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Abstract: Many Autonomous Underwater Vehicles (AUVs) need to cope with hazardous underwater
medium using a limited computational capacity while facing unknown kinematics and disturbances.
However, most algorithms proposed for navigation in such conditions fail to fulfil all conditions at
the same time. In this work, we propose an optimal control method, based on a receding horizon
approach, namely MPC (Model Predictive Control). Our model also estimates the kinematics of the
medium and its disturbances, using efficient tools that rely on the use of linear algebra and first-order
optimization methods. We also test our ideas using an extensive set of simulations, which show that
the proposed ideas are very competitive in terms of cost and computational efficiency in cases of total
and partial observability.
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1. Introduction

In recent years, the development of autonomous navigation methods has gathered
significant attention, yielding an ever-increasing field of research. Special attention is paid
to aerial drones, which are becoming inexpensive, and hence, available for a myriad of
applications such as remote sensing, real-time monitoring, search and rescue missions,
delivery or agriculture, to mention a few [1]. In addition, a lot of interest is placed on the
development of autonomous land vehicles, such as cars, which may suppose a revolution in
the way that transportation is conceived with deep impacts on our society [2]. Vehicles that
receive comparatively less attention are those designed to work underwater, which find
applications as diverse as surveillance, warfare, inspection of wreckage, search and rescue
missions, ocean exploration, scientific research, and repair and maintenance of structures
such as oil platforms or underwater cables [3].

To operate in the underwater medium, Remotely Operated Vehicles (ROVs) are fre-
quently used, where a ROV is controlled by a human using a wired connection to a vessel.
However, ROVs have a limited range due to their need to be connected [3]. To overcome
this limitation, Autonomous Underwater Vehicles (AUVs) can be used, which, however,
face multiple challenges derived from the hazardous underwater medium.

A first challenge is related to the rapid attenuation that radio signals experience in the
water, which means that satellite positioning systems cannot be used in the underwater
medium [4]. To ease this problem, many studies have developed methods for locating AUVs
using inertial sensors, acoustic techniques or geophysical navigation and beacons [3–5].

Another challenge that AUVs face is the complexity of the control of the vehicle, where
many methods have been proposed, ranging from simple PID (Proportional–Integral–
Derivative) controllers [6] to more complex non-linear control methods [7,8], fuzzy logic
based controllers [9,10] and neural networks [11,12]. Note that not all these methods
are valid for all AUVs, as the methods that can be included strongly depend on the
computational capabilities of the AUV (e.g., an AUV may not have enough capabilities to
train a deep neural network, as in [12]).
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Finally, another challenge that arises in the underwater medium is related to the
presence of unknown disturbances that affect the motion of the AUV. This brings additional
difficulties to the location of the AUV [13,14], and hence, has been addressed by many
works, such as [12,15–19] or [20]. However, all these works either consider that the kine-
matics are known, which simplifies the problem [15,16,18–20], or the algorithm proposed
requires a high computational capacity on the AUV (e.g., references [12,15,17] require
training neural networks), so these algorithms are unfeasible for low-capacity AUVs.

Hence, in this work, we will address this gap by proposing an efficient navigation
method that can deal with both unknown disturbances and kinematics, where our main
contributions are:

• The proposed optimal control method is computationally efficient, as we make use of
a Model-Predictive Control (MPC) method as controller, that can achieve a very high
computational efficiency for low capacity devices as shown in [21,22].

• In order to deal with unknown kinematics, we use a linear approximation that is
based only on linear algebra, and hence, it is computationally efficient. In case that
the AUV has enough computational capacity, it is possible to replace this module
by other techniques such as LWPR (Locally Weighted Projection Regression) [23,24],
XCSF (eXtended Classifier Systems for Function approximation) [25,26] or ISSGPR
(Incremental Sparse Spectrum Gaussian Process Regression) [27], to mention some.

• Although it is possible to include the effect of the disturbances in the kinematics
estimator, we derive a specific non-linear disturbance estimator based on optimization
which allows for significantly improving the results, with increases in cost of up to
a 47%.

The rest of the paper is structured as follows. In Section 2, we describe the setup of
the navigation problem we are going to solve, which is general and can adapt to different
situations. Then, Section 3 introduces our main result: the estimators proposed for the
kinematics and the disturbances. This method is then tested in Section 4, where a set of
extensive simulations is driven in order to evaluate the performance and bounds of the
proposed methods. Finally, some conclusions are drawn in Section 5.

2. Setup Description

We first describe the setup proposed for our method in this Section.

2.1. General Diagram

Let us start by introducing the main block diagram for our setup, which is composed
of three main blocks and can be seen in Figure 1:

• The environment block, that simulates the underwater conditions, that is, the kine-
matics. This block takes as input the control u, that contains the change in the AUV
actuators, and returns an observation o, which reflect the information that the sensors
of the AUV capture.

• The estimation block, whose main purpose is to extract meaningful information ŝ for
the controller block from the signals provided by the AUV sensors o.

• The controller block, which is devoted to decide which controls u are to be taken at
each time instant. This block receives as input the information extracted from the
estimation block, and outputs the adequate control.

Note that this definition of the three main blocks of our system is very general, hence,
it can adapt to different concrete settings. Let us now delve into more detail of each block
in the next Sections.
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Environment

Estimation Controller

uo

ŝ

Figure 1. Schematic diagram for our setting, where the three main blocks and their relations are
depicted. Note that they relate in a closed loop way, i.e., the controller produces a control u based
on the current ŝ that causes a change in the AUV state, according to the environment block that
simulates the underwater medium. Hence, the value o observed by the AUV sensors change and the
estimation block updates its estimate input to the controller ŝ, and then the whole process starts over.

2.2. Environment Block

This block simulates the underwater medium where our AUV is. This block is inspired
by [12], and contains three main ideas: the dynamical system that models the underwater
kinematics, an underwater disturbances model and an observation model.

