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A B S T R A C T

We cover the Warburg effect with a three-component evolutionary model, where each component represents a
different metabolic strategy. In this context, a scenario involving cells expressing three different phenotypes is
presented. One tumour phenotype exhibits glycolytic metabolism through glucose uptake and lactate secretion.
Lactate is used by a second malignant phenotype to proliferate. The third phenotype represents healthy cells,
which performs oxidative phosphorylation. The purpose of this model is to gain a better understanding of the
metabolic alterations associated with the Warburg effect. It is suitable to reproduce some of the clinical trials
obtained in colorectal cancer and other even more aggressive tumours. It shows that lactate is an indicator of
poor prognosis, since it favours the setting of polymorphic tumour equilibria that complicates its treatment.
This model is also used to train a reinforcement learning algorithm, known as Double Deep Q-networks, in
order to provide the first optimal targeted therapy based on experimental tumour growth inhibitors as genistein
and AR-C155858. Our in silico solution includes the optimal therapy for all the tumour state space and also
ensures the best possible quality of life for the patients, by considering the duration of treatment, the use of
low-dose medications and the existence of possible contraindications. Optimal therapies obtained with Double
Deep Q-networks are validated with the solutions of the Hamilton–Jacobi–Bellman equation.
1. Introduction

Metabolism can be understood as a cell strategy for the production
of the energy that is needed to survive and proliferate. Healthy cells
obtain energy from glucose through two major metabolic pathways
known as glycolysis and oxidative phosphorylation (OXPHOS) [1].
In glycolysis, cells consume 2 molecules of adenosine triphosphate
(ATP) and obtains 4 molecules of ATP, by breaking down one glucose
molecule into two pyruvate molecules [2]. Colloquially speaking, an
ATP molecule can be understood as the elementary form of energy for
the cell. Thus, during glycolysis, cells obtain an average energy of 2 ATP
molecules per glucose molecule. In OXPHOS, pyruvate enters the citric
acid cycle (Kreb’s cycle) in the mitochondria and 24–28 ATP molecules
are generated from one glucose molecule converted into pyruvate (see
Chapter 12 in [3]). Glycolysis is an anaerobic metabolic pathway, but
OXPHOS necessarily requires oxygen. Under normal oxygen concentra-
tion, normoxic conditions, healthy cells make use of both metabolic
pathways and obtain a net yield of 26–30 ATP molecules per glucose
molecule. Only under hypoxia, such as intense physical exercise condi-
tions, do cells shift their metabolism from OXPHOS towards anaerobic
glycolysis in order to cover the punctual energy demand that occurs
when the oxygen is scarce.

∗ Corresponding author.
E-mail address: jose.sanz.nogales@alumnos.upm.es (J.M.S. Nogales).

The Warburg effect is a metabolic alteration, known as aerobic
glycolysis, where tumour cells avoid OXPHOS and base their entire
metabolism on glycolysis even in normoxic conditions. As a reminder,
conventional metabolism (glycolysis plus OXPHOS) produces up to 28
ATP molecules under normoxic conditions, whereas glycolysis produces
only 2 ATP molecules. It is still unclear why tumour cells prefer
this inefficient metabolism. It is thought that tumour cells consume
large amounts of glucose, possibly in order to compensate for energy
deficiencies, and ferment lactic acid as well. Lactic acid (or simply
lactate) contributes to the acidification of the environment, which is
harmless to tumour cells but detrimental to healthy ones [4–7]. In
addition, it is now known that lactate, long considered a waste product
of glycolytic metabolism, is used by malignant cells as an extra energy
fuel (see e.g. [8,9]) to proliferate and reproduce. Uncontrolled cell
growth also leads to vascularization problems for healthy cells. In
contrast, malignant cells are able to overcome these vascularization
problems through sustained angiogenesis. In sustained angiogenesis,
also considered in [10,11] as a hallmark of cancer, some tumour cells
secrete vascular endothelial growth factor to stimulate the growth of
nearby blood vessels, which ensures the continuous supply of nutrients
and oxygen. In addition, access to the bloodstream allows tumour
cells to establish distant niches [12,13], to later reach other organs,
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thus generating secondary tumours in the form of metastases [14].
Therefore, the Warburg effect can be understood as a very complex evo-
lutionary process, which alters the environmental conditions to provide
competitive advantage to malignant cells. Moreover, the Warburg effect
triggers other unwanted alterations, such as sustained angiogenesis and
metastasis. Even though the Warburg effect is not universal [15], it
has been observed in a wide range of cancer types, including colorec-
tal cancer [16–18], glioblastoma [19,20], bladder [21], kidney [22,
23], breast [24,25], melanoma [26,27], pancreatic cancer [28–30],
lung [31,32], prostate [33], thyroid [34,35], liver [36–38] and stom-
ach [39–42]. All of these reasons contribute to our belief in this paper
that the elimination of the Warburg effect, or at the very least, its
mitigation, may be relevant to the cure of cancer.

From seminal work [43], Evolutionary Game Theory (EGT) has
gained much popularity in cancer research, due to its ability to model
cell populations that express different phenotypes, and that compete
with each other according to the metabolic strategy that they show. The
replicator equation (RE) is probably the most widespread deterministic
dynamics in EGT, which has also been used in [44–47] to cover
complex interactions that take place in a cell population subjected to
the Warburg effect. RE states that the growth rate in the number of
types that express a strategy depends on the fitness of such strategy
within the population. In this paper we propose a three component
evolutionary model, a component per each metabolic strategy (gly-
colytic, non-glycolytic and oxidative), whose dynamic is governed by
RE. In our approach, cells with glycolytic strategy express phenotypes
that uptake glucose and secrete lactate. In contrast, non-glycolytic
cells simply absorb lactate, while oxidative cells perform conventional
phosphorylation with oxygen. Diffusible factors as glucose, lactate and
oxygen stimulate non-linear cell responses (see e.g. [48]) when their
ligands bind into the cell receptors . This stimulation is considered in
RE through the fitness of each metabolic strategy. Similarly to [49–52],
here we consider the Michaelis–Menten equation as a plausible way to
model the fitness.

The vast majority of studies focused on EGT propose therapeutic
treatments based on radiotherapy, chemotherapy and immunother-
apy. Experimental treatments based on tumour growth inhibitors have
received much less attention. In contrast to cytotoxic treatments, in-
hibitors target to cells that express specific phenotypes, by preventing
the ligands of some diffusible factors, such as glucose and lactate, from
binding the cell receptors. In this way, inhibitors seek to cancel cellular
responses, thus avoiding the development of malignant phenotypes.
In this paper, we differentiate two types of inhibitors: competitive
and non-competitive inhibitors. Competitive inhibitors compete with
the diffusible factors for binding into the cell receptors. In this way,
a cell receptor cannot bind a diffusible factor when is blocked by a
competitive inhibitor. In contrast, non-competitive inhibitors block the
cell responses by bidding into the ligands of the diffusible factors. The
ligand of a diffusible factor cannot bind a cell receptors once it is
bound to the inhibitor. To the best of our knowledge, [44] was the
first to mathematically formulate the potential effect of these drugs in
cancer therapies. However, we miss the design of effective therapeutic
treatment based on these drugs. In this paper, we propose the first
optimal targeted therapy based on the combination of experimental
tumour growth inhibitors to annul the Warburg effect. We also provide
in silico results with application to colorectal cancer and other more
aggressive tumours.

Standard cancer treatment consists of alternating drug sessions at
Maximum Tolerated Dose (MTD) followed by time off (drug holidays).
This approach seeks to kill as many cancer cells as possible with
MTD, while controlling the toxic burden of drugs and side effects
through rest days. However, MTD only succeeds in eradicating therapy-
sensitive tumour cells, thereby providing competitive advantage to
resistant cells [53]. In such a case, it may occur an uncontrolled
growth of tumour cell whose traits are resistant to therapy (competitive
release [54]). To avoid this, the doctor can change the medication to
2

attack the resistant cells, producing a rebound of the cells sensitive to
the previous medication. This is falling into a vicious circle that is not
recommended, since it may lead to disease chronification. On the other
hand, it can also happen that sensitive traits recover during drug-free
times. In this other case, the physician may reduce resting times, thus
increasing the toxic effect of the drugs in the patient’s body. In this
paper, we think that formulating therapy programming as if it were
an optimal control problem can be a much better alternative to the
conventional one. The general idea is to drive tumour dynamics to a
safe state, which implies the cure of patients, or at least their long-term
survival, at the lowest possible cost. With this purpose, the physician
has to decide the dose concentration of each drug, which needs to be
supplied according to the tumour state. This approach results more
attractive than an MTD-based alternative, since the optimal control
problem allows doctors to act actively against the tumour. In other
words, optimal control transforms the therapy problem into a Stack-
elberg Evolutionary Game [55], where the physician is the leader who
anticipates the tumour state and acts as a rational player seeking to
minimize the cost of an objective function.

The main concern in any therapy is to remove the presence of
malignant cells. However, meeting this objective does not necessarily
guarantee the safeguarding of the patients’ life or the improvement of
their quality of life. It may also be relevant to consider other factors
such as the duration of the treatment, the toxicity of the drugs, the
intensity of adverse side effects, the patient’s pathologies, age, weight,
etc. All of these factors make it difficult to formulate a problem aimed at
providing the best possible therapy. Furthermore, in case of formulating
such a problem, there are no guarantees of finding the optimal solution
(or at least a good enough one) due to possible non-convexities. We
can find very recent efforts with in silico results in the field of optimal
cancer therapy in [56–60]. The authors of [56–58] achieve optimal
chemotherapy and immunotherapy by applying Pontryagin’s maximum
(or minimum) principle. Similarly, [59] applies Forward Backward
Sweep, an algorithm based on Pontryagin’s maximum principle, to
deliver optimal doses of abiraterone in prostate cancer. Importantly,
Pontryagin’s maximum principle provides necessary conditions for op-
timal control. However, these conditions are not sufficient, unless the
problem meets certain convexity conditions. Convexity limits the for-
mulation of a general therapeutic optimal control problem that may be
more effective. In contrast, authors in [60] propose a bang–bang control
by solving the Hamilton–Jacobi-Bellman (HJB) equation of a tumour
dynamics, subjected to a cost function that penalizes the duration of
the treatment, the delivery of chemotherapy doses and specific ter-
minal states. Different from Pontryagin’s maximum principle, the HJB
equations provide necessary and sufficient conditions for an optimum,
regardless of the problem’s convexity. However, HJB requires perfect
knowledge of tumour dynamics equations. This condition can be re-
laxed by applying model-free controllers, which do not require explicit
knowledge of the environment or system. Several of these controllers
have already been used in the treatment of cancer (see e.g. [61–63]),
but we miss quantitative results to show their effectiveness as compared
to the optimal solution.

