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Abstract

In the context of decentralized and privacy-constrained healthcare data settings,
we introduce an innovative approach to estimate individual treatment effects (ITE)
via federated learning. Emphasizing the critical importance of data privacy in
healthcare, especially when drawing on data from various global hospitals, we
address challenges arising from data scarcity and specific treatment assignment
criteria influenced by the availability of the medication of interest. Our method-
ology uses federated learning applied to neural network-based generative causal
inference models to bridge the gap between decentralized and centralized ITE es-
timation on a benchmark dataset.

1 Introduction

Causal inference is vital to understand the effects of treatment in diverse fields, but in decentral-
ized, privacy-constrained settings, it presents significant challenges. We aim to estimate individual
treatment effects (ITEs) while respecting stringent privacy constraints.

In distributed environments such as healthcare facilities, changes in propensity scores and in the
distribution of covariates between nodes pose obstacles. Limited data availability further compli-
cates unbiased causal effect estimation. To address these challenges, we adopt federated learning,
specifically FederatedAveraging (FedAvg) [1], and utilize TEDVAE (Treatment Effect with Dis-
entangled Variational Autoencoder) [2] for the estimation of the treatment effect. In the domain
of federated causal inference, researchers have explored various techniques: parametric models [3]
and Gaussian Processes (GPs) [4] and Random Fourier Features (RFF) [5] have been adapted for
federated settings. These algorithms often rely on asymptotic properties and may not be suitable
for scenarios with limited sample sizes and changes in treatment assingment distributions, which is
often the case in the medical setting. We extend the principles of federated learning to the domain
of causal inference, acknowledging a limited number of samples and changes in the distribution of
treatment assignment.

2 Problem definition

2.1 Local causal inference

Consider the data set D = {Xi, Ti, Yi}Ni=1, where the subindex i ∈ M = {1, ..., N} represents
the index an individual datapoint and N = |M| is the total number of data points in the data set.
Assume that the samples are i.i.d. observations: D iid∼ P. In this notation, Xi ∈ X ⊆ RDx is a
vector of covariates, Ti ∈ {0, 1} is the treatment , and Yi ∈ R represents the outcome. Let us also
define the individual causal effect of Ti on Yi (ITE ≡ τi), following the Neyman-Rubin potential
outcome framework [6], as: τi ≡ Yi(Ti = 1)− Yi(Ti = 0)
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Figure 1: TEDVAE model. ◦ represents sampling and ⊗ the product.

Conventional causal inference methods [6–18] estimate individual and/or average treatment effect
conditioning on covariates, assuming that the data meets the standard unconfoundedness, positivity,
consistency, and no interference (these last two are SUTVA) assumptions, following backdoor
criterion [19]: τ̂(xi) = E[Y |T = 1,X = xi]− E[Y |T = 0,X = xi].

2.2 Distributed causal inference

Suppose that we have K information processing nodes, each k ∈ {1, ..., K} node with a data set
Dk = {Xk

i , T
k
i , Y

k
i }i∈Mk⊂M, where Mk is the set of patient indices, Nk = |Mk| is the number

of samples from node k and N =
∑K

i=1 N
k (there are not repeated patients: Mk∩Mj = ∅). Also,

Xk
i ∈ X ⊆ RDxk , where Dxk is the number of covariates of each node, T k

i ∈ {0, 1} and Y k
i ∈ R.

The sets of patient indices treated and control (untreated) patients of node k are T k and Ck. The
number of treated and control patients in each node is Nk

T = |T k| and Nk
C = |Ck|, respectively.

Data collected in the different nodes can be distributed non-identically (Dj iid∼ Pj , Dk iid∼ Pk,
Pj ̸= Pk, with j, k ∈ {1, ...,K}, j ̸= k). Let us define three conditions to study in distributed
causal inference [3]: (Condition 1) The set of covariates is the same in all nodes: Dxj = Dxk,
X j = X k, (Condition 2) the covariate distribution is stable across nodes: pj(X) = pk(X) and
(Condition 3) the propensity score is stable between nodes: pj(T |X) = pk(T |X).