2.2.1. Underwater Navigation Model

The first element of the environment block is the dynamical system that reflects the
physics of the underwater environment, i.e., the kinematics. In this work, we focus on
discrete-time dynamical systems that can be expressed using the next equation:

sn+1 = f (sn, un) = Asn + Bun + d(sn) (1)

where f is the transition function, n ∈ {0, 1, 2...} denotes the time index, the column vector
sn is the state of the system at time n, the column vector un denotes the controls (e.g.,
the effects of the actuators), and the column vector d(sn) represents the disturbances. We
define |S| as the state dimension, so sn ∈ R|S| (also, d(sn) ∈ R|S|), and |U| as the control
dimension, so un ∈ R|U|. The matrix A ∈ R|S|×|S| contains the state change due to the
previous state sn, and the matrix B ∈ R|S|×|U| contains the state change due to the control
un. Finally, note that (1) represents a class of linear dynamical systems, but it can also
accommodate non-linear dynamical systems by means of linearizing the transition function
using a first-order Taylor expansion (as in [21] or [22]).

2.2.2. Disturbance Models

Following [12], we consider the following three main disturbances that may appear
in an underwater environment: swirls, currents and constant fields. As in [12], these
disturbances are modelled as non-linear vector fields that affect the acceleration of the AUV
in a two-dimensional system. The constant field disturbance is:[

dx,n(sn)
dy,n(sn)

]
=

[
k1 · cos α
k1 · sin α

]
(2)

where k1 ∈ R is the strength of the acceleration produced by the field and α ∈ [0, 2π] is its
angle of orientation, which is independent of the position of the AUV. Note that depending
on the sign of k1, the angle may be α or α + π. Additionally, we remark that dx,n(sn) and
dy,n(sn) are the components of the vector d(sn) affected by the disturbances.

A current is defined depending on whether it has horizontal (i.e., on the X-axis) or
vertical (i.e., on the Y-axis) orientation as follows:

[
dx,n(sn)
dy,n(sn)

]
=

k2 · e
−
(yn − y0)

2

ω2

0

 [
dx,n(sn)
dy,n(sn)

]
=

 0

k2 · e
−
(xn − x0)

2

ω2

 (3)
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where x0 ∈ R and y0 ∈ R denote the position of maximum strength of the current, k2 ∈ R
controls the strength of the current and its direction, and ω ∈ R controls the width of
the current.

Finally, a swirl can be modelled as follows:

[
dx,n(sn)
dy,n(sn)

]
=


k3√

(xn − x0)2 + (yn − y0)2
(yn − y0)

−k3√
(xn − x0)2 + (yn − y0)2

(xn − x0)

 (4)

where x0 and y0 denote the position of the vortex of the swirl and k3 ∈ R indicates its
strength and direction (clockwise or counter-clockwise).

Note that the disturbance depends on the position (xn, yn) of the AUV, and hence,
they are position-dependent, except for the constant field disturbance which is position-
independent. This justifies that in (1), the vector d(sn), whose components are the distur-
bances, depends on the current state sn.

Additionally, if we define the vector p as the vector that contains the parameter of
each disturbance, we have that pc f = (k1, α) for the constant field, phc = (k2, y0, ω) for
the horizontal current, pvc = (k2, x0, ω) for the vertical current, and psw = (k3, x0, y0) for
the swirl.

2.2.3. Observation Model

The final element in our environment block is the observation model, as the informa-
tion captured by the AUV sensors need not be the actual next state of the system sn+1, due
to the sensors imperfections. For instance, when the AUV is underwater, it cannot use GPS
(Global Positioning System) as a location method due to the losses of the radio signal due
to the water. Thus, the AUV must resort to other set of techniques to estimate its location,
such as inertial based methods, acoustic sensors or beacon methods, among others [3,4].
Hence, this means that in general, the information gathered by the AUV sensors will be
an observation on, a noisy and/or incomplete version of the actual state of the system.
Mathematically, we can say that there exists an observation model g such that:

on+1 = g(sn+1) (5)

where g is a mapping from the state space to the observation space. Depending on the
sensors in the AUV and the location method chosen, the observation model g will vary,
where we note that each location method brings a certain tradeoff in computational load
and precision in the estimation of the state, among others [4].

2.3. Estimation Block

The ideal purpose of the estimation block is to revert the observation model, i.e., it
tries to retrieve the actual state sn+1 given an observation on+1. In general, the estimation
block implements a mapping h that goes from the observation space to the state space as:

ŝn+1 = h(on+1) (6)

where, ideally, we have that h = g−1. In real life, it is seldom possible to exactly recover the
original state sn+1: we can at best provide an estimation ŝn+1 of it. Note that we use the
hat notation to denote that the output of this block is an estimation of the actual state. We
emphasize that the choice of the estimation block is deeply intertwined with the observation
model, as the estimation block tries to cancel out the effect of the observation model.

The most favorable case is the fully observable case, in which the AUV observes the
actual state, so we have on+1 = g(sn+1) = sn+1. Note that in this case, we do not need any
estimation block, but this case seldom, if ever, happens in practice. It is more common to
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have a partially observable case, in which the AUV observes a noisy and/or incomplete
version of the state [28]. A frequent approach consists on assuming that the observation
model adds noise to the state, so we would have:

on+1 = g(sn+1) = sn+1 + ε (7)

where ε is a noise that follows a Gaussian distribution with a certain mean and covari-
ance [4]. If we know the transition model (e.g., (1)), it is possible to obtain an estimate
of the state using a Kalman Filter (KF) [29]. However, a KF can only be applied if the
transition model is linear. Two extensions to the non-linear case are the Extended KF (EKF),
which employs a first-order approximation of the nonlinear transition model, and the
Unscented KF (UKF), which uses an unscented transformation. Due to their properties
and simplicity, these filters are ubiquitous in tracking applications [4], and can even be
the optimal estimators under certain conditions. However, note that knowledge of the
transition function f (sn, un) is required for these filters.

2.4. Controller Block

The third main block in our model is the controller, which takes as input an state
estimation ŝn and returns the adequate control for that state un. In this work, we focus on
optimal controllers, i.e., controllers that solve a certain optimization problem. Note that the
controller will be posed in terms of the actual state, sn+1, but as we have mentioned before,
in general we only have access to a state estimation ŝn+1. For simplicity, we assume that the
target of the AUV is to reach the origin of the state space, so we can pose the optimization
problem as follows:

arg min
un

N−1

∑
n=0

(
sn+1

TQsn+1 + un
T Run

)
s.t. sn+1 = f (sn, un)

s0 = s(0)

Zssn+1 ≤ zs, ∀n ∈ 0, 1, 2, ..., N − 1

Zuun ≤ zu, ∀n ∈ 0, 1, 2, ..., N − 1

(8)

where N is the horizon, Q ∈ R|S|×|S| is a matrix that contains the cost related to the states,
R ∈ R|U|×|U| is a matrix containing the cost related to the control, f is the transition
function controlling the next states (1), s(0) ∈ R|S| is the given initial state, Zs ∈ R|zs |×|S|

and zs ∈ R|zs | define |zs| inequality restrictions over the states, and Zu ∈ R|zu |×|U| and
zu ∈ R|zu | define |zu| inequality restrictions over the controls. Note that the inequalities
can enforce that states and controls belong to an admissible region, as would be the case in
real AUV with limited actuator capacity (such as limited acceleration).