In this paper, we present the best therapy obtained with Double
Deep Q-Network (DDQN), which is one of the most popular model-
free algorithms. Far from conventional approaches, in this article we
do not propose the implementation of optimal therapies based on
chemotherapy, immunotherapy or radiotherapy, but rather on experi-
mental tumour growth inhibitors. Our solution is more complete and
complex than a bang–bang control, since it allows the combination
of different drugs in different doses. In addition, our solution is tar-
geted therapy because it allows physicians to attack several Warburg
effect symptoms simultaneously or separately. Our solution is complete
because it applies to the entire problem state space. We validate the
resulting therapeutic solutions by comparing them with those obtained
with HJB, because our cost function is non-convex to consider the
toxicity of the treatment, possible contraindications, and adverse side

effects in a more general way than is usually done in the literature.
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This paper is structured as follows. Section 2 presents a novel three-
omponent evolutionary model to represent the Warburg effect. The
ffect of inhibitors over malignant phenotypes is also considered in
his section. Section 3 formally introduces the problem of optimal
herapy. In Section 4, the problem of optimal therapy is restated
rom the perspective of Markov decision processes (MDP). The use of
DQN to solve this problem is introduced and justified. In this section,
e also introduce the solutions provided by HJB. This section ends
ith the parametrization of the optimal control problem and with

he parametrization of most of our tumour dynamics. In Section 5,
e discus the results of our evolutionary tumour growth model and

he optimal therapy obtained with DDQN. Concretely, it explores the
onditions that favour the establishment of polymorphic equilibria and
iscuss whether lactate toxicity plays a relevant role in tumour develop-
ent. This section also compares the performance of DDQN with other
ore conventional therapeutic strategies. It shows the solution with the

ptimal targeted therapy in the full state space, which is provided by
DQN. This section ends by comparing the performance of DDQN with
JB in a specific case. Conclusions are presented in Section 6.

. The model

.1. Tumour state

The tumour state or state of the system refers to the diversity of the
henotypes of a cell population.

Let  ≜ {𝑆,𝐿,𝑂} denote the set of diffusible factors 𝑆,𝐿, and
, which represent glucose, lactate, and oxygen, respectively. Let 𝐺𝑆

enote a glycolytic phenotype with anaerobic metabolism. These cells
onsume glucose through glucose transporters (GLUT), and secrete
actate as an end product, regardless of the oxygen concentration that is
vailable in the cell population. Let 𝑅𝐿 denote a phenotype which ab-
orbs lactate in presence of monocarboxylate transporters (MCT). These
ells uptake lactate as an extra energy fuel. Let 𝐻𝑂 denote a normal
henotype which uptakes oxygen. These cells base their metabolism
n conventional oxidative phosphorylation. Let  ≜ {𝐺𝑆 , 𝑅𝐿,𝐻𝑂}

denote the set of all phenotypes expressed by the cells. This set includes
the metabolic strategies which are available in the cell population. Let
𝑥𝑚(𝑡) denote the relative frequency of phenotype 𝑚 ∈  in the cell
opulation. The state of the population is given by:

(𝑡) ≜
(

𝑥𝑚(𝑡)
)

𝑚∈ ∈ ∆||, (1)

here ∆|| ≜ {𝒙(𝑡) ∈ ℜ|| ∶ 0 ≤ 𝑥𝑚(𝑡) ≤ 1,
∑

𝑚∈ 𝑥𝑚(𝑡) = 1}
denotes the simplex of (|| − 1) dimensions in ℜ||.

2.2. Diffusible factors

The diffusible factor concentrations stimulate the proliferation of
the phenotypes. Let 𝒂 ≜

(

𝑎𝓁
)

𝓁∈ ∈ ℜ||
≥0 denote the growth factor

concentrations in normal conditions. This vector represents external
resources provided by the host. Let 𝑏𝐿 ≥ 0 denote the amount of lactate
secreted by each cell that expresses 𝐺𝑆 .

We introduce a definition describing the growth factor concentra-
tions.

Definition 1. The expected growth factor concentration which stim-
ulates to phenotype 𝑚 ∈ , denoted 𝑑𝑚 ∶ ∆|| ↦ ℜ⩾0, is defined
as:

𝑑𝐺𝑆 (𝒙(𝑡)) ≜ 𝑎𝑆 , (2)

𝑑𝑅𝐿 (𝒙(𝑡)) ≜ 𝑎𝐿 + 𝑏𝐿𝑥𝐺𝑆 (𝑡), (3)

𝑑 𝒙(𝑡) ≜ 𝑎 . (4)
𝐻𝑂 ( ) 𝑂

3

Expression (2) shows the expected glucose concentration which
stimulates to the growing of 𝐺𝑆 . Expression (3) depicts the lactate
concentration which stimulate to 𝑅𝐿. Recall that 𝑎𝐿 in (3) is the lactate
concentration which is present in the cell population in normal con-
ditions. Lactate is uniformly spread in the cell population, and 𝑏𝐿𝑥𝐺𝑆

expresses in (3), the part of lactate which is produced by 𝐺𝑆 and that
stimulates to 𝑅𝐿. Eq. (4) indicates the expected oxygen concentration
which stimulates to 𝐻𝑂.

2.3. Reversible inhibitors

We now introduce the concentration of therapeutic drugs in the
host’s organism. Let 𝐶 and 𝐶̄ denote the set of competitive and non-
competitive inhibitors, respectively. Let  ≜ 𝐶 ∪ 𝐶̄ denote the set of
reversible inhibitors, which meets 𝐶 ∩ 𝐶̄ = ∞. Let ℜ≥0 denote the set
of non-negative real numbers. Let 𝑢𝑚𝑘(𝑡) denote the concentration of
inhibitor 𝑘 ∈ , which targets to phenotype 𝑚 ∈ . The concentration
of drugs is given by:

𝒖(𝑡) ≜
(

𝑢𝑚𝑘(𝑡)
)

𝑚∈,𝑘∈ ∈ ℜ||||

≥0 . (5)

Expression (5) can be understood as the control action that indicates
the dose concentration of inhibitors applied by the physician.

2.4. Fitness and lactate toxicity

Fitness refers to the benefit obtained by phenotypes, when dif-
fusible factors ligands bind to cell receptors. Fitness determines the
reproductive capacity of phenotypes. Usually, diffusible factors have
hyperbolic effects on the fitness of phenotypes. Reversible inhibitors
may neutralize the fitness in two different ways. Competitive inhibitors
block cell receptors where diffusible factors bind. Non-competitive
inhibitors neutralize the cellular response when they bind to diffusible
factor ligands. Let 𝛽𝑚 ⩾ 0 denote the affinity of phenotype 𝑚 ∈  for
the diffusible factor that stimulate it. Let 𝛽𝑚𝑘 ⩾ 0 denote the inhibitory
constant. We first introduce a definition with the fitness of phenotypes
𝐺𝑆 and 𝑅𝐿.

Definition 2. The fitness of glycolytic and abnormal oxidative phe-
notypes, denoted 𝑓𝑚 ∶ ∆|| × ℜ||||

≥0 ↦ ℜ⩾0, is defined for all
𝑚 ∈ , 𝑚 ≠ 𝐻𝑂, as follows:

𝑓𝑚 (𝒙(𝑡), 𝒖(𝑡)) ≜

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

1 +
(

𝛽𝑚
𝑑𝑚 (𝒙(𝑡))

)(

1 +
𝑢𝑚𝑘(𝑡)
𝛽𝑚𝑘

) 𝑖𝑓 𝑘 ∈ 𝐶, (a)

1
(

1 +
𝛽𝑚

𝑑𝑚 (𝒙(𝑡))

)(

1 +
𝑢𝑚𝑘(𝑡)
𝛽𝑚𝑘

) 𝑖𝑓 𝑘 ∈ 𝐶̄, (b)

1

1 +
𝛽𝑚

𝑑𝑚 (𝒙(𝑡))

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (c)

(6)

Expression (6)c is a normalized version of the Michaelis–Menten
quation [64]. This equation represents the fitness of phenotypes in ab-
ence of inhibitors, and shows a hyperbolic shape which is linear when
he diffusible factor concentration is very low. Interestingly, Ref. [65]
redicts GLUT1 (glucose transporter 1) kinetics with a normalized
ersion of the Michaelis–Menten equation and [66] states the same for
CT1 (monocarboxylate transporter 1) kinetics. Thus (6)c seems to be
plausible function for the fitness of phenotypes 𝐺𝑆 and 𝑅𝐿. Term

𝑚, affinity in (6)a–(6)c, represents the diffusible factor concentration
hich makes 𝑚 ∈  responds with half the maximum. Eqs. (6)a, and

6)b are accepted in [64,67–72] as formal expressions that characterize
he impact of reversible inhibitors. Expression (6)a depicts the fitness
f phenotypes in the presence of competitive inhibitors. Competitive
nhibitors reduce the affinity from 𝛽𝑚 in (6)c to 𝛽𝑚(1 + 𝑢𝑚𝑘(𝑡)∕𝛽𝑚𝑘) in

(6)a. Expression (6)b indicates the fitness of phenotypes in the presence
of non-competitive inhibitors. This class of drug reduces the maximum
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Fig. 1. Cellular fitness vs. dose concentration of reversible inhibitors. Settings: 𝛽𝑚 = 1, 𝛽𝑚𝐶 = 𝛽𝑚𝐶̄ = 0.5. (a) Effect of competitive inhibitors on cellular fitness. (b) Effect of
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itness from 1 in (6)c to 𝛽𝑚𝑘∕(𝑢𝑚𝑘(𝑡)+𝛽𝑚𝑘) in (6)b. A graphic illustration
f the effect of inhibitors on the fitness of phenotypes can be found in
ig. 1.

