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ABSTRACT

As the traffic supported by wireless networks grows, new solu-
tions to increase the throughput are emerging, such as heterogeneous
networks, which face the challenge of self-organization in order to
control the interference. A frequently used tool to model this prob-
lem is Game Theory, and we show that Communicate & Agree, a
recent general-purpose negotiation-based algorithm for solving re-
peated games, can be applied to these network settings to provide
Pareto-efficient results. As a particular application, we study a dis-
tributed power allocation problem, showing that Communicate &
Agree provides better payoffs than a state-of-the-art baseline while
being faster, thus making it an ideal candidate for self-organizing
heterogeneous networks.

Index Terms— Repeated games, Self-organizing networks,
Heterogeneous networks, Communicate & Agree, Distributed power
allocation

1. INTRODUCTION

In the past years, the traffic supported by wireless networks has
grown exponentially due to the massive increase in both the number
of devices interconnected and the amount of data transmitted. More-
over, both are expected to continue to grow in the incoming years:
more and more devices are connected under the paradigm of the In-
ternet of Things, and each device transmits more and more data, due
to the new services that require a significant transmission rate. The
traffic rise puts the network infrastructure under pressure, and hence,
new concepts are emerging to address this challenge, such as Hetero-
geneous Networks.

An Heterogeneous Network may combine different cell types,
from macrocells to nano, pico and femtocells, in order to give dif-
ferent kinds of service to different users thanks to the possibilities
of spatial spectrum reuse. However, the flexibility provided by the
different cell sizes comes at the cost of an increase in the difficulty
to organize, manage and optimize the network resources. In order
to automatize these procedures, there is a lot of ongoing research in
the direction of self-organizing networks, which aims to automati-
cally adjust the network with minimal, if any, human intervention.
Artificial intelligence techniques are being used in this area [1], and
among these, a set of techniques that stand out as a promising frame-
work are based on Game Theory [2], [3], [4], [5], which is the branch
of mathematics that models conflicts between players.

Among all the different kind of games that exist [6], Repeated
Games (RGs) are frequently used in network environments. In an
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RG, an interaction between several players is repeated a certain num-
ber of times, where each interaction is called stage. The solution
concept is called equilibrium: an action that provides a reward that
no player can unilaterally improve. RGs are characterized by having
a reward function that does not change during the stages, and hence,
RGs adapt adequately to network problems as there are many inter-
actions between network nodes that happen more than once without
any change in the interest of each node. For instance, RG tools have
been applied to resource allocation [3], [5], interference manage-
ment [7] or cyberdefense [8]. However, it is frequent that each work
proposes its own method to obtain a valid equilibrium, which means
that most of these algorithms cannot be used even in similar settings
due to the fact that they exploit the assumptions and structures of the
concrete problem for which they were designed [3], [7], [9].

In this work, we propose using a recent, general-purpose algo-
rithm to obtain RG equilibria, called Communicate & Agree (CA)
[10]. It is based on negotiation, requiring that different players com-
municate, thus it can be implemented in a straightforward way in a
network setting. Being a general-purpose algorithm, it can be imple-
mented for any RG with discount. We show the capacities of CA in
this work by applying it to a distributed power allocation problem:
our simulations show that CA not only provides better results than
a specific state-of-the-art algorithm designed for this concrete prob-
lem, but it is also faster, and hence, it constitutes a very promising
tool for self-organizing networks.

The rest of the paper goes as follows: in Section 2 we intro-
duce the Game Theory background needed, including a description
of CA. Then, Section 3 introduces the distributed power allocation
setting that we use to test our ideas. Later, Section 4 contains vali-
dation simulations. Finally, Section 5 draws some conclusions and
proposes several possible future lines.

2. GAME THEORY BACKGROUND

A static game is defined as follows [11]:

Definition 1. A static game G is a triple ⟨Np, A, r⟩, where:

• Np is the number of players.

• Ai is the set of actions available to player i, with A =
∏

i Ai

being the set of actions available to all players.

• r : A → RNp is a function that gives the game rewards.