The problem (8) is of considerable interest for the control theory community, where
some of its solutions are well known. For instance, in case that the transition function is lin-
ear in the states and controls, and there are no restrictions, the problem is a Linear-Quadratic
controller, and its optimal solution can be computed using the Riccati equations [30].

However, in case that there are restrictions, the optimization problem has a higher
complexity, that increases with N, as the number of constrains increases linearly with N.
In order to address this, Model Predictive Control (MPC) is widely used: this technique
alleviates the computational complexity at the cost of obtaining suboptimal controllers.
The idea is to solve problem (8) using a limited horizon N0 < N instead of the actual
horizon N, and apply only part of the controllers obtained (e.g., only u0) in order to
progress a certain number of steps, and then solve again the optimization problem and
start over. Note that, under this scheme, the parameter N0 controls the tradeoff between
optimality and computational complexity: a low value of N0 eases the computation, but it
is also short-sighed and hence suboptimal. Due to its properties, MPC is widely used in real
life. Note that instead of solving a very complex optimization problem over a long horizon,
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it solves several optimization problems over shorter horizons. The solution to problem (8)
is known to be a piecewise linear controller [31], and this can be used to further decrease the
computational load by reusing controllers, as can be seen in [21,22]. Note that the solution
to (8) is not only optimal, but also stable [31] if the actual transition function is linear. In our
case, we may be approximating a non-linear system using a linear model, and the stability
strongly depends on the actual system and cannot be stated in the general case.

Let us delve into a detailed formulation of MPC to our problem. First, let us assume a
no-disturbance case: in this case, the transition function (1) becomes:

sn+1 = f (sn, un) = Asn + Bun (9)

and we can obtain any state as a function of the initial state s(0) and the controls as follows:
s1
s2
...

sN0

 =


B 0 ... 0

AB B ... 0
... ... ... ...

AN0−1B AN0−2B ... B




u0
u1
...

uN0−1

+


A
A2

...
AN0

s(0) (10)

which can be expressed in more compact form as:

s = Bu +As(0) (11)

where

s =


s1
s2
...

sN0

 u =


u0
u1
...

uN0−1

 A =


A
A2

...
AN0

 B =


B 0 ... 0

AB B ... 0
... ... ... ...

AN0−1B AN0−2B ... B

 (12)

so note that s ∈ RN0|S|, u ∈ RN0|U|, A ∈ RN0|S|×|S| and B ∈ RN0|S|×N0|U|. If we define
similarly Q ∈ RN0|S|×N0|S|, R ∈ RN0|U|×N0|U|, Zs ∈ RN0|zs |×N0|S|, Zu ∈ RN0|zu |×N0|U|,
ws ∈ RN0|zs | and wu ∈ RN0|zu | as follows:

Q =


Q 0 ... 0
0 Q ... 0
... ... ... ...
0 0 ... Q

 R =


R 0 ... 0
0 R ... 0
... ... ... ...
0 0 ... R

 Zs =


Zs 0 ... 0
0 Zs ... 0
... ... ... ...
0 0 ... Zs



Zu =


Zu 0 ... 0
0 Zu ... 0
... ... ... ...
0 0 ... Zu

 ws =


zs
zs
...
zs

 wu =


zu
zu
...
zu


(13)

we can obtain a very compact formulation for problem (8) using an MPC approach as follows:

arg min
u

sTQs + uTRu

s.t. s = Bu +As(0)

Zss ≤ ws

Zuu ≤ wu

(14)



J. Mar. Sci. Eng. 2023, 11, 710 7 of 20

which can be further simplified by noting that we can replace s by its definition using the
transition function in the restrictions, to obtain:

arg min
u

1
2

uT
(
BTQB +R

)
u + s(0)TATQBu

s.t.
[
ZsB
Zu

]
u ≤

[
ws −ZsAs(0)

wu

] (15)

Note that (15) is a Quadratic Program over the control vector u, that can be solved
using standard optimization techniques, available in many software packages, such as
SLSQP (Sequential Least Squares Quadratic Programming) or L-BFGS-B (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno Bounded) [32]. However, note that there are two
very important details that affect our controller: the first one is that we have derived it
assuming that there were no disturbances. In case that there are disturbances, Equation (11)
would not be linear, as our disturbances are not linear, and hence, we would not be able
to obtain a convenient problem formulation as (15). The second one is that we assume
known the model transition equation, i.e., A and B. In order to address both problems, we
propose an estimator of the model and the disturbances that allows correcting its effect in
the next Section.

3. Estimation of the Model and Disturbances

In the previous Section, we have introduced a general model for the navigation of
an AUV, and we have noted that knowledge of the transition function f (sn, un) is needed
both for the estimation and the controller blocks, since both Kalman Filters and MPC
controllers require that knowledge. However, in real life applications, we frequently do
not know the exact transition function, and thus, we need to estimate it. There are several
approaches possible [33], but a very convenient one is to approximate the model as linear (1).
Note that this means that we are doing a first order approximation to the real transition
model f (sn, un) if f is non-linear, but in many cases, as our simulations will show, this
approximation suffices [21,22]. Moreover, a linear model is required in order to use an MPC
controller as the one in (15) [34].