Let 𝓁𝑠𝑢𝑝 ⩾ 0 denote the toxicity threshold for lactate. Let 𝜃𝑚 ⩾ 0
enote the impact of lactate on phenotype 𝑚 ∈ . Similarly to (6)a–
6)c and without loss of generality, the fitness of 𝐻𝑂 is a function with
omain ∆|| ×ℜ||||

≥0 , which is defined as:

efinition 3. The fitness of conventional oxidative phenotypes,
enoted 𝑓𝑚 ∶ ∆|| ×ℜ||||

≥0 ↦ ℜ, is defined for all 𝑚 ∈ , 𝑚 = 𝐻𝑂,
s follows:

𝑚 (𝒙(𝑡), 𝒖(𝑡))

≜

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

1 +
𝛽𝑚

𝑑𝑚 (𝒙(𝑡))

𝑖𝑓 𝑑𝑅𝐿 (𝒙(𝑡)) < 𝓁𝑠𝑢𝑝, (a)

1

1 +
𝛽𝑚

𝑑𝑚 (𝒙(𝑡))

− 𝜃𝑚
(

𝑑𝑅𝐿 (𝒙(𝑡)) − 𝓁𝑠𝑢𝑝) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (b)

(7)

Ref. [73] states that healthy phenotypes respond with a Michaelis–
Menten function. Similarly, expression (7)a provides the fitness of 𝐻𝑂

nder normal conditions, i.e. when the acidity of the environment does
ot prevent or hinder the normal development of this phenotype. Scalar
𝑠𝑢𝑝 in (7)a, and (7)b can be understood as a tolerance threshold of 𝐻𝑂

o lactate. Lactate concentrations higher than 𝓁𝑠𝑢𝑝 penalize the fitness of
𝑂 with an extra cost 𝜃𝐻𝑂𝑑𝑅𝐿 (𝒙(𝑡)) in (7)b. This cost is only considered

n the fitness of cells with conventional oxidative metabolism, because
uthors in [4–7] suggest that acidosis given by glycolysis may result
oxic to healthy cells, and harmless to cancerous cells. Term 𝜃𝑚𝓁𝑠𝑢𝑝 in
7)b provides a smoother and more natural response in the presence of
actate, by avoiding the discontinuity at 𝑑𝑅𝐿 (𝒙(𝑡)) = 𝓁𝑠𝑢𝑝.

2.5. Cell population dynamic

RE is the deterministic differential equation most extended in EGT.
Let 𝑁𝑚 ∈ ℜ≥0 denote the number of cells that express phenotype
𝑚 ∈ . RE states that the per capita growth rate in the number of cells
that express a phenotype is equal to the fitness of the phenotype [74]:

𝑁̇𝑚(𝑡)
𝑁𝑚(𝑡)

≜ 𝑓𝑚 (𝒙(𝑡), 𝒖(𝑡)) ,∀𝑚 ∈ . (8)

n this way, RE proposes the reproduction and survival of the fittest
ypes. However, conventional RE does not include the effects of exter-
al agents to the population, and states that fitness only depends on
4

tate 𝒙(𝑡). In coherence with previous subsections, expression (8) also
ncludes the effect of therapeutic actions through drug concentrations
epresented by 𝒖(𝑡). Let 𝑥̇𝑚 denote the dynamic of 𝑚 ∈  that
atches RE. A straightforward calculus allows to express (8) in relative

requencies (see Appendix):

̇ 𝑚(𝑡) ≜ 𝑥𝑚(𝑡)

(

𝑓𝑚 (𝒙(𝑡), 𝒖(𝑡)) −
∑

𝑛∈
𝑓𝑛 (𝒙(𝑡), 𝒖(𝑡)) 𝑥𝑛(𝑡)

)

,∀𝑚 ∈ . (9)

q. (9) states that the growth rate expressed in relative frequency of
phenotype 𝑚 ∈  is given by the difference between its fitness

𝑚 (𝒙(𝑡), 𝒖(𝑡)), and the averaged fitness of the population:

(𝒙(𝑡), 𝒖(𝑡)) ≜
∑

𝑛∈
𝑓𝑛 (𝒙(𝑡), 𝒖(𝑡)) 𝑥𝑛(𝑡). (10)

ecall the per capita growth rate remains being (8). Thus (8) and (9) are
wo ways of expressing the same idea (the survival and reproduction of
ndividuals depend on their fitness within the group), but (8) is a map
̇ 𝑚 ∶ ℜ||×ℜ||||

⩾0 ↦ ℜ, while (9) is a map 𝑥̇𝑚 ∶ ∆||×ℜ||||

⩾0 ↦ ∆.
It is well known that (9) is the most common way to express the

E (see e.g. [75,76]), since it provides dynamic responses which are
ounded on simplex ∆. This property results interesting, specially in
hose cases where the difference in the number of individuals which
xpress each of the types is high.

. The problem

In this section we present the problem of optimal therapy.
Let 𝜎 be a positive or null scalar, which penalizes the duration of

reatment. Let 𝑢𝑚𝑎𝑥𝑚𝑘 ≥ 0 denote the maximum tolerated concentration
f inhibitor 𝑘 ∈ , which targets to 𝑚 ∈ , and that is set at
hysician discretion, according to the characteristics of the patient
age, weight, medical history, etc.) Let 𝜎𝑚𝑘 be a positive scalar, which
eights the relative toxicity of 𝑚𝑘 — inhibitor with respect to others.

t is used to consider medical contraindications or side effects of some
rugs over others. Let 𝑥𝑚𝑖𝑛

𝐻𝑂 ∈ (0, 1) denote the minimum allowable
elative frequency for phenotype 𝐻𝑂, which is compatible with the
ife of the patient. Lower relative frequencies imply the death or the
dministration of palliative care to the patient. Let 𝑥𝑚𝑎𝑥

𝐻𝑂 ∈ (0, 1) denote
he threshold that 𝑥𝐻𝑂 has to overcome in order for the patient to be
ured. We now formally introduce the cost function of the problem:

efinition 4. The cost function, denoted 𝐽 ∶ ∆|| ×ℜ||||

≥0 ↦ ℜ⩾0,
s defined as follows:

(𝒙(𝑡), 𝒖(𝑡)) ≜ 𝐾(𝒙(𝑡)) +
𝑡𝑓
 (𝒙(𝑡), 𝒖(𝑡)) 𝑑𝑡, (11)
∫𝑡0
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t
t

such that:

𝐾(𝒙(𝑡)) ≜

{

∞ 𝑖𝑓 𝑥𝐻𝑂 (𝑡𝑓 ) < 𝑥𝑚𝑖𝑛
𝐻𝑂 , (a)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (b)
(12)

and

 (𝒙(𝑡), 𝒖(𝑡)) ≜ ℎ(𝒙(𝑡)) + 𝑒(𝒖(𝑡)), (13)

where

ℎ(𝒙(𝑡)) ≜

{

0 𝑖𝑓 𝑥𝐻𝑂 (𝑡) > 𝑥𝑚𝑎𝑥
𝐻𝑂 , (a)

𝜎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (b)
(14)

𝑒(𝒖(𝑡)) ≜
∑

𝑚∈,𝑘∈
𝜎𝑚𝑘

𝑢𝑚𝑘(𝑡)
𝑢𝑚𝑎𝑥𝑚𝑘

. (15)

Then 𝐾(𝒙(𝑡)) is a terminal cost function that severely penalizes
herapy failure. The second term in (11) is the cost-to-go function or
he trajectory cost from state 𝒙(𝑡0) to 𝒙(𝑡𝑓 ), and is used to evaluate the

way by which a final state is reached from an initial state. Concretely,
ℎ(𝒙(𝑡)) increases the cost of the treatment during the time it takes place,
while 𝑒(𝒖(𝑡)) regulates both the doses and the toxicity.

Let 𝑇 ⩾ 0 denotes the time that treatment lasts. The goal consists on
finding the optimal control therapy 𝒖∗ (𝒙(𝑡)), which minimizes the cost
function (11) from 𝒙(𝑡 = 0) to 𝒙(𝑡 = 𝑇 ):

𝒖∗ (𝒙(𝑡)) ≜ arg min 𝐽 (𝒙(𝑡), 𝒖(𝑡)) ,

s.t. 𝑥̇𝑚(𝑡) = 𝑥𝑚(𝑡)
(

𝑓𝑚 (𝒙(𝑡), 𝒖(𝑡)) − 𝐹 (𝒙(𝑡), 𝒖(𝑡))
)

,∀𝑚 ∈ .
(16)

In the next section, we indicate how to solve (16) for all the state space
of the problem.

4. Materials and methodology

4.1. Double deep Q-network

In this subsection we focus on solving (16), with a reinforcement
learning (RL)-based technique called Double Deep Q-Network (DDQN).
Let us frame the problem described in Section 3 in the context of
Markov decision process (MDP). An MDP is an extension of Markovian
processes, where the agent (a physician in our case) takes actions
sequentially (by administering different concentrations of competitive
and/or non-competitive inhibitors) to drive the system (the cell pop-
ulation) to a specific state (state involving cure of the patient). A
discrete-time MDP can be defined with a tuple ⟨ ,, ,⟩, where:

•  is the set of states.
•  is the set of actions.
• 𝑝:  ×  → [0, 1] is the transition probability function, where
𝑝
(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

denotes the probability of getting state 𝑥𝑡+1 ∈  ,
given that the state of the system is 𝑥𝑡 ∈  and the agent plays
action 𝑎𝑡 ∈ .