2.3 Conditions of our problem

In this text, we will assume that Condition 1 is valid, but not Conditions 2 and 3. We want to focus
on a scenario where some underdeveloped countries do not have access to some drugs. This strategy
can help to estimate the effect of a treatment from data in developed countries. This imbalance
causes very important changes in the propensity score and in the distribution of covariates.

In addition, we assume that the classical assumptions of causal inference are satisfied for the joint
dataset D = {Xi, Ti, Yi}Ni=1 ∼ Pdata. Ideally, the causal effects of T on the outcome could be
estimated from the union of all datasets, as if all data were located in the same centralized node.

On the other hand, we consider that individual-level data cannot be shared between nodes, so this
joint distribution is not available in each node. Due to the distribution shift across nodes, the esti-
mated causal effect will be different in each node and none of them will have to coincide with the
estimate in the centralized case. Furthermore, the decentralization of information implies that the
number of samples in each node is less than the total number of samples, which increases the vari-
ance of the estimators in datasets with a limited number of samples. We must take into account that
due to propensity score shift, it is more difficult to meet the positivity assumption in each isolated
node even when the assumption is met for the entire dataset D.

3 Federated learning method for causal inference

Definitions. Let us define some terms for the explanation of this section: parameters of neural
networks are expressed with Greek letters, as shows Figure 1. The letter Ωk refers to the set of all
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parameters of the neural network model (TEDVAE) of node k and Ω = {Ω1, ...,Ωk} refers to the set
of parameters of the models of all nodes. Let us define Θk = {ϕk

T , ϕ
k
C , ϕ

k
Y , θ

k, φk
t , φ

k
Y }; then the set

of all parameters is Ωk = {Θk, ϕk
Y 1, ϕ

k
Y 0}. The output of a module (ϑ) with input xi is expressed in

this text as fϑ(xi). The subscript S refers to the server parameters. Furthermore, consider that NS
T

and NS
C are the sum of treated and control patients in all nodes, respectively.

The prediction problem in Federated Learning has a global objective function to minimize:

L(Ω;D) ≡
K∑

k=1

Nk

N
Lk(Ωk;Dk) where Lk(Ωk;Dk) =

∑
i∈Mk

1

Nk
l[fk(xk

i , t
k
i ; Ω

k), yki ] (1)

If the data were IID and the number of samples was large enough, EMk [Lk(Ωk;Dk)] = L(Ω;D)
over any node k. However, our problem considers the non-IID setting and the limited number of
samples. In the FedAvg algorithm, the training process in each node minimizes the local objective
function Lk(Ωk): Ωk

t+1 = Ωk
t − η∇Ωk

t

1
Nk

∑
i∈Mk l(fk(xk

i , t
k
i ; Ω

k
t ), yi)

Vanilla (standard) FedAvg computes in a central server a weighted average of the parameters of each
node, weighting them with the number of samples in each node:

ΩS
t+1 =

K∑
k=1

Nk

N
Ωk

t+1 = ΩS
t − η

K∑
k=1

1

N
∇Ωk

t

∑
i∈Mk

l(fk(xk
i , t

k
i ; Ω

k
t ), y

k
i ) (2)

The objective function L(Ωk;Dk) of the TEDVAE [2] model parameterized in Figure 1 is in Eqs.
3, 4. The objective of this model is to disentangle the covariates into instrumental variables (zt),
confounders (zc), and adjustment variables (zy), achieving a partial discovery of the causal graph.

LTEDVAE(Ω;D) =
1

N

∑
i∈M

lELBO(xi, yi, ti; Θ)

+ αtEqϕtqϕc
[log pφt

(ti | zt,i, zc,i)]
+ αyEqϕy qϕc

[
log pφy

(yi | ti, zc,i, zy,i)
]

(3)

lELBO(x, y, t; Θ) = Eqϕcqϕtqϕy
[log pθ (x | zt, zc, zy)]

−DKL (qϕt (zt | x) ∥pθt (zt))
−DKL (qϕc

(zc | x) ∥pθc (zc))
−DKL

(
qϕy (zy | x) ∥pθy (zy)

)
.