3.1. Linear Transition Model Estimation

Let us assume that we want to estimate the transition model using a linear model.
For now, we consider that there are no disturbances, so the model that we want to estimate is:

ŝn+1 = Âŝn + B̂un (16)

where we note that this model is an estimation of the true transition model (1), where all
unknown variables are noted using the hat notation. We only have access to a set of M
samples (ŝn, un, ŝn+1)

M
n=0 collected during past interactions of the AUV, where we recall

that ŝn is the output of the estimation block chosen (see Figure 1), so we want to estimate
Â and B̂, the transition model matrices. In order to obtain Â and B̂, we can use several
approaches, ranging from the Least Squares regression, to more complex methods such as
LWPR [23,24], XCSF [25,26] or ISSGPR [27]. In this paper, we focus on the Least Squares
regression [35], as it only involves using linear algebra, and hence, it is very efficient. This
approach involves solving the next optimization problem:

min
Â,B̂

M

∑
n=0

∣∣∣∣∣∣Âŝn + B̂un − ŝn+1

∣∣∣∣∣∣2 (17)

where ||v|| denotes the norm-2 of the vector v. We note that Âŝn + B̂un = ŝn+1 should not
be an undetermined system, so we need to have a number of samples M sufficiently large
(otherwise, we would have to use a regularizer or use prior information on the matrices).
If we define âT

i as the i-th row of the Â matrix, and b̂T
i as the i-th row of the B̂ matrix,
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and define u = (u0, ..., uM−1)
T , ŝ = (ŝ0, ..., ŝM−1)

T and ŝ′ = (ŝ1, ..., ŝM)T , we can rewrite
problem (17) as:

min
âi ,b̂i

∑
i

(
âT

i ŝ + b̂iu− ŝ′
)T(

âT
i ŝ + b̂iu− ŝ′

)
(18)

which is separable in i, which means that we can solve for each (âi, b̂i) separately, and note
that given i, we have a standard Least Squares problem whose analytical solution is:

[
âi
b̂i

]
=

([
ŝ
u

][
ŝ
u

]T
)−1[

ŝ
u

]
ŝ′ (19)

Note that, in order to obtain (19), we only need linear algebra operations. The complex-
ity depends on the inversion of a square matrix with dimension M(|S|+ |U|). If inverting
the matrix poses a problem in terms of computational complexity, we could either reduce
the number of samples M, or use Recursive Least Squares [36] to update the estimates.

3.2. Linear Transition Model Estimator with Disturbances

In the previous estimator, we assumed that there were no disturbances. However,
this need not be true in real settings, as disturbances are part of the underwater medium.
This means that the linear model estimated using (16) does not include the term due to
disturbances that appears in (1). However, if we knew the disturbance model, we could
obtain d = d(ŝ) = (d(ŝ0), d(ŝ1), ..., d(ŝM))T ∈ RM|S| as the effect of the disturbances and
obtain a linear model that accounts for the disturbances by solving:

min
âi ,b̂i

∑
i

(
âT

i ŝ + b̂iu− (ŝ′ − d)
)T(

âT
i ŝ + b̂iu− (ŝ′ − d)

)
(20)

whose solution is: [
âi
b̂i

]
=

([
ŝ
u

][
ŝ
u

]T
)−1[

ŝ
u

](
ŝ′ − d

)
(21)

where we note that it is possible to include the effect of the disturbance, but we need to
know the disturbance model in order to obtain d. In other words, this means knowing both
the type of disturbance (i.e., swirl, current or constant field) and its parameters. In general,
we cannot assume that we have this knowledge, so we propose estimating them as well.

3.3. Disturbance Estimator

In order to estimate the disturbances, we propose using a Least Squares approach
again. However, due to the fact that the disturbances functions in (2), (3) and (4) are
non-linear, the solutions now become more complex. Again, let us assume that we have
access to the same set of M samples (ŝn, un, ŝn+1)

M
n=0 that we used for estimating the model.

First, by exploiting the knowledge of the transition function model (1), we can estimate the
disturbance d̂(ŝn) as:

d̂(ŝn) = ŝn+1 − Âŝn − B̂ûn (22)

and by using the knowledge that the disturbances affect the acceleration in our model,
then we have that d̂(ŝn) = (d̂x,n, d̂y,n). Moreover, we can use these values to estimate the
parameters p of the disturbance as:

min
p

M

∑
n=0

(
dx,n(ŝn, p)− d̂x,n

)2
+
(
(dx,n(ŝn, p)− d̂y,n

)2
(23)

where we note that dx,n(ŝn, p) and dy,n(ŝn, p) correspond to the disturbance functions
in (2), (3) and (4), but for the sake of clarity we have also make explicit the dependence of
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the disturbance with p, the parameter vector of the disturbances. Let us see how to solve
this problem for each of the disturbances presented.

3.3.1. Constant Field

In case of a constant field, by replacing (2) in (23), we obtain the following problem:

min
k1,α

M

∑
n=0

(
k1 cos α− d̂x,n

)2
+
(

k1 sin α− d̂y,n

)2
(24)

and this problem has an analytical solution by computing its gradient with respect to k1
and α, and then equalling to 0 to obtain:

α = arctan

(
∑M

n=0 d̂x,n

∑M
n=0 d̂y,n

)
k1 =

cos α ∑M
n=0 d̂x,n + sin α ∑M

n=0 d̂y,n

M + 1
(25)

3.3.2. Currents

In case of a horizontal current, we replace (3) in (23) to obtain the following problem
for a horizontal current:

min
k2,y0,ω

M

∑
n=0

k2 · e
−
(ŷn − y0)

2

ω2 − d̂x,n


2

+
(

d̂y,n

)2
(26)

whose gradients are:

∇k2 =
M

∑
n=0

2 · κ ·
(

k2 · κ − d̂x,n

)
∇y0 =

M

∑
n=0

4 · k2 · κ · (ŷn − y0)

ω2

(
k2 · κ − d̂x,n

)
∇ω =

M

∑
n=0

4 · k2 · κ · (ŷn − y0)
2

ω3

(
k2 · κ − d̂x,n

)

κ = e
−
(ŷn − y0)

2

ω2

(27)

and since (27) does not have an analytical solution in terms of elementary functions, we
cannot obtain an analytical solution as in the constant field case. In order to address
this, we propose using the gradient expression and a first-order optimization method to
arrive at a solution for the parameters. Namely, we use L-BFGS [32], a quasi-Newton
method known by its fast convergence rate by making use only of first-order information,
e.g., the gradient (27). Note that the computational complexity can be adjusted by setting a
maximum number of iterations.

The case for vertical currents is analog: we replace (3) in (24) to obtain the following
optimization problem:

min
k2,x0,ω

M

∑
n=0

(
d̂x,n

)2
+

k2 · e
−
(x̂n − x0)

2

ω2 − d̂y,n


2

(28)
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whose gradients are:

∇k2 =
M

∑
n=0

2 · κ ·
(

k2 · κ − d̂y,n

)
∇x0 =

M

∑
n=0

4 · k2 · κ · (x̂n − x0)

ω2

(
k2 · κ − d̂y,n

)
∇ω =

M

∑
n=0

4 · k2 · κ · (x̂n − x0)
2

ω3

(
k2 · κ − d̂y,n

)

κ = e
−
(x̂n − x0)

2

ω2

(29)

and again, we do not have an analytical solution, but we can use any first-order method to
estimate the parameters.