• 𝑟:  ×  ×  → ℜ is the reward function, where 𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

denotes the reward perceived by the agent, when the system goes
from state 𝑥𝑡 to sate 𝑥𝑡+1 after playing action 𝑎𝑡.

The goal of any MDP is to maximize the expected cumulative reward
in an infinite time horizon:

maxE

( ∞
∑

𝑡=0
𝛾 𝑡𝑟

(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

)

, (17)

where 𝛾 ≜ (0, 1) is called the discount factor.
We now reformulate the problem described in Section 3 and pose it

as an MDP problem. Suppose that  is a discrete version of ∆||, and
that 𝑝

(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

is a deterministic transition probability function set
by (9). Let 𝑘𝑚 denote a discrete set with the dose concentrations of
inhibitor 𝑘 ∈  that targets to phenotype 𝑚 ∈ . The set of actions,
 ≜

∏

𝑘∈,𝑚∈ 𝑘𝑚, represents the Cartesian product of sets 𝑘𝑚,
and includes all possible combination of drugs that can be used in a
inhibitor-based therapy. In this way, any action 𝑎 ∈  is unequivocally
𝑡

5

defined by a specific combination of drugs. We also define two terminal
state sets. The first terminal state set, 𝑒𝑛𝑑1 ≜ {𝑥𝑡 ∈  ∶ 𝑥𝐻𝑂 < 𝑥𝑚𝑖𝑛

𝐻𝑂},
occurs when therapy fails. In that case, when therapy fails, the agent
perceives a high enough penalty 𝑐 ∈ ℜ<0. The second terminal state set
is 𝑒𝑛𝑑2 ≜ {𝑥𝑡 ∈  ∶ 𝑥𝐻𝑂 > 𝑥𝑚𝑎𝑥

𝐻𝑂 } and implies that therapy succeed. We
are ready to reformulate cost function (11) as an MDP reward function:

𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

≜
⎧

⎪

⎨

⎪

⎩

𝑐 𝑖𝑓 𝑥𝑡+1 ∈ 𝑒𝑛𝑑1, (a)
0 𝑖𝑓 𝑥𝑡 ∈ 𝑒𝑛𝑑2, (b)
−
(

𝜎 + 𝑒(𝑎𝑡)
)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (c)
(18)

With the problem posed according to an MDP, the solution can
be obtained by solving the Bellman equation [77,78]. The Bellman
equation, denoted as 𝑣 ∶  → ℜ, is defined as follows:

𝑣
(

𝑥𝑡
)

≜ max
𝑎𝑡∈

(

𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾
∑

𝑥𝑡+1∈
𝑝
(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

𝑣
(

𝑥𝑡+1
)

)

,∀𝑥𝑡 ∈  .

(19)

Expression (19) provides the value function or the maximum expected
long term return of state 𝑥𝑡. In short, it indicates how good or bad such
a state is.

The Bellman equation, given by (19), is called state value function,
to emphasize that it is defined in terms of states. We can also find
another function called q-function, which expresses a similar idea as
(19) does, but in terms of state–action pairs instead of just states. The
q-function, or state–action value function, is denoted as 𝑞 ∶  × → ℜ
and is defined as follows:

𝑞
(

𝑥𝑡, 𝑎𝑡
)

≜ 𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾
∑

𝑥𝑡+1∈
𝑝
(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

max
𝑎𝑡+1∈

𝑞
(

𝑥𝑡+1, 𝑎𝑡+1
)

,∀𝑥𝑡 ∈  ,∀𝑎𝑡 ∈ . (20)

Analogously to the Bellman equation, now q-function provides the
maximum expected long term return of playing action 𝑎𝑡 ∈  at state
𝑥𝑡 ∈  .

Let us recall that expressions (19) and (20) are equivalent, in the
sense that (19) refers to states (indicates how good a state is), whereas
(20) refers to state–action pairs (indicates the effectiveness of executing
an action in a certain state). In fact, both expressions can be derived
from each other as follows:

𝑣
(

𝑥𝑡
)

= max
𝑎𝑡∈

𝑞
(

𝑥𝑡, 𝑎𝑡
)

, (21)

𝑞
(

𝑥𝑡, 𝑎𝑡
)

= 𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾
∑

𝑥𝑡+1∈
𝑝
(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

𝑣
(

𝑥𝑡+1
)

,∀𝑥𝑡 ∈  ,∀𝑎𝑡 ∈ . (22)

So far, we have taken the problem posed in Section 3, formulated it
as an MDP, and solved it with either (19), (20), (21), or (22). However,
this approach requires us to know transition probabilities 𝑝

(

𝑥𝑡+1|𝑥𝑡, 𝑎𝑡
)

and we may not have access to this information. Therefore, we need
a methodology to approximate the Bellman equation or the q-function
without knowing the transition probabilities or the tumour’s dynamic
equations. RL offers a framework to address this problem.

Fig. 2 depicts a typical RL-based algorithm schematic. In this sce-
nario, an agent observes state 𝑥𝑡 and executes action 𝑎𝑡. As a conse-
quence of the action, the scenario changes from state 𝑥𝑡 to 𝑥𝑡+1 and
the agent receives a reward 𝑟

(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

. According to our scenario,
the environment in Fig. 2 is defined by (9), the reward is defined by
(18), and the actions are defined by combination of drugs listed later
in Table 3. In this way, q-function can be estimated with a model-
free techniques as Q-learning, which is probably the simplest RL-based
algorithm that can be used to solve complex problems as (16). Let

𝛼 ∈ (0, 1) denote a scalar called the learning rate. Q-learning updates the
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Fig. 2. Generalized RL-scheme.

value of playing action 𝑎𝑡 ∈  when the state of the system is 𝑥𝑡 ∈  ,
as follows (see e.g. [77]):

𝑞
(

𝑥𝑡, 𝑎𝑡
)

← (1 − 𝛼) 𝑞
(

𝑥𝑡, 𝑎𝑡
)

+ 𝛼
(

𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾 max
𝑎𝑡+1∈

𝑞
(

𝑥𝑡+1, 𝑎𝑡+1
)

)

,∀𝑥𝑡, 𝑥𝑡+1 ∈  . (23)

Note that (23) estimates (20) without considering transition proba-
bilities and without access to dynamic (9). The convergence of (23) is
achieved by applying the scheme of Fig. 2 iteratively. Once expression
(23) converges, the optimal control is given by the actions that deliver
the maximum expected return at each state.

Q-learning requires a discrete state–action set, while 𝜟||, the state
space in the problem at hand, is continuous. A discretized version of
𝜟|| would lead to a state–action set with such a large dimensionality
that it would made (23) be computationally infeasible. This drawback is
overcome with neural networks, considered as universal approximation
functions, with the ability to map from continuous states 𝒙(𝑡) ∈ 𝜟|| to
discrete actions 𝑎𝑡 ∈ . In this way, we move from Q-learning to Deep
Q-learning (or Deep Q-networks) by posing (16) as an MDP, with direct
access to the continuous state space. Let 𝜃 and 𝜃′ denote the weights of
the policy and the target nets respectively. Different from Q-learning,
Deep Q-networks (DQN) now estimates the state–action value function
(20) with a Q-function:

𝑄
(

𝑥𝑡, 𝑎𝑡; 𝜃
)

≜ 𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾 max
𝑎𝑡+1∈

𝑄
(

𝑥𝑡+1, 𝑎𝑡+1; 𝜃′
)

, (24)

where

𝐿 (𝜃) ≜ E
(

𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾 max
𝑎𝑡+1∈

𝑄
(

𝑥𝑡+1, 𝑎𝑡+1; 𝜃′
)

−𝑄
(

𝑥𝑡, 𝑎𝑡; 𝜃
)

)2

(25)

is the loss function, which updates the weights of the policy net by
using the gradient descent algorithm.

However, the original DQN algorithm may overestimate the value
of the actions under certain conditions [79]. DDQN can alleviate this
overestimation by introducing a slight change in (24). Different from
DQN, DDQN involves both the policy and target networks in maximizing
the estimation of the Q-function. Concretely, the policy net selects the
action to be used (i.e., the one that maximizes the value), but the value
is taken from the target network:

𝑄
(

𝑥𝑡, 𝑎𝑡; 𝜃
)

≜ 𝑟
(

𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1
)

+ 𝛾𝑄

(

𝑥𝑡+1, arg max
𝑎𝑡+1∈

𝑄
(

𝑥𝑡+1, 𝑎𝑡+1; 𝜃
)

; 𝜃′
)

.

(26)

We make use of this variation of DQN, as it does introduce a negligible
increment on the computational load and may improve significantly
the algorithm results. Our network topology consists on a single fully-
connected hidden layer with 72 neurons and relu activation function.
We set 𝛾 = 0.9992, 𝛼 = 0.001 and also implement 𝜖–greedy policy from
𝜖𝑚𝑎𝑥 = 1.0 to 𝜖𝑚𝑖𝑛 = 0.0001 with decay 2.222 ⋅ 10−5 per episode. Our
replay memory consists on 512 experiences which update the target
 c

6

network every 10 episodes. An episode ends when the problem trajec-
tory reaches one of the terminal states defined above. Full details with
Python code implementation of DDQN, environment (9) and reward
function (18) are available at https://github.com/jsanno/ddqn.

