a measure of uncertainty is achieved. In the first result of Figure 10, it can be observed
that the BNN prediction is very far from being able to estimate the maximum value of the
output curve when compared with the FFNN prediction, but the real value of the peak lies
within the confidence interval predicted. Moreover, in the case that the second peak is not
actually present (second result of Figure 10), the confidence interval becomes wider, while
the mean of the 100 BNN predictions is quite close to the real value.
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Figure 10. Comparison between predicted curves of the BNN and FFNN and the real curve chosen
for two different test samples for the resultant head acceleration, where the average curve between
the 100 predictions of the BNN is presented in red, the prediction of FFNN in green, the real values in
black, and the BNN interval in blue. Note that the parts where the curve becomes less predictable
have a higher uncertainty in the BNN (see Figure 2), indicating the regions where the prediction is
less certain.

Table 8. Evaluation metrics comparison between FFNN and BNN for the mean value of 100 predic-
tions for the Head Acceleration output curve.

Metric FFNN BNN

R2 0.993 0.986
MSE 3.153·10−4 6.078·10−4

MAE 8.543·10−3 1.047·10−2

4.3. Discussion

We now proceed to summarize our results:

• We consider the problem of predicting a discrete time curve that contains information
about a test dummy during a crash event. We compare the DL methods proposed
with two state-of-the-art methods, SST and ERC, in order to have a benchmark. The
results in Tables 3 and 5 show that FFNNs have a clear predictive advantage in all the
metrics analyzed.

• It is known that FFNNs can be overconfident in their predictions [29]. In order to
alleviate this problem, we also propose using BNNs, which not only give a prediction
of the curve but also an uncertainty measurement. The main effect we observe is that
BNNs cause a slight decrease in the performance metrics compared to FFNNs, as seen
in Tables 7 and 8, but at the same time, they provide the information of which parts of
the predicted curve are more certain.

• DL approaches also excel in terms of computational power and time efficiency: while
FE values were obtained using 45 processing hours in a 36 CPU cluster, SST, ERC, and
DL methods were run on a standard computer (Processor Intel Core i7 3820, GPU
Nvidia Titan V, 16 GB of RAM), with runtime in the range of minutes: ERC training
took ∼100 s, while FFNN training took ∼7 s.

Regarding potential limitations of our work, the dataset used is not too large, com-
posed of 140 samples, due to the high computational load that entails generating one of
these trajectories using FE simulations. Thus, it is important to ensure that the model is
generalizing well; in order to do that, we follow standard practices by training using a set
of samples and validating using a different set of samples, unseen during training. All
the reported results are given using the validation trajectories. This is a limitation of our
current work that can be addressed either by increasing the dataset size or by the use of
techniques that specialize in cases of low sample size, i.e., few-shot learning techniques.

We also highlight the importance of having an uncertainty prediction by using BNNs.
As commented, NNs are known to be overconfident in their prediction [29], which can
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be mitigated by having not only an estimate of the trajectory, but also an estimation of
its variance. Uncertainty has a key role in engineering [38], and in our problem, it means
that a designer can obtain information regarding where the predictor is unsure about the
trajectory, as well as information such as the maximum and minimum expected values of
the trajectory (which in our cases are acceleration experimented by the test dummy).

To sum up, we provide two different approaches: FFNNs provide a slightly better
prediction, at the risk of overconfidence, whereas BNNs provide uncertainty estimates as
well. We consider that both approaches are complementary and can be used to provide a
very accurate first approximation for the prediction problem. Note that the low compu-
tational load of DL methods can be exploited also to make a first approximation of crash
responses, which can later be refined (and validated) by making use of other tools, such as
FE. Moreover, resulting models can then be used for optimization, sensitivity analysis, or
uncertainty analysis, among many other contexts [39,40].

5. Conclusions

In this work, we have investigated the feasibility of applying different DL models to
approximate the curves of interest to predict passenger injuries in a crash event so that
the design process of passive safety elements in vehicles can be significantly accelerated
compared to standard FE simulations. To this end, we proposed to implement two DL
models: FFNNs and BNNs, in addition to two other multi-output regression methods,
which served as baseline.

The results obtained are very positive: both FFNNs and BNNs provide a very high
prediction accuracy; BNNs can also provide an uncertainty estimate; and there are signifi-
cant savings in computational load and time when compared to SST, ERC, and especially
FE. Thus, note that the combination of high accuracy and low training time makes our DL
proposal a potential game changer in the design process of passive security elements. That
is why this tool is ready to use within the company’s context, as it already gets good results
to provide reliable first approximations on car crash responses.