3.3.3. Swirls

Finally, in case of a swirl, we again replace (4) in (24) to obtain:

min
k3,x0,y0

M

∑
n=0

(
k3(ŷn − y0)√

(x̂n − x0)2 + (ŷn − y0)2
− d̂x,n

)2

+

(
−k3(x̂n − x0)√

(x̂n − x0)2 + (ŷn − y0)2
− d̂y,n

)2

(30)

whose gradients are:

∇k3 =
M

∑
n=0

2 · (ŷn − y0)

κ

(
k3(ŷn − y0)

κ
− d̂x,n

)
+

2 · (x̂n − x0)

κ

(
k3(x̂n − x0)

κ
− d̂y,n

)

∇x0 =
M

∑
n=0

2 · k3 · (ŷn − y0)(x̂n − x0)

κ3

(
k3 · (ŷn − y0)

κ
− d̂x,n

)
+

2 · k3

κ2

(
κ − (x0 − x̂n)(x̂n − x0)

κ

)(
k3 · (x̂n − x0)

κ
− d̂y,n

)
∇y0 =

M

∑
n=0

2 · k3

κ2

(
−κ − (ŷn − y0)(ŷn − y0)

κ

)(
k3 · (ŷn − y0)

κ
− d̂x,n

)
+

2 · k3 · (x0 − x̂n)(ŷn − y0)

κ3

(
k3 · (x0 − x̂n)

κ
− d̂y,n

)
κ =

√
(x̂n − x0)2 + (ŷn − y0)2

(31)

and again, we do not have an analytical solution, but we can use any first-order method to
estimate the parameters.

3.4. Joint Transition and Disturbance Estimator

As we have mentioned in the previous Sections, it is likely that in a real-world setting
we would not know neither the transition model nor the disturbances. Hence, we propose
using the tools developed in the previous Sections in order to provide an estimation of
both using only a set of M samples (ŝn, un, ŝn+1)

M
n=0 collected during the interactions of

the AUV with the environment.
First, we propose an exploration period, where the agent can use any controller (such

as a random one), in order to collect an initial set of samples (ŝn, un, ŝn+1). Then, when
enough samples have been gathered, we start with the estimation phase, where we use
these samples in order to estimate the transition model, the disturbances, or both.

In order to estimate the disturbances, we need both a model of how the disturbances
affect the transitions (e.g., (1)) and an estimate of the transition model. With these values,
we propose solving problems (24), (26), (28) and (30) in order to obtain a set of parameters
for each of the disturbances models we have proposed. In order to select the disturbance
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that best fits the available data, we select the model that provides a lower objective function
for the optimal p. Computationally, this means solving three optimization problems
using L-BFGS, as the only disturbance with an analytical solution is the Constant Field.
An algorithmic view of the procedure can be observed in Algorithm 1. Since we are using
all the disturbances, we name this method Full Disturbance Estimator (FDE).

Algorithm 1 Joint transition and Full Disturbance Estimator (FDE)

Input: (ŝn, un, ŝn+1)
M
n=0

1: while Estimation update required do

2: if Transition model (Â, B̂) has been estimated in a previous update then

3: Obtain d̂(ŝn) using (22) and (Â, B̂)

4: for Each disturbance model do

5: Estimate the parameters p of the disturbance using (25), (27), (29) or (31)

6: Obtain the error value for the disturbance using (24), (26), (28) or (30) and the

obtained p

7: Compute d using the p of the disturbance that yields the minimum error

8: Estimate Â and B̂ using d and (21)

9: else

10: Estimate Â and B̂ using (19)

Output: Â, B̂

However, it may be the case that the computational capacity of the AUV is highly
restricted, and the computation of the disturbances that use a first-order optimization
method may be unaffordable. We propose a second disturbance estimator, where we
estimate the disturbance using only the Constant Field model, whose solution is analytical
and computationally cheap. Note that the Constant Field estimation can be seen as a local
approximation to any disturbance, so we are introducing a certain approximation error
in order to have a less computationally expensive procedure. We name this estimator
Constant Disturbance Estimator (CDE), to differentiate it from the FDE. An algorithmic
view of the procedure can be observed in Algorithm 2.

Algorithm 2 Joint transition and Constant Disturbance Estimator (CDE)

Input: (ŝn, un, ŝn+1)
M
n=0

1: while Estimation update required do

2: if Transition model (Â, B̂) has been estimated in a previous update then

3: Obtain d̂(ŝn) using (22) and (Â, B̂)

4: Estimate the parameters p of the Constant Field disturbance using (25)

5: Compute d using the p of the Constant Field disturbance obtained

6: Estimate Â and B̂ using d and (21)

7: else

8: Estimate Â and B̂ using (19)

Output: Â, B̂
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4. Simulations

We now turn to evaluate the results that the proposed estimation methods have on the
performance of an AUV navigation system. In order to do so, we implement the simulator
depicted in Figure 1 and subject it to a set of tests in order to assess the gains that the
estimators of Section 3 provide.

4.1. Testbench Description

Let us start by describing the testbench we will use in our simulations. Note that we
follow the three main blocks described in Figure 1.