4.2. The Hamilton–Jacobi–Bellman equation

The Hamilton–Jacobi–Bellman (HJB) equation is the most impor-
tant equation in non-linear control theory and one of the most popular
methodologies, for solving deterministic continuous time optimal con-
trols. It was also used in [80] to solve problems similar to (16). In this
paper, we solve the HJB equation in order to compare the goodness of
the solutions obtained with DDQN and validate them. The HJB equation
states the condition for the value function:
𝜕𝑉
𝜕𝑡

≜ − min
𝒖(𝑡)∈

(

𝜕𝑉
𝜕𝒙

⊤
𝑓 (𝒙(𝑡), 𝒖(𝑡)) +  (𝒙(𝑡), 𝒖(𝑡))

)

. (27)

As the value function represents the minimum expected long term
ost subject to a dynamic 𝑓 (𝒙(𝑡), 𝒖(𝑡)), then problem (16) can be refor-
ulated in terms of the value function, as follows:
(

𝒙(𝑡0), 𝑡0, 𝑡𝑓
)

≜ min
𝒖(𝑡)∈

𝐽
(

𝒙(𝑡), 𝒖(𝑡), 𝑡0, 𝑡𝑓
)

,

.t. 𝑑𝒙
𝑑𝑡

= 𝑓 (𝒙(𝑡), 𝒖(𝑡)) ,
(28)

here  denotes the set of admissible controls, which is equal to
||||

≥0 for the problem we are dealing with, and 𝑓 (𝒙(𝑡), 𝒖(𝑡)) denotes
he dynamic under control, i.e. the RE introduced in Section 2.5.

However, in most cases it is very difficult and even intractable to
btain a classical solution of problem (28), i.e., a continuous and differ-
ntiable value function, since the minimization operator in (27) implies
olving a system with non-linear partial differential equations. For
his reason, we solve the HJB equation numerically with a tool called
ocopHJB, which can be found available for free at [81]. BocopHJB
roposes a numerical approximation, which consists of discretizing the
tate space, to later iteratively estimate the value function through
ynamic programming. Concretely, let 𝑁 ∈ Z denote the number of
ime steps. Let ℎ0 ≜

𝑡𝑓
𝑁

represents the time step size. Then, the time
for any step 𝑘 ∈ Z if given by 𝑡𝑘 ≜ ℎ0𝑘. Algorithm 1 includes the
BocopHJB’s pseudocode to compute the value function at 𝑡𝑘.
Algorithm 1 BOCOPHJB: Compute value function at 𝑡𝑘
Require: 0 ≤ 𝑘 ≤ 𝑁
1: for 𝑥 ∈ Grid do
2: if 𝑘 == 𝑁 then
3: 𝑉𝑘(𝑥) ⇐ 𝐾(𝑡𝑓 )
4: else
5: 𝒙𝑘+1 ⇐ 𝑥 + ℎ0𝑓 (𝒖, 𝑥)
6: 𝑉𝑘(𝑥) ⇐ min𝒖∈

(

ℎ0(𝑡𝑘, 𝒖, 𝑥) + E𝑥
[

𝑉𝑘+1(𝒙𝑘+1)
])

7: end if
8: end for

4.3. Control problem parametrization

Let us start with the parametrization of the functions introduced in
Definitions 2 and 3. This parametrization can also be found summarized
in Table 1. We first focus on the findings of [82], on the glucose
and lactate concentrations in colorectal liver metastasis. Authors in
this reference do not appreciate significant differences in the glucose
concentrations of healthy and tumour tissues. They state 17.1±3.6 mM
nd 17.2±1.5 mM, for the glucose concentrations found in healthy and

tumour tissues, respectively. For this reason we set 𝑎𝑆 = 13.5 − 20.7
mM in Table 1. It can be found in the same reference, that the lactate
concentrations in healthy tissues is 1.7±0.3 mM. This parameter is later
uned in Section 5.1.1 to reproduce some clinical results.

Ref. [4] indicates that blood lactate concentrations for healthy and
ancerous tissues are 1.5−3 mM and 10−30 mM, respectively. Here we

https://github.com/jsanno/ddqn
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Table 1
Fitness parametrization.

Diffusible factors

Factor Value Ref.

Glucose (normal conditions) 𝑎𝑆 = 13.5 − 20.7 mM [82]
Lactate (normal conditions) 𝑎𝐿 = 1.4 − 2 mM [82]
Oxygen (normoxia) 𝑎𝑂 = 3.82 μM [91]
Lactate tolerance 𝓁𝑠𝑢𝑝 = 10 mM [4]
Lactate toxicity 𝜃𝐻𝑂 = 0.0 − 0.01 M−1 Section 5.1.3
Lactate production 𝑏𝐿 = 9.5 − 28.3 mM 𝑥−1𝐺𝑆 Sections 5.1.1, 5.1.2

Phenotypes

Metabolism Affinity Ref.
Glycolytic 𝛽𝐺𝑆 = 3 − 7 mM [84]

𝛽𝑅𝐿 = 3 − 10 mM [88–90]Oxidative
𝛽𝐻𝑂 = 14.37 μM [73]

Reversible inhibitors

Inhibitor Inhibitory constant Ref.
Isoflavone genistein 𝛽𝐺𝑆𝐶 = 7 μM [92]
AR-C155858 𝛽𝑅𝐿 𝐶̄ = 2.3 nM [93]

understand that lactate becomes toxic for 𝐻𝑂 from 10 mM and assign
𝓁𝑠𝑢𝑝 = 10 mM in Table 1. However, we do not have medical data to
characterize the negative impact of lactate over the healthy cells. For
the moment, we set 𝜃𝐻𝑂 = 0.0 − 0.01 M−1 in Table 1 and tune this
parameter in Section 5.1.3 in order to reproduce the clinical results
observed in the literature. Similarly, we set 𝑏𝐿 = 9.5 − 28.3 in Table 1
and tune this parameter in Sections 5.1.1 and 5.1.2.

Glucose transporter 1 (GLUT1) is overexpressed in colorectal can-
cer [83]. Recall that GLUT1 is one of fourteen proteins which are re-
sponsible for the uptake of glucose across the cell membrane. Ref. [84]
provides estimations with the affinity of GLUT1 for glucose in 3–7 mM.
For this reason we set 𝛽𝐺𝑆 = 3–7 mM in Table 1. Monocarboxylate
transporter 1 (MCT1) is also overexpressed in colorectal cancer [85].
Recall that MCT1 is associated to oxidative cells and lactate uptake [86–
89]. According to [88–90], the affinity of MCT1 for lactate is about
3–10 mM. For this reason we set 𝛽𝑅𝐿 = 3–10 mM.

Ref. [73] fits the affinity of healthy phenotypes for the oxygen at
14.37 μM. In addition, hypoxia and normoxia conditions are established
in [91] with oxygen tensions 1%–5% and 10%–21%, respectively. By
replacing these data and 𝛽𝐻𝑂 = 14.37 μM in (7)a, we obtain 0.14–
0.75 μM and 1.6–3.82 μM as the oxygen concentrations in hypoxic
nd normoxic conditions, respectively. Since the Warburg effect is a
etabolic alteration that occurs in normoxic conditions, we set 𝑎𝑂 =
.82 μM in Table 1, for simplicity and to ensure that the environment
s well enough oxygenated.

Isoflavone genistein is a competitive GLUT1 inhibitor with in-
ibitory constant equal to 7 μM [92], while AR-C155858 is a non-
ompetitive inhibitor of MCT1 whose inhibitory constant is about
.3 ± 1.4 nM [93]. With this information we set 𝛽𝐺𝑆𝐶 = 7 μM and
𝑅𝐿𝐶̄ = 2.3 nM in Table 1.

We now assign numerical values to the problem established in
efinition 4, and also include additional comments, regarding the

mplementation of the DDQN algorithm introduced in Section 4.1. All
he parametrization of the control problem can also be found in Table 2.

Authors in [94] state that genistein at concentrations 5 − 200 μM
an arrest cell cycle by modulating regulatory proteins. In contrast,
ccording to [95], the efficacy of MCT1 can be modulated with AR-
155858 at concentrations ranging from 329 nM to 819 nM. In this
aper we set 𝑢𝑚𝑖𝑛

𝐺𝑆𝐶
= 51.03 μM and 𝑢𝑚𝑎𝑥

𝐺𝑆𝐶
= 102.06 μM as the minimum

nd maximum doses of genistein, which can be applied to the patient.
imilarly, we decide 𝑢𝑚𝑖𝑛

𝑅𝐿𝐶̄
= 2.7 nM and 𝑢𝑚𝑎𝑥

𝑅𝐿𝐶̄
= 5.4 nM for the dose

oncentrations of AR-C155858. Note that 𝑢𝑚𝑎𝑥
𝐺𝑆𝐶

and 𝑢𝑚𝑎𝑥
𝑅𝐿𝐶̄

are too far
rom the maximum concentration of genistein and AR-C155858 estab-
ished in [94,95], respectively. In addition, with this parametrization
e provide similar weights to genistein and AR-C155858 in (15) and

18), since 𝑢𝑚𝑖𝑛 ∕𝑢𝑚𝑎𝑥 ≈ 𝑢𝑚𝑖𝑛 ∕𝑢𝑚𝑎𝑥 . We assume that AR-C155858 has

𝐺𝑆𝐶 𝐺𝑆𝐶 𝑅𝐿𝐶̄ 𝑅𝐿𝐶̄

7

Table 2
Control problem parametrization.

Description Value Ref.

Minimum genistein dose 𝑢𝑚𝑖𝑛𝐺𝑆𝐶 = 51.03 μM [94]

Maximum genistein dose 𝑢𝑚𝑎𝑥𝐺𝑆𝐶 = 102.06 μM [94]

Minimum AR-C155858 dose 𝑢𝑚𝑖𝑛
𝑅𝐿 𝐶̄

= 2.7 nM [95]

Maximum AR-C155858 dose 𝑢𝑚𝑎𝑥
𝑅𝐿 𝐶̄

= 5.4 nM [95]

Medical contraindications 𝜎𝐺𝑆𝐶 = 1, 𝜎𝑅𝐿 𝐶̄ = 10 –

Failed terminal state 𝑥𝑚𝑖𝑛𝐻𝑂 = 0.1 –

Safe terminal state 𝑥𝑚𝑎𝑥𝐻𝑂 = 0.9 –

Treatment duration cost 𝜎 = 0.01 –

Failed therapy penalty 𝑐 = −1, 000 –

Table 3
Control problem action space.