This promising work also allows for several other future lines of research. The first
one has to do with the number of samples: in this work, we have used only 140 samples.
It is possible to gather more sequences, but it is also possible to use Deep Generative
Models [41] to generate synthetic data in order to increase the number of data available.
In addition to that, instead of considering only data coming from the FE simulator, data
coming from real car crash tests could also be added and weighted so that the networks
would give more relevance to them than to the simulated values. Furthermore, it is also
proposed to optimize FFNNs using fewer training samples, investigating what is the limit
number of samples with which good results continue to be obtained due to the high cost of
generating these samples. Another possible research direction, related to this idea, is the
use of few-shot learning techniques [42,43] in order to test whether we can further reduce
the minimal number of samples needed for learning. It could also be possible to test other
machine learning models different from the ones proposed in this paper, such as Support
Vector Machines or Random Forests, to mention two. And finally, it is also important to test
the generalization abilities of the models proposed, even out of the training distribution, as
shown in [44].

Author Contributions: Conceptualization: M.L.N., J.S.J., P.A.A., J.P., S.Z. and M.G.; Methodology:
M.L.N., J.S.J., P.A.A., J.P., S.Z. and M.G.; Formal analysis and investigation: M.L.N., J.S.J., P.A.A., J.P.,
S.Z. and M.G.; Writing—original draft preparation: M.L.N.; Writing—review and editing: M.L.N.,
J.S.J., P.A.A., J.P., S.Z. and M.G.; Resources: S.Z. and M.G.; Supervision: J.P., S.Z. and M.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2024, 14, 9296 16 of 17

Data Availability Statement: The data used in this paper is published along with the code in the
following link: https://github.com/marlahozn/DL_for_vehicle_safety (accessed on 2 September
2024). The data published has been anonymized to fulfill BMW Group disclosure policies.

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the dona-
tion of the Titan V GPU used for this research.

Conflicts of Interest: Author Jonas Siegfried Jehle was employed by the company BMW Group. The
remaining authors declare that the re-search was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. European Commission. EU Road Safety Policy Framework 2021–2030—Next Steps towards “Vision Zero”; Technical report; Mobility

and Transport; European Commission: Brussels, Belgium, 2019.
2. WHO. Global Status Report in Road Safety; Technical report; World Health Organization (WHO): Geneva, Switzerland, 2018.
3. Road Safety Statistics 2023 in More Detail. Available online: https://transport.ec.europa.eu/background/road-safety-statistics-

2023_en (accessed on 1 October 2024).
4. Ghandour, A.J.; Hammoud, H.; Al-Hajj, S. Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach.

Int. J. Environ. Res. Public Health 2020, 17, 4111. [CrossRef]
5. Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine learning techniques for pavement condition evaluation. Autom. Constr. 2022,

136, 104190. [CrossRef]
6. Komol, M.M.R.; Hasan, M.M.; Elhenawy, M.; Yasmin, S.; Masoud, M.; Rakotonirainy, A. Crash severity analysis of vulnerable

road users using machine learning. PLoS ONE 2021, 16, e0255828. [CrossRef]
7. Vinta, S.R.; Rajarajeswari, P.; Kumar, M.V.; Kumar, G.S.C. BConvLSTM: A deep learning-based technique for severity prediction

of a traffic crash. Int. J. Crashworth. 2024, 1–11. [CrossRef]
8. Khan, M.N.; Das, A.; Ahmed, M.M. Prediction of truck-involved crash severity on a rural mountainous freeway using transfer

learning with resnet-50 deep neural network. J. Transp. Eng. Part A Syst. 2024, 150, 04023131. [CrossRef]
9. Sattar, K.; Chikh Oughali, F.; Assi, K.; Ratrout, N.; Jamal, A.; Masiur Rahman, S. Transparent deep machine learning framework

for predicting traffic crash severity. Neural Comput. Appl. 2023, 35, 1535–1547. [CrossRef]
10. Li, Y.; Yang, Z.; Xing, L.; Yuan, C.; Liu, F.; Wu, D.; Yang, H. Crash injury severity prediction considering data imbalance: A

Wasserstein generative adversarial network with gradient penalty approach. Accid. Anal. Prev. 2023, 192, 107271. [CrossRef]
[PubMed]

11. Niyogisubizo, J.; Liao, L.; Sun, Q.; Nziyumva, E.; Wang, Y.; Luo, L.; Lai, S.; Murwanashyaka, E. Predicting crash injury severity
in smart cities: A novel computational approach with wide and deep learning model. Int. J. Intell. Transp. Syst. Res. 2023,
21, 240–258. [CrossRef]

12. Broughton, J. The benefits of improved car secondary safety. Accid. Anal. Prev. 2003, 35, 527–535. [CrossRef] [PubMed]
13. Abdullah, N.; Sani, M.; Salwani, M.; Husain, N. A review on crashworthiness studies of crash box structure. Thin-Walled Struct.