4.1.1. Environment

Inspired by [12], we consider an AUV that moves at a constant depth in a 2-D Cartesian
space, where x and y denote the horizontal and vertical coordinates of the plane (in meters),
respectively, while vx and vy denote the velocities in x and y, respectively (in meters per
second). We consider that the AUV controls its acceleration in each coordinate, which
we denote as ax and ay (in meters per seconds squared). We also consider a friction term
modeled by a parameter k f that depends on the velocity, which correspond to a low velocity
setting [37]. Note that this friction term prevents that the velocity grows unbounded [38].
Finally, the disturbances affect the acceleration, and have two components dx and dy,
respectively, with acceleration units. By considering ∆ (in seconds) as the time step and n
as the time index, we have the following discrete-time dynamical system:

xn+1 = xn + ∆ · vx,n

yn+1 = yn + ∆ · vy,n

vx,n+1 = vx,n + ∆ · (ax,n + dx,n − k f · vx,n)

vy,n+1 = vy,n + ∆ · (ay,n + dy,n − k f · vy,n)

(32)

and if we define sn = (xn, yn, vx,n, vy,n)T as the state, un = (ax,n, ay,n)T as the control,
and d(sn) = (0, 0, ∆ · dx,n(sn), ∆ · dy,n(sn))T as the disturbance vector, we can rewrite (32)
as follows:

sn+1 = f (sn, un) = Asn + Bun + d(sn) (33)

which is the formulation followed in this work (1), where matrices A and B are defined as:

A =


1 0 ∆ 0
0 1 0 ∆
0 0 1− k f · ∆ 0
0 0 0 1− k f · ∆

 B =


0 0
0 0
∆ 0
0 ∆

 (34)

Additionally, note that |S| = 4 and |U| = 2. We simulate using ∆ = 0.1 and k f = 0.5.
Regarding the disturbances, we initialize their parameters randomly. Parameters

k1, k2 and k3 reflect the intensity of the disturbance, so they are sampled from a uniform
distribution in the range [−1.5, 1.5], where the value is chosen so that the disturbance does
not exceed the acceleration capacity of the AUV, but affects its trajectory. Parameters x0 and
y0 denote the position of the disturbances, and are sampled from a Gaussian distribution of
mean 0 and standard deviation 3, so that they cover a wide set of points around the origin.
The angle α is sampled from a uniform distribution in the range [0, 2π), and the current
width ω is sampled from a Gaussian distribution with mean 5 and standard deviation 1.

Finally, we consider two cases regarding the observation model: a full observation
case where on = sn, and a partial observation case following (7), where the Gaussian noise
added to each state component is zero-mean and with standard deviation 0.1. All the
experiments have been implemented using the programming language Python.
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4.1.2. Estimation

In our testbench, the estimation block has two main components: an state estimator
that implements (6), and the transition estimator described in Section 3. Regarding the
transition estimator, we consider the following cases:

• The case with full knowledge of the transition model: in this case, the matrices A
and B from (34) are assumed known. Note that this is the less realistic case, as this
knowledge seldom happens, but it serves as the best case baseline to which we can
compare our results.

• The case in which the transition model is estimated without the help of the disturbance
estimator. In this case, we estimate Â and B̂ using (19).

• The case in which the transition model is estimated with the help of the disturbance
estimator. In this case, we estimate Â and B̂ using (21), as described in Algorithm 1 in
case of using FDE for the disturbances, and follow Algorithm 2 in case of using CDE
for the disturbances.

Regarding the state estimator, which is in charge of obtaining ŝn from on, we consider
the following two cases:

• No state estimator, and hence, ŝn = on. This is the case when we have full observabil-
ity, but when there is partial observability, this estate estimator introduces error.

• Use as state estimator a KF, which relies on the knowledge of A and B in case that we
have full knowledge, or on the estimated Â and B̂ in case that we use the transition
model estimator.

Note that the output of the estimation block is both the estimated state ŝn and the
transition model (which is needed by the controller block). The two elements of the
estimation block, which are the state and transition estimator, are coupled, and as one
improves, the other improves too; note that the transition estimator uses the state estimation
to return an estimation of the model, and the estimated model is used by the KF to compute
the state estimation.

4.1.3. Controller

We consider that our controller is an MPC which solves (15), where its inputs are given
by the estimation block: the initial state s(0) (or its estimation) and the transition model
(A and B in case that we have full knowledge, or Â and B̂ otherwise). Regarding the time
horizon N0 that we use to predict using MPC, we set N0 = 20. We also need to define the
MPC cost matrices Q and R, which are:

Q =


100 0 0 0
0 100 0 0
0 0 1 0
0 0 0 1

 R =

[
0.1 0
0 0.1

]
(35)

where we note that Q and R are designed to drive the AUV as fast as possible to the
origin, as the highest costs are on the positions. Moreover, the restrictions considered for
the state (Zs, zs) are −10 ≤ x, y ≤ 10 and −2 ≤ vx, vy ≤ 2, and for the controls (Zu, zu)
are −2 ≤ un ≤ 2. Note that these restrictions mean that the AUV has a limited position,
velocity and acceleration.

4.1.4. Simulation Conditions

Let us now describe the general procedure used for testing. First, for each disturbance
considered (no disturbance, a constant field, a current, or a swirl), we randomly generate
100 initial states (i.e., positions and velocities), and for each initial state, we also generate
a distribution parameter p randomly, as indicated in Section 4.1.1. Then, for each initial
state and disturbance, we run an MPC controller for each combination of model knowledge
(full knowledge, transition estimator, or transition and disturbance estimator for FDE and
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CDE) and state estimator (none or KF), and compare the costs obtained for each one. We
emphasize that all combinations of model knowledge and state estimator share the same
initial state and disturbance parameters, so that the results obtained are directly comparable
(i.e., they have been obtained using the same conditions).

In order to compare the costs, we consider that the AUV has reached the origin when
the distance to the origin is smaller than 1. We also set a maximum number of 500 time
steps: if a simulation reaches 500 steps without having reached the origin, we consider
that the execution timed out. The results show that only a 2% of the simulations timed out,
while the 98% of the cases the AUV reached the target.

In order to further simulate a computationally constrained system, we update the
estimations once every five iterations of the controller, and in the disturbance estimation,
we used the previous parameter estimation as initial point for the optimization algorithm
in case of FDE. Additionally, to filter the estimation noise in the transition model, we set
the entries of Â and B̂ smaller than 0.01 to 0.

4.2. Transition Estimator Accuracy

Let us first analyze the results of the disturbance estimator and its performance, both
using FDE and CDE. The summarized results can be observed in Table 1 for the FDE case
and Table 2 for the CDE case, where the observation model can be either total (T) or partial
(P), and the state estimator can be none (N) or a KF. For each combination of observation
model, state estimator and disturbance, we obtain the following conclusions:

• After each simulation, we measured the latest disturbance estimated, and in the col-
umn “Disturbance estimated”, we reflect the proportion of times that the disturbance
estimated was, in this order, a swirl, a horizontal current, a vertical current, and a
constant field, in case of using FDE (for CDE, we remind that we only estimate a
Constant Field). For ease of visualization, we show in bold the actual disturbance for
each case. Note that the actual disturbance is always the one that is estimated most
often, with proportions higher than 90% in case of the Constant Field and the swirl,
and 60% in case of the currents. We note that the drop in the accuracy of the currents
can be explained because they can be confused with a Constant Field if we are far from
the current center, as can be seen in Figure 2. Thus, the accuracy of the FDE model to
detect the right disturbance is very high, regardless of the observation model and the
state estimation used.