Action

1 2 3 4 5 6 7 8 9

Genistein dose 0.0 0.0 0.0 𝑢𝑚𝑖𝑛𝐺𝑆𝐶 𝑢𝑚𝑖𝑛𝐺𝑆𝐶 𝑢𝑚𝑖𝑛𝐺𝑆𝐶 𝑢𝑚𝑎𝑥𝐺𝑆𝐶 𝑢𝑚𝑎𝑥𝐺𝑆𝐶 𝑢𝑚𝑎𝑥𝐺𝑆𝐶
AR-C155858 dose 0.0 𝑢𝑚𝑖𝑛

𝑅𝐿 𝐶̄
𝑢𝑚𝑎𝑥
𝑅𝐿 𝐶̄

0.0 𝑢𝑚𝑖𝑛
𝑅𝐿 𝐶̄

𝑢𝑚𝑎𝑥
𝑅𝐿 𝐶̄

0.0 𝑢𝑚𝑖𝑛
𝑅𝐿 𝐶̄

𝑢𝑚𝑎𝑥
𝑅𝐿 𝐶̄

more adverse effects or contraindications than genistein, by assigning
𝜎𝐺𝑆𝐶 = 1, 𝜎𝑅𝐿𝐶̄ = 10. We also penalize the duration of the treatment
with 𝜎 = 0.01.

For the running of DDQN, we set 𝑥𝑚𝑖𝑛
𝐻𝑂 = 0.1 and 𝑥𝑚𝑎𝑥

𝐻𝑂 = 0.9. This
algorithm is trained for 90,000 episodes, with 300 as the maximum
number of steps per episode, and with step size of 2 cell generations. An
episode ends when 𝑥𝐻𝑂 (𝑡) < 𝑥𝑚𝑖𝑛

𝐻𝑂 , 𝑥𝐻𝑂 (𝑡) > 𝑥𝑚𝑎𝑥
𝐻𝑂 or when the number

f iterations is 300. We set an extra penalization with 𝑐 = −1, 000 in
18), whether 𝑥𝐻𝑂 (𝑡) < 𝑥𝑚𝑖𝑛

𝐻𝑂 .
The action space is given by the dose concentrations of genistein

nd AR-C155858, which are applied to the patient in each iteration.
his action space is collected in Table 3. Finally, recall that 𝜟|| is the
tate space, since the population state is defined as (1).

. Results and discussion

This section is divided into two different parts:

• Section 5.1 uses the model presented in Section 2, in order
to reproduce some observations obtained from clinical trials of
colorectal cancer and other tumours. We also explore the condi-
tions that favour the establishment of polymorphic equilibria and
discus whether lactate toxicity plays a relevant role in tumour
development.

• Section 5.2 presents the optimal therapeutic policy (the optimal
targeted therapy solution in the complete state space) provided by
DDQN for 4 different tumour dynamics identified in Section 5.1.
We illustrate the performance of these policies, comparing them
with other more conventional therapeutic routines. Finally, we
validate the results provided by DDQN by comparing them with
the numerical solutions of the HJB equation.

.1. Model results

.1.1. Monomorphic populations in colorectal cancer
In this subsection we parametrize our model with data obtained

n [82] about colorectal liver metastasis. We show that our model is
ble to provide the same clinical finding about lactate concentration
hat can be found at [82]. We also provide further results with the
volution of cell populations.

Figs. 3(a) and 3(b) show how the phenotypic composition of cell
opulations evolves. Black lines are different trajectories in order to
epresent the overall dynamic of the cell population. The background
olours on the simplex represent the modulus of the gradient associated
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Fig. 3. Reproducing some of the results provided by [82] regarding colorectal liver metastases. (a),(b) Tumour dynamics. (c),(d) Time course of lactate concentration. Settings
in (a),(c) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 9.8 mM 𝑥−1𝐺𝑆 . Settings in (b),(d) 𝑎𝐿 = 2 mM, 𝑏𝐿 = 9.5 mM 𝑥−1𝐺𝑆 . Settings in (a),(b),(c),(d), 𝑎𝑆 = 17.1 mM, 𝛽𝐺𝑆 = 5 mM, 𝛽𝑅𝐿 = 6.5 mM, 𝜃𝐻𝑂 = 0.01 M−1

(the rest of parameters are included in Table 1).
with the dynamics. Specifically, yellow colours represent fast dynamics,
while the blue and purple colours represent slower ones. The filled
and hollow red dots represent stable and unstable state equilibria
respectively. Figs. 3(c) and 3(d) report the time course of lactate
concentrations in the cell populations.

Results in Fig. 3(a) show that 𝐻𝑂 rejects invasions by 𝑅𝐿. In these
cases, lactate level remains at 1.7 mM (see Fig. 3(c)). This level matches
with the mean of lactate concentrations found in normal tissues [82].
In this way, a cell population composed by phenotype 𝐻𝑂 corresponds
to a healthy colorectal liver tissue in our model. Any other invasion
collapses the population with phenotype 𝐺𝑆 . In these other cases,
the lactate concentration grows up to 11.5 mM (see Fig. 3(c)), which
matches with the mean of lactate concentrations found in cancerous
tissues [82]. This result suggests that phenotype 𝐺𝑆 counts with enough
glucose to reproduce. In contrast, phenotype 𝑅𝐿 do not have enough
lactate under normal conditions, and phenotype 𝐺𝑆 does not produce
enough lactate to support 𝑅𝐿. Consequently, 𝑅𝐿 tends to die out while
𝐺𝑆 overcomes the cell population.

We now increase the lactate which is available in normal conditions
(from 𝑎𝐿 = 1.7 mM to 𝑎𝐿 = 2 mM) and reduce the lactate producing ca-
pacity of 𝐺𝑆 (from 𝑏𝐿 = 9.8 mM 𝑥−1

𝐺𝑆 to 𝑏𝐿 = 9.5 mM 𝑥−1
𝐺𝑆 ). Level 2 mM

in Fig. 3(d) matches with the maximum lactate concentration which is
found in healthy tissues [82]. Again, Fig. 3(d) also shows that general
invasions drive 𝐺𝑆 to fixation, while 𝐻𝑂 and 𝑅𝐿 are extinguished.
Eventually, phenotype 𝑅𝐿 is able to fixate in the population, but only
in those invasions which do not include the presence of phenotype 𝐺𝑆 .

Then it can be concluded that in the case of heterogeneous muta-
tions, cells with glycolytic metabolism in colorectal liver tissues count
with enough glucose resources to fixate in the population. In contrast,
cells expressing other phenotypes tend to extinction. The end result
in colorectal liver metastasis is a monomorphism given by populations
with cells that express 𝐺𝑆 .
8

5.1.2. Polymorphic populations
In this subsection we explore the conditions that favour polymor-

phisms in the Warburg effect. With this end, we take the same param-
eters as those used in Figs. 3(a) and 3(c); but now, we increase the
amount of lactate produced by 𝐺𝑆 .

Figs. 4(a) and 4(b) show mixed strategy equilibria. Let 𝒙∗ ∈ ∆

denote a mixed strategy equilibria. These equilibria represent different
polymorphisms that share two characteristics. First, phenotype 𝐻𝑂 is
extinct since it is not part of any of these equilibria (i.e. 𝑥∗

𝐻𝑂 = 0).
Second, the fitness of 𝐺𝑆 matches with the fitness of 𝑅𝐿 (i.e. 𝑓𝐺𝑆 (𝒙∗) =
𝑓𝑅𝐿 (𝒙∗)). Please note that 𝑥∗

𝐻𝑂 = 0 and 𝑓𝐺𝑆 (𝒙∗) = 𝑓𝑅𝐿 (𝒙∗) satisfy
equilibrium conditions in (9). In addition, these equilibria are reached
in Figs. 4(c) and 4(d) with lactate levels equal to 22.23 mM. Recall
that cancerous tissues show lactate concentrations about 10 − 30 mM
(see e.g. [4]). Thus these polymorphisms represent tumour cell popu-
lations. The mixed equilibria in Figs. 4(a) and 4(b) are respectively at
(

𝑥∗
𝐻𝑂 , 𝑥

∗
𝐺𝑆 , 𝑥

∗
𝑅𝐿

)

≈ (0, 0.95, 0.035) and
(

𝑥∗
𝐻𝑂 , 𝑥

∗
𝐺𝑆 , 𝑥

∗
𝑅𝐿

)

≈ (0, 0.72, 0.26).
Therefore, the producing capacity of 𝐺𝑆 favours the presence of 𝑅𝐿 in
polymorphisms.

As it occurs in Figs. 3(a) and 3(c), Fig. 4 shows that 1.7 mM is not
enough lactate for 𝑅𝐿 to proliferate. That is the reason why 𝐻𝑂 rejects
any invasion by 𝑅𝐿. Different from results provided in Figs. 3(a) and
3(c), Fig. 4 reports now monomorphic equilibria with 𝐺𝑆 , only in the
case of invasions by this phenotype. In this way, 23 mM in Fig. 4(c) and
30 mM in Fig. 4(d) represent complete invasions by phenotype 𝐺𝑆 .

In conclusion, according to data found at [82] and with the
parametrization introduced in Section 4.3, it can be deduced that 𝑅𝐿

needs 22.23 mM of lactate to match its fitness with 𝐺𝑆 . This quantity
of lactate is too high to be found in healthy tissues (see e.g. [4]).
Thus, phenotype 𝑅𝐿 requires 𝐺𝑆 to produce extra lactate to ensure its
survival, as well as the constitution of tumour polymorphisms.
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Fig. 4. Lactate promotes polymorphic populations thus increasing the complexity of any targeted therapy. (a),(b) Tumour dynamics. (c),(d) Time course of lactate concentration.
Settings in (a),(c) 𝑏𝐿 = 21.3 mM 𝑥−1𝐺𝑆 . Settings in (b),(d) 𝑏𝐿 = 28.3 mM 𝑥−1𝐺𝑆 . Settings in (a),(b),(c),(d) 𝑎𝑆 = 17.1 mM, 𝑎𝐿 = 1.7 mM, 𝛽𝐺𝑆 = 5 mM, 𝛽𝑅𝐿 = 6.5 mM, 𝜃𝐻𝑂 = 0.01 M−1

the rest of parameters are included in Table 1).
.1.3. Lactate toxicity in colorectal cancer
Many authors as [4–7] argue that lactate can be poisonous to

ealthy cells and innocuous to cancer cells. In this subsection we review
he influence of lactate toxicity on colorectal liver metastasis.