2020, 153, 106795. [CrossRef]
14. Santos, K.; Silva, N.M.; Dias, J.P.; Amado, C. A methodology for crash investigation of motorcycle-cars collisions combining

accident reconstruction, finite elements, and experimental tests. Eng. Fail. Anal. 2023, 152, 107505. [CrossRef]
15. Idrees, U.; Ahmad, S.; Shah, I.A.; Talha, M.; Shehzad, R.; Amjad, M.; Koloor, S.S.R. Finite element analysis of car frame frontal

crash using lightweight materials. J. Eng. Res. 2023, 11, 100007. [CrossRef]
16. Marzougui, D.; Brown, D.; Park, H.; Kan, C.; Opiela, K. Development & validation of a finite element model for a mid-sized

passenger sedan. In Proceedings of the 13th International LS-DYNA Users Conference, Dearborn, MI, USA, 8–10 June 2014;
pp. 8–10.

17. Ibrahim, H.K. Design Optimization of Vehicle Structures for Crashworthiness Improvement. Ph.D. Thesis, Concordia Univer-
sity, Montreal, QC, Canada, 2009. Available online: https://spectrum.library.concordia.ca/id/eprint/976529/ (accessed on
2 September 2024).

18. Phellan, R.; Hachem, B.; Clin, J.; Mac-Thiong, J.M.; Duong, L. Real-time biomechanics using the finite element method and
machine learning: Review and perspective. Med. Phys. 2021, 48, 7–18. [CrossRef] [PubMed]

19. Deck, C.; Bourdet, N.; Trog, A.; Meyer, F.; Noblet, V.; Willinger, R. Deep learning method to assess brain injury risk. Int. J.
Crashworthiness 2023, 28, 760–769. [CrossRef]

20. Salazar, F.; Hariri-Ardebili, M.A. Coupling machine learning and stochastic finite element to evaluate heterogeneous concrete
infrastructure. Eng. Struct. 2022, 260, 114190. [CrossRef]

21. Nastos, C.; Komninos, P.; Zarouchas, D. Non-destructive strength prediction of composite laminates utilizing deep learning and
the stochastic finite element methods. Compos. Struct. 2023, 311, 116815. [CrossRef]

22. Jimenez-Martinez, M. Artificial Neural Networks for Passive Safety Assessment. Eng. Lett. 2022, 30, 1.
23. Borchani, H.; Varando, G.; Bielza, C.; Larranaga, P. A survey on multi-output regression. Wiley Interdiscip. Rev. Data Min. Knowl.

Discov. 2015, 5, 216–233. [CrossRef]

https://github.com/marlahozn/DL_for_vehicle_safety
https://transport.ec.europa.eu/background/road-safety-statistics-2023_en
https://transport.ec.europa.eu/background/road-safety-statistics-2023_en
http://doi.org/10.3390/ijerph17114111
http://dx.doi.org/10.1016/j.autcon.2022.104190
http://dx.doi.org/10.1371/journal.pone.0255828
http://dx.doi.org/10.1080/13588265.2024.2348397
http://dx.doi.org/10.1061/JTEPBS.TEENG-7304
http://dx.doi.org/10.1007/s00521-022-07769-2
http://dx.doi.org/10.1016/j.aap.2023.107271
http://www.ncbi.nlm.nih.gov/pubmed/37659275
http://dx.doi.org/10.1007/s13177-023-00351-7
http://dx.doi.org/10.1016/S0001-4575(02)00030-1
http://www.ncbi.nlm.nih.gov/pubmed/12729816
http://dx.doi.org/10.1016/j.tws.2020.106795
http://dx.doi.org/10.1016/j.engfailanal.2023.107505
http://dx.doi.org/10.1016/j.jer.2023.100007
https://spectrum.library.concordia.ca/id/eprint/976529/
http://dx.doi.org/10.1002/mp.14602
http://www.ncbi.nlm.nih.gov/pubmed/33222226
http://dx.doi.org/10.1080/13588265.2022.2130600
http://dx.doi.org/10.1016/j.engstruct.2022.114190
http://dx.doi.org/10.1016/j.compstruct.2023.116815
http://dx.doi.org/10.1002/widm.1157


Appl. Sci. 2024, 14, 9296 17 of 17

24. Spyromitros-Xioufis, E.; Tsoumakas, G.; Groves, W.; Vlahavas, I. Multi-target regression via input space expansion: Treating
targets as inputs. Mach. Learn. 2016, 104, 55–98. [CrossRef]

25. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.
deeplearningbook.org (accessed on 2 September 2024).

26. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,
2, 359–366. [CrossRef]

27. Haykin, S.S. Neural Networks and Learning Machines; Pearson Education: Hoboken, NJ, USA, 2009.
28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning

Representations, San Diego, CA, USA, 7–9 May 2015; Volume 7–9.
29. Huang, J.; Park, S.; Simeone, O. Calibration-aware bayesian learning. In Proceedings of the 2023 IEEE 33rd International

Workshop on Machine Learning for Signal Processing (MLSP), Rome, Italy, 17–20 September 2023; IEEE: New York, NY, USA,
2023; pp. 1–6.

30. Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural network. In Proceedings of the
International Conference on Machine Learning, Lille, France, 6–11 July 2015; PMLR: Birmingham, UK, 2015; pp. 1613–1622.

31. Werbos, P. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [CrossRef]
32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.
34. Hossain, M.Z.; Sohel, F.; Shiratuddin, M.F.; Laga, H. A comprehensive survey of deep learning for image captioning. ACM

Comput. Surv. 2019, 51, 118. [CrossRef]
35. Zhang, M.; Yang, Y.; Zhang, H.; Ji, Y.; Shen, H.T.; Chua, T.S. More is Better: Precise and Detailed Image Captioning Using Online

Positive Recall and Missing Concepts Mining. IEEE Trans. Image Process. 2019, 28, 32–44. [CrossRef]
36. Pumperla, M. Hyperas. Keras + Hyperopt: A very Simple Wrapper for Convenient Hyperparameter Optimization. 2020.

Available online: https://github.com/maxpumperla/hyperas (accessed on 2 September 2024).
37. Saxena-Mayur; Kollnig, K.; Delaney, L.; Couairon, G. Reproduction—Weight Uncertainty in Neural Networks. 2019. Available

online: https://github.com/saxena-mayur/Weight-Uncertainty-in-Neural-Networks (accessed on 2 September 2024).
38. Kochenderfer, M.J. Decision Making Under Uncertainty: Theory and Application; MIT Press: Cambridge, MA, USA, 2015.
39. Jehle, J.S.; Lange, V.A.; Gerdts, M. Enabling the evidence theory through non-intrusive parametric model order reduction for

crash simulations. In Proceedings of the 9th International Workshop on Reliable Engineering Computing (REC2021), Virtually,
17–20 May 2021.

40. Jehle, J.S.; Lange, V.A.; Gerdts, M. Proposing an Uncertainty Management Framework to Implement the Evidence Theory for
Vehicle Crash Applications. Asce-Asme J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 021204. [CrossRef]

41. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

42. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
2020, 53, 63. [CrossRef]

43. Parnami, A.; Lee, M. Learning from few examples: A summary of approaches to few-shot learning. arXiv 2022, arXiv:2203.04291.
44. Ye, N.; Li, K.; Hong, L.; Bai, H.; Chen, Y.; Zhou, F.; Li, Z. Ood-bench: Benchmarking and understanding out-of-distribution

generalization datasets and algorithms. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 21–24 June 2022; Volume 1, pp. 7947–7958.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10994-016-5546-z
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1145/3295748
http://dx.doi.org/10.1109/TIP.2018.2855415
https://github.com/maxpumperla/hyperas
https://github.com/saxena-mayur/Weight-Uncertainty-in-Neural-Networks
http://dx.doi.org/10.1115/1.4053062
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1145/3386252

	Introduction
	Material
	Input Data
	Output Data

	Theoretical Background
	Baseline Models
	Stacked Single-Target
	Ensemble of Regression Chains

	Deep Learning Models
	Feed-Forward Neural Networks
	Bayesian Neural Networks
	Recurrent Neural Networks


	Results
	Baselines vs. Feed-Forward Neural Network
	Neck y-Moment
	Resultant Head Acceleration

	Feed-Forward Neural Network vs. Bayesian Neural Network
	Neck y-Moment 
	Resultant Head Acceleration

	Discussion

	Conclusions
	References