An RG is defined by using a static game as follows [12]:

Definition 2. A Repeated Game (RG) is built by using a static game
(also called stage game) which is played repeatedly infinite times.
Its main components are the following, where superscript indicates
time and subscript indicates the players:
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1. The set of histories H t ≡ At. A history ht is a list of actions
played in periods [0, .., t− 1].

2. A strategy for player i is a mapping from the set of all possible
histories into the set of actions: σi : H → Ai. σ denotes
the strategy of all players.

3. The discounted payoff to player i is obtained as:

Vi(σ) = (1− δ)

∞∑
t=0

δtrti(a
t(σ)), (1)

where δ ∈ (0, 1) is the discount factor, at(σ) denotes
that action at = (ai, a−i) is chosen following strategy
σ = (σi, σ−i) and the subscript −i refers to all players
except player i.

The discount factor can be understood as a measure of the pa-
tience of the players [12] or as a measure of the uncertainty in the
temporal horizon, i.e., the RG may end at any stage with probability
1 − δ [13], so the game has an expected number of stages equal to
(1− δ)−1. In a network setting, the latter is more useful, as it allows
us to model the fact that the network interaction may end, while the
precise duration of the interaction is unknown a priori.

The best known solution concept to a game is the Nash Equilib-
rium (NE), which mathematically is expressed as:

Vi(σi,NE , σ−i) ≥ Vi(σi, σ−i), ∀σi, ∀i ∈ {1, ..., Np},

and it means that no player can get a better payoff by a unilateral
deviation. Every static game has at least one NE [14], and every
NE of the stage game is a NE of the RG, so every RG has at least
one NE. However, as δ → 1, there might appear other NEs due to
the Folk Theorem [12], [6], and these new NEs may provide better
payoffs to all players compared to the stage game NE. Thus, the use
of strategies that make use of the Folk Theorem are very convenient
for efficiency, as they may improve the payoffs for all players.

A strategy that is frequently used to take advantage of the Folk
Theorem is Grim trigger. Under this strategy, there are two actions
ao and ap, where ao provides a good payoff to all players, and ap

is a punishment strategy such as an NE of the stage game. When
all players are following a Grim trigger strategy, they compromise to
play ao, and in case that any player deviates, all players switch for-
ever to ap. Grim trigger is a suitable strategy if the gains of deviating
from ao and receiving ap do not surpass the gains of not deviating.
Mathematically, that means [10]:

(1−δ)ri(ao) + δVi(ao) ≥
(1−δ) max

a′
i ̸=ai,o

ri(a
′
i, a−i,o) + δVi(ap), ∀i ∈ {1, ..., Np}. (2)

If a player uses action a forever, then we have that Vi(a) =
ri(a), which allows reformulating (2) as:

ri(ao) ≥ (1− δ) max
a′
i ̸=ai,o

ri(a
′
i, a−i,o) + δri(ap), ∀i. (3)

2.1. CA algorithm

CA is a recent algorithm for obtaining an RG equilibrium [10],
which is based on prior negotiation between the players to find a
valid Grim trigger strategy. It has several features that make it ideal
as a general algorithm for the kind of RGs that appear in networking
settings: it is fully distributed, it is designed to work with discounted
payoffs, it uses the Grim trigger strategy and it makes use of the
Folk Theorem and selects payoffs that are Pareto efficient.

CA negotiation is based on two main steps. In the first step,
denoted action space sampling, each player i randomly samples the
action space A in order to obtain actions such that condition (3) is
fulfilled for them. When a player finds such action, she shares it to
the rest of the players, who also check whether that action fulfills
(3) for them. When an action fulfills (3) for every player, it is stored
as a candidate action for ao. Note that in this step, all players only
need to know their own reward function and a punishment strategy
that may be an NE of the stage game. It is possible that the players
are unable to find a candidate ao: this may be due to the fact that
ap already provides the best payoff to all players, or that the play-
ers have not found an adequate candidate ao during sampling. The
latter can be solved by allowing the players to sample for longer: it
means investing more resources on sampling and exchanging more
messages between players, and thus, there is a tradeoff between the
probability of finding candidates ao and the computational load.