In previous subsections we set 𝜃𝐻𝑂 = 0.01 M−1. Suppose that lactate
s safe for 𝐻𝑂 regardless of its concentration in the population; that is,
e now set 𝜃𝐻𝑂 = 0. Suppose that under normoxic conditions, cells
𝑂 are at the best possible scenario before invasion occurs. In such
scenario, the fitness of 𝐻𝑂 should be as high as possible, while the

itness of 𝑅𝐿 and 𝐺𝑆 should be as low as possible. This situation can
e considered by selecting from Table 1 the following parametrization:
𝑆 = 13.5 mM, 𝑎𝐿 = 1.4 mM, 𝑎𝑂 = 3.82 μM, 𝛽𝐺𝑆 = 7 mM, 𝛽𝑅𝐿 = 10 mM,
𝐻𝑂 = 14.37 μM, and by setting 𝜃𝐻𝑂 = 0, as well. Now, by replacing
hese parameters in (6)c and (7)a, we obtain the following fitness for
henotypes 𝐻𝑂 and 𝐺𝑆 :

𝐻𝑂 (𝒙(𝑡)) = 0.21, 𝑓𝐺𝑆 (𝒙(𝑡)) = 0.66,∀𝒙(𝑡) ∈ ∆. (29)

hus, the metabolic strategy of 𝐺𝑆 is strictly superior than 𝐻𝑂, regard-
ess of the state of the population. In other words, strategy 𝐻𝑂 is strictly
ominated by 𝐺𝑆 . Therefore, under normoxic conditions (recall that the
arburg effect occurs under normoxic conditions), a population of cells

hat express phenotype 𝐻𝑂 succumbs to any invasion by 𝐺𝑆 , regardless
f whether the lactate is toxic or not.

We now examine the quantity of lactate that 𝑅𝐿 needs to get a
igher fitness than 𝐻𝑂; i.e. we want to know the concentration given
y (3), which satisfies:

𝑅𝐿 (𝒙(𝑡)) ≥ 𝑓𝐻𝑂 (𝒙(𝑡)) . (30)

y replacing the previous parameters in (30), we obtain that lactate
evels have to meet 𝑠𝑅𝐿 (𝒙(𝑡)) ≥ 2.66 mM. Therefore, phenotype 𝑅𝐿

eeds at least 2.66 mM of lactate to get a higher fitness than 𝐻𝑂. Recall
hat lactate concentrations in colorectal liver are about 1.4–2 mM and
9

8.7–14,3 mM in healthy and cancerous tissues, respectively. Also recall
that in general, lactate concentrations in normal and tumour tissues are
1.5–3 mM and 10–30 mM, respectively (see e.g. [4]). Other references
as [96] even observe tumours with lactate concentrations up to 40 mM.
Therefore, in a tumour environment and under normoxic conditions,
phenotype 𝑅𝐿 has enough lactate to get a higher fitness that 𝐻𝑂.

In conclusion, lactate toxicity does not seem to be a determining fac-
tor in the aggressiveness of a tumour, since malignant phenotypes have
sufficient resources under normal conditions to lead the population to
collapse in the event of any mutation.

5.2. Optimal DDQN based control solution

In this section we cover the optimal therapy solutions obtained with
DDQN.

Fig. 5 shows the optimal DDQN solutions for the tumour state
space. Concretely, Figs. 5(a) and 5(b) represent the optimal therapeutic
policies on the monomorphic populations found in colorectal cancer in
Section 5.1.1, while Fig. 5(c) and Fig. 5(d) refers to the optimal policies
on the polymorphic populations covered in Section 5.1.2. Recall that
parametrization is collected in Tables 1 and 2 with the action space
defined in Table 3. The white zone located to the left of the simplex
represents 𝑒𝑛𝑑1, with all those terminal states where we assume that
therapy fails. On the contrary, the area of the same colour that is on the
right corresponds to the terminal states where the therapy is successful,
i.e. 𝑒𝑛𝑑2. The black lines in Fig. 5 illustrate tumour dynamics subject
to DDQN’s optimal policy. One can get a better idea of the effect of
this therapy, by comparing these trajectories with therapy-free tumour
dynamics, i.e. Fig. 5(a) vs. Fig. 3(a), Fig. 5(b) vs. Fig. 3(b), Fig. 5(c) vs.
Fig. 4(a) and Fig. 5(d) vs. Fig. 4(a). Based on this comparison, it can be
verified that optimal therapy leads tumour dynamics to the set of safe
states,  .
𝑒𝑛𝑑2
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Fig. 5. DDQN’s optimal therapeutic policies (the optimal solution for the entire state space of the tumour). (a),(b),(c) and (d) shows the DDQN’s optimal targeted therapy for
umour dynamics observed in Fig. 3(a), 3(b), 4(a) and 4(b), respectively. Settings in (a) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 9.8 mM 𝑥−1𝐺𝑆 . Settings in (b) 𝑎𝐿 = 2 mM, 𝑏𝐿 = 9.5 mM 𝑥−1𝐺𝑆 . Settings in
(c) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 21.3 mM 𝑥−1𝐺𝑆 . Settings in (d) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 28.3 mM 𝑥−1𝐺𝑆 . Settings in (a),(b),(c),(d) 𝑎𝑆 = 17.1 mM, 𝛽𝐺𝑆 = 5 mM, 𝛽𝑅𝐿 = 6.5 mM, 𝜃𝐻𝑂 = 0.01 M−1 (the
rest of parameters are included in Tables 1 and 2).
According to Fig. 5, actions 7, 8 and 9 are the only which take
part in the optimal policies obtained with DDQN, i.e., the actions
from 1 to 6 are not part of any optimal therapy. This result can be
useful in the design of real therapies, because it suggests a significant
simplification of the dose combinations to be used. Furthermore, the
dose combinations are always the same, regardless of whether the
tumour is monomorphic or polymorphic, which suggests a possible
standardization of the inhibitor cocktails to be used.

Interestingly, all of the optimal policies in Fig. 5 target 𝐺𝑆 with the
maximum tolerated genistein dose. In contrast, phenotype 𝑅𝐿 is never
targeted with the maximum tolerated AR-C155858 dose. These results
suggest that DDQN learns that 𝑅𝐿 can be attacked indirectly through
𝐺𝑆 (remember that 𝑅𝐿 receives support from lactate released by 𝐺𝑆 ).
The maximum dose of AR-C155858 is never administered to patients,
as a result of this reason and in order to minimize the costs associated
with the therapy’s toxicity.

Table 4 summarizes the average costs of each of policies represented
in Fig. 5. These costs are the result of averaging 512 different tra-
jectories with uniformly distributed initial states in the non-terminal
state space, i.e., each initial state is obtained by sampling the space
𝜟||−𝑒𝑛𝑑1−𝑒𝑛𝑑2 = {𝒙(𝑡) ∈ 𝜟||,𝒙(𝑡) ∉ 𝑒𝑛𝑑1,𝒙(𝑡) ∉ 𝑒𝑛𝑑2} uniformly.
Recall from Sections 5.1.1 and 5.1.2 that lactate contributes to the
heterogeneity of phenotypes in the cell population. We also suggest
that heterogeneity may increase tumour aggressiveness and complicate
treatment. Now, Table 4 provides therapeutic costs that increase from
the dynamics observed in Fig. 5(a) to Fig. 5(d). Consequently, lactate
is a reliable indicator of poor prognosis and high therapeutic costs.
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Table 4
Average costs of the optimal therapeutic policies represented in Fig. 5.

Optimal therapy

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d)

DDQN Cost 396.10 424.36 504.51 556.67

5.2.1. Optimal DDQN therapy vs conventional therapy
This subsection aims to compare DDQN-based therapies with other

more conventional approaches. Suppose that in a conventional therapy,
the doctor decides to apply the following protocol:

𝑎𝑡 ≜

{

𝑎6 𝑖𝑓 𝑥𝐺𝑆 ⩽ 𝑥𝑅𝐿 , (a)
𝑎8 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (b).

(31)

According to Tables 2 and 3, the therapy defined by (31) and (31)
involves attacking the dominant tumour phenotype with the corre-
sponding maximum tolerated dose, while the secondary phenotype is
attacked with the minimum tolerated dose. In this way, the aim is to
attack both tumour phenotypes at the same time, avoiding the excessive
costs of applying the maximum tolerated doses at the same time.

Fig. 6 and Table 5 show the results in the case that no therapy is
applied to the patient, in the case of implementing the conventional
therapy defined above and in the case of using the optimal therapy
obtained with DDQN. All the trajectories start from the same initial
state

(

𝑥𝐻𝑂 , 𝑥𝐺𝑆 , 𝑥𝑅𝐿
)

= (0.3, 0.6, 0.1). In any case, the absence of
treatment implies the loss of the patient in two iteration steps. Note
that conventional therapy also fails in the cases with more aggressive
tumours, represented by Figs. 6(c) and 6(d). Recall again, as discussed
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(
m
𝛽

Fig. 6. Illustration of tumour dynamics under no therapy, conventional therapy and DDQN’s optimal therapy. No therapy always fails. Conventional therapy succeeds in (a) and
b), but fails in more aggressive tumours (c) and (d). DDQN’s optimal targeted therapy always succeeds. Settings in (a) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 9.8 mM 𝑥−1𝐺𝑆 . Settings in (b) 𝑎𝐿 = 2
M, 𝑏𝐿 = 9.5 mM 𝑥−1𝐺𝑆 . Settings in (c) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 21.3 mM 𝑥−1𝐺𝑆 . Settings in (d) 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 28.3 mM 𝑥−1𝐺𝑆 . Settings in (a),(b),(c),(d) 𝑎𝑆 = 17.1 mM, 𝛽𝐺𝑆 = 5 mM,

𝑅𝐿 = 6.5 mM, 𝜃𝐻𝑂 = 0.01 M−1 (the rest of parameters are included in Tables 1 and 2).
Table 5
No therapy vs conventional therapy vs DDQN therapy: Iteration steps and therapeutic
cost.