(4)
We have omitted the superscript k in Figure 1 and Eqs. 3, 4, for clarity. The terms αt, αy ∈
R+ are hyperparameters. The Evidence Lower Bound (ELBO) [20, 21], is composed by Gaussian
priors (N (0, I)) and Gaussian posteriors, with the particularity of the inclusion of three Kullback-
Leibler divergence terms due to the decomposition of latent space. Note that pφy

(yi|ti, zc,i, zy,i) =
N (µ̂i, σ̂i) where (µ̂i, σ̂i) = ti · fφY 1

(zc,i, zy,i) + (1− ti) · fφY 0
(zc,i, zy,i).

The key point of our propensity adaptation, is in the expectation included in Eq. 3 can
be rewritten due to the previous equation as: 1

N

∑
i∈M Eqϕy qϕc

[
log pφy

(yi | ti, ·)
]

=
1

NT

∑
i∈T Eqϕy qϕc

log pφY 1
(yi|ti = 1, ·) + 1

NC

∑
i∈C Eqϕy qϕc

log pφY 0
(yi|ti = 0, ·)

Eq. 2 shows that, for a fully connected model, sharing the parameters of the nodes after computing
the gradient descent in each node separately is equivalent to sharing the gradients of the nodes and
computing the gradient descent averaging the gradients in the server. However, due to the particular
optimization of TARNet modules RegY 0 and RegY 1, this equivalence does not hold: if we compute
the averaging as in Eq. 2 (Vanilla FedAvg), the averaged parameters are in Eq. 5

φS
Y 1t+1

= φS
Y 1t

− η
∑K

k=1
Nk

N ·Nk
T

∇φY 1

∑
i∈T k lT (φ

k
Y 1, ϕ

k
y , ϕ

k
c ;Dk),

φS
Y 0t+1

= φS
Y 0t

− η
∑K

k=1
Nk

N ·Nk
C

∇φY 0

∑
i∈Ck lC(φ

k
Y 0, ϕ

k
y , ϕ

k
c ;Dk)

(5)

Proposed algorithm 1. Our approach to mitigate propensity score imbalances across nodes is an
adaptation of FedAvg [1] over a neural network-based model for causal inference called TEDVAE
[2], which we call propensity adaptation.

To avoid the discrepancy of Eq. 5 weights
(

Nk

N ·Nk
T

)
with the mean of gradients

(
Nk

T

NT

)
,our algorithm

weights the parameters of the RegY 1 and RegY 0 regressors by the number of treated and control pa-
tients, respectively (Nk

T , N
k
C). The weight of the regressors depends on the control/treated samples

in each node. The process can stop in any epoch between the averaging moments. An implemen-
tation of FedAvg without propensity adaptation may lead, in a limiting case in which there are no

1Code available in https://github.com/aalmodovares/federated_tedvae
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Setting A Setting B

node 1 node 2 node 1 node 2

TV Cen 1.16(0.26) 3.07(0.72)
TV Fed 1.18(0.31) 1.20(0.31) 3.55(0.86) 3.41(0.69)
TV Fed V 1.15(0.37) 1.15(0.29) 3.61(0.80) 3.50(0.72)
TV Iso 1.21(0.41) 1.27(0.29) 4.83(0.81) 4.64(0.65)

CausalRFF 2.99(1.73) 2.96(1.72) 6.88(1.39) 6.80(1.37)
FedCI 2.56(0.45) 2.63(0.83) 4.88(1.95) 4.94(2.16)

Table 1: Out-of-sample PEHE results
for the original distribution sampled
dataset of 83 samples in each node
for IHDP setting A and B respec-
tively. Lower is better. With equi-
librated nodes, propensity adaptation
and Vanilla FedAvg have similar met-
rics.

treated patients from a node, to averaging the parameters with a module that has not been trained
even once locally.