• Every time that the FDE model obtained the right disturbance, as seen in the previous
point, we also computed the relative error of the estimated parameters p̂ compared
to the actual parameters p. In case that there was no actual disturbance, the error
is the absolute value of the k1, k2 or k3 parameter estimated (e.g., the strength of
the disturbance estimated, related to the error committed). In this metric, we can
appreciate the effect of the observation model, as the error is considerably lower if of
total observation than when there is partial observation. This is due to the fact that the
noise in the observation translates to inaccuracies in the disturbance estimator, and this
effect is particularly noticeable in the currents, which contain the highest errors.

• For both FDE and CDE, we have also measured the norm between the estimated
model and the real model as:

Error gain = 100 ·
(
||A− ÂT||2 + ||B− B̂T||2

)
−
(
||A− ÂTD||2 + ||B− B̂TD||2

)
||A− ÂT||2 + ||B− B̂T||2

(36)

where the subscript T stands for the case of using only the transition model estimator,
and TD for the case of using also a disturbance estimator (e.g., FDE or CDE). When
this gain is positive, it means that the disturbance estimator provides a more accurate
model estimator than the transition estimator alone (thus, higher is better). Note
that this gain is always positive (or very close to 0) in FDE, meaning that using
FDE provides a consistent improvement in the transition estimator. The gains are
particularly dramatic in case of total observability, where the gain is around 90%,
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while when there is noise, the maximum gain reduces to around 8%. This is due to the
presence of noise, and it is to be expected, but observe that the disturbance estimator
still manages to improve the model estimation. In case of CDE, it is remarkable that
the error gains are similar to the FDE case, except for the swirls: as seen in Figure 2,
the swirls are the most non-linear disturbance, and hence, CDE commits a higher error.

• We have also measured the number of steps that MPC takes to reach the origin, and we
have defined the steps gain as:

Steps gain = 100 · LT − LTD
LT

(37)

where LT is the average number of steps that took the transition model alone to reach
the origin, and LTD is the average number of steps that took the transition model
with disturbance estimator (e.g., FDE or CDE) to reach the origin. Again, higher is
better: a positive number indicates that the transition estimator alone took more steps,
which means that the disturbance estimator actually takes less steps to reach the target
position, as the model is estimated better. The gain without noise for FDE and CDE
is around 45% and reduces to around 15–30% in case that there is observation noise.
Note that in case that there is no actual disturbance, the gains are close to 0. Again,
the only significant difference between FDE and CDE are in case of having a swirl,
where CDE performance degrades significantly.

• We have also measured the simulation time between using a transition estimator alone
or with disturbance estimator as

Time gain = 100 · tT − tTD
tT

(38)

where tT is the average simulation time that took the transition model alone to reach
the origin, and tTD is the average simulation time that took the transition model with
disturbance estimator (e.g., FDE or CDE) to reach the origin. Again, higher is better,
as a positive number indicates that the transition estimator with FDE/CDE took less
simulation time than the transition estimator without. Note that for FDE, there are
many positive numbers, which indicate that the use of FDE, which translates in less
steps to the origin as we have seen, also translates to less simulation time (e.g., less
computational load). In other words, the extra computation time of the disturbance
estimator is compensated by needing less calls to the optimizer to reach the origin.
Additionally, note that the cases with negative gain are correlated to the cases with low
step gain. In case of CDE, the gains are dramatic, due to its reduced computational
complexity which, nonetheless, allows it to require fewer steps to reach the origin (the
exception is, again, the swirl).

Hence, the results of our simulations show that the use of the proposed disturbance
estimators provides solid gains in accuracy, steps needed to reach the target position,
and even in computation time. It is very remarkable that the CDE estimator, which only
considers a Constant Field, is able to obtain good performance also with currents, but fails
with the most non-linear disturbance, which is the swirl. Thus, both methods return solid
gains in every metric used.
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Figure 2. Sample trajectories obtained for different disturbances. In black, we have the disturbance
field, the green point is the starting position, and the green star (center) is the target. In all cases, we
consider partial observability and use a Kalman filter for state estimation, as well as our proposed
transition and disturbance estimator. In red, we show results for the CDE, whereas dashed blue is for
the FDE: the differences are only notable on the swirl case, which is consistent with the results shown
in Table 3. Note that horizontal and vertical current trajectories look alike, but are different.

Table 1. FDE results, where observation is total (T) or partial (P), and the state estimator used is
none (N) or a Kalman filter (KF). For each disturbance, we show the proportion of times that the
disturbance estimator detected it as a [Swirl, Horizontal Current, Vertical Current, Constant Field],
and in bold, we highlight the highest proportion. Note that, in all cases, the true disturbance is the
one detected the highest number of times. For all gains, higher is better.

Obs State Disturbance Disturbance Estimated p Error Error Gain Time Gain Steps Gain

T N None [0.04 0.01 0.03 0.92] 0.00 −0.09 −0.36 0.00
T N Swirl [0.94 0.01 0.01 0.04] 8.44 85.51 44.24 48.74
T N H. Current [0.00 0.86 0.00 0.14] 8.60 89.33 15.81 43.94
T N V. Current [0.00 0.00 0.67 0.33] 12.09 87.52 29.01 44.73
T N Constant [0.00 0.00 0.00 1.00] 0.00 93.31 34.79 40.62
P N None [0.00 0.45 0.39 0.16] 3.19 −0.12 −11.47 0.09
P N Swirl [0.94 0.02 0.01 0.03] 12.59 3.70 −5.68 15.81
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Table 1. Cont.