Fig. 6(a) Fig. 6(b) Fig. 6(c) Fig. 6(d)

Steps Cost Steps Cost Steps Cost Steps Cost

No therapy 2 1,000.02 2 1,000.02 2 1,000.02 2 1,000.02
Conventional therapy 52 625.04 53 637.06 34 1,504.66 24 1,366.46
DDQN therapy 62 545.24 58 587.16 62 705.24 66 773.32

in Section 5.1.2, that Figs. 6(c) and 6(d) represent scenarios with
polymorphic equilibria that are generated due to the presence of high
lactate concentrations. The fact that conventional therapy succeeds in
the cases represented by Figs. 6(a) and 6(b) and fails in the cases
of Figs. 6(c) and 6(c) is indicative that lactate contributes to tumour
aggressiveness. For this reason, conventional therapy fails earlier (uses
fewer steps in Table 5) in the scenario represented by Fig. 6(d).

Fig. 6 shows that DDQN recovers the patient in all scenarios. Fur-
thermore, Table 5 indicates lower therapeutic costs with DDQN, even
though it approaches terminal failure states and employs a greater num-
ber of steps in patient recovery. DDQN would have obtained straighter
trajectories towards the safe terminal state, without passing close to the
failure terminal state, in the case of assigning greater relative weight
to the penalty of treatment duration (parameter 𝜎) over the toxicity of
drugs (parameters 𝜎 and 𝑢𝑚𝑎𝑥 for all 𝑚 ∈ , 𝑘 ∈ ).
𝑚𝑘 𝑚𝑘
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5.2.2. Validation of DDQN solutions with HJB
In this subsection we validate the optimal therapy solutions ob-

tained with DDQN by comparing it with the solution provided by
HJB.

In Fig. 7, we can compare the performance of DDQN vs. HJB.
Figs. 5(a) and 7(a) respectively show the optimal policies obtained by
DDQN and HJB, under the tumour dynamics represented in Fig. 3(a). In
Fig. 7(b), we compare the therapeutic costs of 512 different trajectories.
The initial state of each trajectory has been obtained by uniformly
sampling the non-terminal state space. As it can be seen in Fig. 5(a)
and Fig. 7(a), the optimal therapies obtained with DDQN and HJB are
apparently very different. Concretely, the optimal policy provided by
HJB is much more complex, since it uses a significantly higher number
of actions than DDQN.

However, the results observed in Fig. 7(b) suggest that both policies
are quite similar from the perspective of therapeutic costs. The average
cost over the 512 trajectories are 396.10 and 394.37 for DDQN and
HJB, respectively. Therefore, in this case, the HJB policy gets an
improvement of 0.4% over the DDQN policy, at the cost of increasing
the complexity of the therapy, which can be a problem in the case of a
real implementation.

Fig. 7(b) shows some trajectories where the cost obtained by HJB
is greater than DDQN. This is surely due to slight mismatches in the
numerical approximations and interpolations applied by BocopHJB. In
any case, a Welch’s t-test on the samples in Fig. 7(b) provides a very
high 𝑝-value equals to 0.87. Therefore, there is no evidence to support
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Fig. 7. Optimal therapeutic policies: HJB vs. DDQN under tumour dynamics observed in Fig. 3(a). (a) HJB’s optimal targeted policy. HJB has an average cost of 394.37 compared
to 396.10 (see Table 4) for DDQN. (b) Trajectory costs obtained with DDQN and HJB. Welch’s t-test p-value: 0.87, thus there is no evidence that HJB and DDQN trajectory costs
are different. Settings: 𝑎𝐿 = 1.7 mM, 𝑏𝐿 = 9.8 mM 𝑥−1𝐺𝑆 , 𝑎𝑆 = 17.1 mM, 𝛽𝐺𝑆 = 5 mM, 𝛽𝑅𝐿 = 6.5 mM, 𝜃𝐻𝑂 = 0.01 M−1 (the rest of parameters are included in Tables 1 and 2).
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hat the policies shown in Figs. 5(a) and 7(a) present different average
osts, although visually they do not look alike. Very different policies
an give similar cost results.

. Conclusion and future works

Aerobic glycolysis has been considered for a long time as an ineffi-
ient metabolic disorder in obtaining energy for the cell development.
he lactate generated in aerobic glycolysis has also been considered
s a by-product or metabolic waste with no apparent utility. However,
owadays it is known that lactate can be used as an extra energy source
y some cellular phenotypes to proliferate. In this way, from a evolu-
ionary perspective, glycolytic metabolism may make sense even under
ormal oxygen conditions, since it allows to increase the polymorphic
eterogeneity of tumours and thus favour their aggressiveness. In this
ork, a simple model based on EGT has been proposed to represent

his complex metabolic alteration, a.k.a. the Warburg effect, which is
ommon to many types of cancer. This model has been adequately
arametrized to reproduce the clinical observations obtained from dif-
erent studies on colorectal cancer and other more aggressive tumours.
his model has also been used as a training scenario for control systems
ased on recent deep learning algorithms.

In this work, we propose the first optimal therapy based on exper-
mental tumour growth inhibitors, which have been obtained through
he efficient implementation of control systems based on deep learning.
he results have been compared with the solutions provided by HJB.
he conclusion is that the policies obtained with HJB slightly outper-
orm DDQN, at the cost of increasing the complexity of therapeutic
outines. In real life, the implementation of simpler routines such as
hose obtained with DDQN may make more sense, although these
re suboptimal compared to those obtained with HJB. Furthermore,
olving HJB is conditioned on an exact knowledge of the system to
e controlled, which is infeasible in most of the real-life cases. DDQN
oes not need to know the differential equations that govern tumour
ynamics, but it requires a sufficiently reliable scenario to train. The
uality of the scenario used in the training of any reinforcement learn-
ng algorithm is key to get realistic optimal policies. However, in our
ase, the implementation of a realistic scenario requires many clinical
bservations that provide clear and precise information on how the
umour evolves over time. For this reason, in future work, we plan
o refine the model presented in this paper, as the literature provides
hemical, biological, and medical data that allow a more accurate
nderstanding of tumour dynamics.
12
Determining the system state is also an important detail to consider.
n this paper, we have considered that the state is a vector with
omponents that represent the relative frequency of the phenotypes
xpressed by the cells. A Markov decision process can be used to model
umour dynamics in this case, since the state of the system is observ-
ble. Nevertheless, in many real-world applications, the state cannot be
irectly observed or accessible, and estimates may be affected by noise.
his may require posing the problem from the perspective of a partially
bservable Markov decision process. Deep recurrent Q-networks [97],
n extension of DQN with recurrent networks, could also be useful to
ddress these types of problems.

In this paper we have modelled tumour dynamics with deterministic
ifferential equations. This approximation is useful to address general
r average dynamics. However, tumour dynamics may also be associ-
ted with stochastic components. A natural way to address the problem
f obtaining therapeutic treatments in this type of systems would be by
mplementing stochastic optimal controls.

In conclusion, we highlight that the results obtained in this paper
n optimal policies are in silico. Furthermore, the present study has
he limitations described above. In this regard, the results derived
rom these therapies should be viewed with caution since much work
emains to be done in order to obtain optimal treatments against
ancer.
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ppendix. Obtaining RE from expression (8)

Let 𝑁 ∈ ℜ≥0 denote the size of a cell population. Recall from
ection 2.5, that 𝑁𝑚 ∈ ℜ≥0 denotes the number of cells that express
henotype 𝑚 ∈ . Then, the relative frequency of any phenotype,
ntroduced in Section 2.1, is given by:

𝑚(𝑡) ≜
𝑁𝑚(𝑡) ,∀𝑚 ∈ . (A.1)

𝑁(𝑡)

https://github.com/jsanno/ddqn
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𝑥

𝑥

𝑥

𝑁

R

The derivative of (A.1) with respect to time results:

̇ 𝑚(𝑡) =
𝑁̇𝑚(𝑡)𝑁(𝑡) −𝑁𝑚(𝑡)𝑁̇(𝑡)

𝑁2(𝑡)
,∀𝑚 ∈ . (A.2)

The derivative of 𝑁(𝑡) with respect to time also satisfies:

𝑁̇(𝑡) ≜
∑

𝑛∈
𝑁̇𝑛(𝑡). (A.3)

By replacing (A.3) in (A.2):

̇ 𝑚(𝑡) =
𝑁̇𝑚(𝑡)𝑁(𝑡) −𝑁𝑚(𝑡)

∑

𝑛∈ 𝑁̇𝑛(𝑡)
𝑁2(𝑡)

,∀𝑚 ∈ . (A.4)

Eq. (8) can be expressed as follows:

𝑁̇𝑛(𝑡) = 𝑁𝑛(𝑡)𝑓𝑛 (𝒙(𝑡), 𝒖(𝑡)) ,∀𝑛 ∈ . (A.5)

By replacing (A.5) in (A.4):

̇ 𝑚(𝑡) =
𝑁𝑚(𝑡)𝑓𝑚 (𝒙(𝑡), 𝒖(𝑡))

𝑁(𝑡)
−

𝑁𝑚(𝑡)
∑

𝑛∈ 𝑁𝑛(𝑡)𝑓𝑛 (𝒙(𝑡), 𝒖(𝑡))
𝑁2(𝑡)

,∀𝑚 ∈ .

(A.6)

Finally, expression (9) can be directly obtained by replacing 𝑁𝑛(𝑡) =
(𝑡)𝑥𝑛(𝑡),∀𝑛 ∈ , from (A.1), in (A.6).
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