4 Experiments on IHDP

The comparison will be carried out comparing
our implementation of propensity adaptation of
FedAvg on TEDVAE (TV Fed) with centralized
TEDVAE (TV cen), which trains with all dataset
D); the node-wise isolated training (TV iso), in
which each node trains with their data separately,
without sharing any information; the Vanilla
FedAvg implementation (TV Fed V), which does
not consider propensity imbalances; the Feder-
ated Causal Inference method of [4] based on
GPs (FedCI), and the CausalRFF method of [5]
based on RFF (CausalRFF).

The experiments have been carried out on 20
replications of IHDP [9], semi-synthetic datasets
commonly used to evaluate causal inference
methods, where the outcome is a known combi-
nation of the input data. Since the potential out-
comes are known, the real value of the ITE can
be calculated, and the Precision in Estimation of
Heterogeneous Effects (PEHE) can be presented
as an evaluation metric:

PEHE = E[(τ̂(x) − τ(x))2], where τ̂(x) is
the estimated treatment effect for subgroup x,
and τ(x) is the true treatment effect for that sub-
group.

Algorithm 1: Prop. Adap. of FedAvg
Input : List of nodes C1, ..., C

K and their
parameters Ω1, ...,ΩK

Output: List of node parameters Ω1, ...,ΩK

Server execution:
Initialize global model parameters ΩS

0 ;
Ωk

0 ← ΩS
0 for k in {1, ...,K}

for n in nrounds do
for t in nfedavg do

for each node Ck in parallel do
Ωk

t+1,← TrainNode(k,Ωk
t ,Dk)

end
end
send {Ωk

t+1}Kk=1 to server

ΩS
t+1 =


∑K

k=1
Nk

N
Θk

t+1,∑K
k=1

Nk
T

NS
T

φk
Y 1t+1

,∑K
k=1

Nk
C

NS
C

φk
Y 1t+1

// Avg

for each node Ck in parallel do
Ωk

t+1,← {ΘS
t+1, φ

S
Y 0t+1

, φS
Y 0t+1

}
end

end
TrainNode(k, Ωk

t ,Dk):
Ωk

t+1 ← Ωk
t − η∇Ωk

t
Lk(Ωk

t ;Dk) // GD

return Ωk
t+1

There are two settings of data generation in IHDP: setting A, where both potential outcomes are
linear combinations of the covariates and the treatment, and setting B, where one of the potential
outcomes is an exponential combination of the features. The surface of ITE is more complex in
setting B. Two experiments are presented for IHDP datasets setting A and B respectively. The mean
and standard deviation presented in PEHE results come from the evaluation of 20 IHDP replications.

Experiment 1: Stable propensity score. In this experiment there are two nodes with a small set
of randomly sampled patients (83 patients in each node), so the treatment distribution is the same in
both nodes (conditions 2 and 3 holds).

Table 1 shows that, since the propensity score is the same in both nodes, the propensity score adap-
tation does not provide any improvement with respect to Vanilla FedAvg. The performance of all
versions of TEDVAE outperform other methods based in GPs and RFF. Both the Vanilla FedAvg im-
plementation and our FedAvg propensity adaptation improve prediction performance with respect
to isolated TEDVAE in IHDP setting B, where the treatment effect function is more complex.

Experiment 2: Imbalanced propensity score. In this experiment, we conducted several subex-
periments with a fixed a set of patients (546 patients in total), following the original distribution of
the original dataset (102 treated patients and 444 untreated patients) and divided the patients into
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Imbalance 0 Imbalance 1 Imbalance 2 Imbalance 3

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
51/222 51/222 11/262 91/182 1/272 101/172 0/273 102/171