Obs State Disturbance Disturbance Estimated p Error Error Gain Time Gain Steps Gain

P N H. Current [0.00 0.64 0.15 0.21] 81.88 6.90 −2.79 30.98
P N V. Current [0.00 0.14 0.59 0.27] 118.96 0.49 −3.70 22.69
P N Constant [0.00 0.03 0.03 0.94] 0.51 7.85 10.21 25.98
P KF None [0.00 0.33 0.23 0.44] 0.54 0.04 −6.61 0.03
P KF Swirl [0.93 0.03 0.02 0.02] 30.37 5.14 0.42 15.97
P KF H. Current [0.02 0.59 0.14 0.25] 75.99 6.60 −1.28 28.97
P KF V. Current [0.00 0.12 0.62 0.26] 95.53 −0.28 −11.69 16.89
P KF Constant [0.00 0.04 0.00 0.96] 1.19 7.51 −25.41 −1.30

Table 2. CDE results, where observation is total (T) or partial (P), and the state estimator used is none
(N) or a Kalman filter (KF). For all gains, higher is better. Note that the results are competitive against
FDE, but having a significantly lower computational cost (except on the swirl).

Obs State Disturbance Error Gain Time Gain Steps Gain

T N None −0.12 −1.42 0.00
T N Swirl −10.77 −26.62 −28.85
T N H. Current 53.07 39.32 41.14
T N V. Current 57.04 32.91 32.56
T N Constant 93.31 52.98 40.62
P N None −0.03 0.38 0.00
P N Swirl −7.58 −37.30 −32.00
P N H. Current 6.38 29.63 29.67
P N V. Current 2.12 23.15 20.16
P N Constant 7.86 31.83 25.98
P KF None 0.06 5.47 0.00
P KF Swirl −8.82 −37.73 −37.74
P KF H. Current 6.04 23.72 21.09
P KF V. Current 1.61 3.42 8.87
P KF Constant 7.53 10.39 −1.30

Table 3. Total cost results, where observation is total (T) or partial (P), and the state estimator used
is none (N) or a Kalman filter (KF). The cases tested are full knowledge of the model (K), transition
estimator without disturbance estimator (T), transition estimator and CDE (TCDE), and transition
estimator and FDE (TFDE). In all cases, higher means that the first model is better, and results can be
interpreted as percentages. Note that the gains of using both disturbances estimators are significant
compared to only using the transition estimator, and may obtain similar results to actually knowing
the model.

Obs State Disturbance Gain T/K Gain TCDE/K Gain TFDE/K Gain TCDE/T Gain TFDE/T

T N None 0.00 0.00 0.00 0.00 0.00
T N Swirl −54.33 −149.55 −3.15 −61.70 33.16
T N H. Current −46.24 −2.85 −1.92 29.67 30.30
T N V. Current −59.70 −2.99 −1.71 35.51 36.31
T N Constant −91.37 −0.33 −0.33 47.57 47.57
P N None 3.60 3.60 3.62 −0.00 0.02
P N Swirl −0.36 −12.38 1.92 −11.98 2.27
P N H. Current −2.18 2.19 2.36 4.27 4.44
P N V. Current −5.92 3.26 3.55 8.67 8.94
P N Constant −21.40 2.85 2.85 19.98 19.98
P KF None 5.93 5.93 5.93 −0.00 0.00
P KF Swirl 4.80 −8.85 9.21 −14.34 4.64
P KF H. Current −0.48 5.62 6.40 6.07 6.85
P KF V. Current 0.80 5.74 6.52 4.98 5.77
P KF Constant −15.17 10.41 10.41 22.21 22.21



J. Mar. Sci. Eng. 2023, 11, 710 18 of 20

4.3. Cost Gains

We now turn our attention to the total cost that MPC obtains for each simulation.
The results can be seen in Table 3, where the gains are the relative costs of the two models
being compared (a higher number indicates the first model is better). A positive gain means
that the first method is better, and a negative gain means that the second method is better,
and the gain can be interpreted as a percentage. The different models being compared are:

• K: the model with full knowledge of the model, e.g., the actual model matrices A and
B are known, but without knowing nor estimating the disturbances.

• T: Transition Estimator alone, i.e., without any disturbance estimator.
• TFDE: Transition Estimator and FDE model for estimating the disturbances.
• TCDE: Transition Estimator and CDE model for estimating the disturbances.

The results obtained in Table 3 can be summarized as follows:

• If we compare the transition estimator alone with knowing the model, we see that
the latter has a clear advantage in most cases, specially when there is no noise or
there is a constant disturbance. However, the advantage of knowing the model
vanishes if we also estimate the disturbances. This is a very important conclusion,
as in terms of cost, it is similar to know the model than to estimate it using our
proposed disturbance estimator. In a real environment, when the model is unknown,
our results suggest that estimating the disturbance has a consistent advantage in terms
of costs. Moreover, the results from Tables 1 and 2 indicate that this advantage also
extends to the computational load.

• The previous conclusion is reinforced by observing that using the disturbance esti-
mator provides a consistent gain against using the transition estimator alone. Note
that, in case of estimating the disturbances using CDE, the only case where the gain
is negative (e.g., the transition estimator alone is better) is when the disturbance is a
swirl, which is to be expected. However, when using FDE, the gain compared to the
transition estimator alone is always positive, and ranges goes up to a 47% with perfect
observability and up to a 22% improvement in case that there is observation noise.

5. Conclusions

In this work, we have proposed a control method which fills a gap in current methods:
it is computationally suitable for devices with low computational capacities, yet it is able to
estimate the kinematics (i.e., the transition function) and the disturbances of the underwater
medium. We have proposed two different disturbance estimators, one that tries to classify
the disturbance as a swirl, current or constant field (FDE) and another that only takes into
account constant fields (CDE). We have seen solid gains in both cases compared to the case
in which no disturbance is estimated, being able to match the performance of knowing
the actual kinematics. Additionally, the increase in the computational load due to the
disturbance estimation is compensated by taking fewer steps to reach the target. Hence,
the proposed methods are promising for real-life environments, where both disturbances
and kinematics are unknown.

There are also several future lines that can be explored from our work. It could be
possible to further enhance the performance of the method by including the disturbance
information in the optimizer, and hence, take advantage of it when possible. Another possi-
ble option would be to test using other disturbances, and checking what is the advantage
of using FDE against CDE in these cases. Moreover, it could be possible to extend this work
to more complex transition models, such as the ones shown in [39] or [40]. However, note
that it would be needed to extend the disturbance models from the 2D models used in this
work to 3D ones in order to match the aforementioned works. Finally, we have shown the
importance of being able to estimate the disturbance, as the gains provided are solid: it
could be possible to use general-purpose approximation methods in order to predict the
disturbances in a more general way, although these methods should be computationally
efficient in order to match the spirit of this work.
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