Se
tti

ng
A

TV Cen 0.75(0.17)
TV Fed 0.74(0.25) 0.79(0.23) 0.68(0.15) 0.78(0.25) 0.86(0.25) 0.85(0.26) 0.90(0.30) 0.81(0.21)
TV Fed V 0.73(0.25) 0.78(0.25) 0.75(0.15) 0.84(0.22) 1.04(0.30) 0.94(0.22) 1.21(0.41) 0.95(0.28)
TV Iso 0.85(0.25) 0.82(0.27) 0.81(0.23) 0.83(0.18) 2.56(0.86) 0.81(0.19) 2.89(1.02) 0.85(0.25)

CausalRFF 2.93(1.48) 2.82(1.52) 2.94(1.49) 2.88(1.79) 3.25(1.79) 2.95(1.89) 3.35(1.92) 3.25(1.79)
FedCI 1.89(1.00) 2.36(1.32) 2.13(0.98) 1.68(0.98) 3.35(1.66) 1.75(0.89) 3.55(1.82) 2.85(2.09)

Se
tti

ng
B

TV Cen 2.08(0.19)
TV Fed 2.49(0.39) 2.47(0.41) 3.23(0.51) 2.36(0.33) 3.36(0.50) 2.38(0.26) 3.43(0.51) 2.21(0.28)
TV Fed V 2.87(0.47) 2.86(0.42) 3.62(0.82) 2.71(0.56) 3.99(0.81) 2.86(0.42) 3.96(0.62) 2.53(0.40)
TV Iso 2.54(0.45) 2.37(0.24) 3.60(0.66) 2.37(0.24) 5.08(1.47) 2.38(0.35) 5.45(1.13) 2.15(0.23)

FedCI 3.75(1.95) 4.00(1.37) 4.34(1.30) 4.13(1.54) 5.61(1.22) 3.58(1.19) 5.72(1.25) 3.89(1.36)
CausalRFF 5.50(1.42) 5.41(1.33) 5.48(1.31) 5.50(1.34) 5.48(1.45) 5.40(1.29) 5.60(1.61) 5.40(1.29)

Table 2: Out-of-sample PEHE results on IHDP settings A and B with increasing imbalances.
Lower is better. Propensity adaptation achieves better metrics that Vanilla FedAvg and

node-wise isolated training of TEDVAE as the imbalance increases.

the two nodes. Both nodes have the same number of patients, but we are decreasing progressively
the number of treated patients in one node at the same time that they increase in the other node.
The contrary is true for control patients. We start from the original distribution of treated patients in
the dataset (51 treated patients and 222 untreated patients in each node), and then we unbalance the
number of treated and untreated, keeping the total number of patients in each node the same. The
aim of this experiment is to observe how the ITE estimation errors vary as the imbalance increases,
reaching the limit experiment where one of the nodes has no treated patients, where Vanilla FedAvg
and node-wise isolated training obtain the worst results.

Table 2 shows that the propensity adaptation of FedAvg remains close to the centralized case, while
isolated structures and Vanilla FedAvg offer a performance that worsens as the imbalance in the
propensity score increases. Note that Vanilla FedAvg not only obtains worse results in the most
unbalanced node (which does not have treated patients), but also worsens the prediction in node 2,
where a sufficient number of treated and untreated patients is present; while the propensity adapta-
tion manages to stay closer to the centralized case in both nodes. In the same way, we can observe
that the performance of our algorithm is superior to that of FedCI and CausalRFF for both cases.

5 Conclusion

In conclusion, this study has demonstrated the remarkable potential of federated learning as an
effective and privacy-preserving approach in the context of causal inference in sensitive domains
such as healthcare, where centralized data processing is impractical due to privacy restrictions, and
propensity score and covariate distributions vary between nodes. By comparing the performance of
federated learning with node-wise isolated training and centralized training, we have consistently
observed that federated learning achieves better results in terms of Predicted Error in Heterogeneous
Effect (PEHE), especially when the treatment assignment criteria is very different between nodes.
The federated implementation of TEDVAE outperforms the methods of Federated Causal Inference
and CausalRFF used for comparison, since it allows modeling complex non-linear relationships
between variables and complex surfaces of treatment effects, in addition to partially discovering the
causal graph through disentanglement.
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