In a second step, called Pareto pruning, the final ao is chosen
in a distributed way. Among all candidates ao obtained, the players
select one which is Pareto efficient (i.e., an action such that there is
no other that provides better payoffs to all players), and this ao is
used for the Grim trigger strategy.

Hence, note that CA allows negotiating a good payoff before
starting the game. It is an ideal algorithm for a networking environ-
ment, as it only needs communication between the players, which
are nodes of the network, as well as a stage game equilibrium, that
can be either known a priori or learned [10], [15].

3. DISTRIBUTED POWER ALLOCATION SETUP

As we have seen in the previous Section, CA is an ideal algorithm
for solving RGs in networks in general: we will now show that it is
also ideal for self-organization of heterogeneous networks. Let us
focus on a concrete setting, which is distributed power allocation in
wireless networks. When we have some Base Stations (BSs) which
serve several Users (Us), if BSs and Us are close enough, they will
interfere with the others, causing a decrease in the Signal to Inter-
ference and Noise Ratio (SINR). Each node of the network should
adjust its power in order to minimize the interference while being
able to transmit. Note that this is a conflict that has been already
modelled by using Game theory tools [16], [17], [18], [3] or [5].

Let us focus on a similar model to the one presented in [3] and
[5], where we consider that there are K BSs, where each BS is in-
dexed by k ∈ {1, 2, ...,K}. We assume that each BS serves a single
U , so BSk serves Uk. The transmission power of BSk is denoted
as pBS

k , while the transmission power of U k is denoted as pUk : note
that pBS

k is the downlink power, while pUk is the uplink power. Thus,
we have that the SINR at Uk can be computed as follows:

SINRUk =
pBS
k lBSk,Uk

N0 + IUk

, (4)

where la,b denotes the signal attenuation between the network nodes
a and b (which may be BSs or Us), and N0 is the thermal noise level
in the receiver (we assume the same N0 for all BSs and Us), and IUk

denotes the interference in Uk which has the following expression:

IUk =
∑

n∈{1,...,K},n̸=k

pBS
n lBSn,Uk + γ

K∑
n=1

pUn lUn,Uk , (5)

where we assume that uplink and downlink may transmit at the same
time in different channels, and we model the co-channel interference
with a parameter γ ∈ [0, 1]. Note that there are two terms in IUk:
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the first accounts for the interference caused by all the BSs except
for BSk, and the second accounts for the co-channel interference
caused by the uplink transmission powers (which includes the self
interference of Uk to itself).

In an analogous way, the SINR at BSk is:

SINRBSk =
pUk lBSk,Uk

N0 + IBSk

, (6)

where we have:

IBSk =
∑

n∈{1,...,K},n̸=k

pUn lBSk,Un + γ

K∑
n=1

pBS
n lBSn,BSk . (7)

In order to study this setup, we may use Game Theory tools.
Let us consider a game with Np = K players, where player k corre-
sponds to BSk. Let us assume that pkU are fixed and known ∀k ∈ K,
and hence, the actions of each player correspond to pBS

k , i.e., each
BS adjust its transmission power. For simplicity, we assume that all
players have a set of predefined transmission power levels which are
equal for all players, i.e., A1 = A2 = ... = AK . Finally, we can
define the reward function for BSk as follows:

rk = log(SINRUk ) + log(SINRBSk ), (8)

where we note that the reward of BSk is the quality of their com-
munication channel with Uk both in the uplink and downlink, and
due to the Shannon–Hartley theorem, the reward is also related to
the capacity of the communication channel.

It is important noting that the reward of BSk is deeply intercon-
nected to the actions of the other BSs. In order to see that, let us
compute the partial derivatives of the reward rk with respect to the
actions, which are the following:

∂rk
∂pBS

k

=
1

pBS
k

− γ

N0 + IBSk (p
BS
k , pBS

−k )

∂rk
∂pBS

j

= −
lBSj ,Uk

N0 + IUk (p
BS
−k )

−
γlBSj ,BSk

N0 + IBSk (p
BS
k , pBS

−k )

∀j ∈ {1, ...,K}, j ̸= k,

(9)

where we have made explicit the dependency of IBSk with the ac-
tion of all players, and IUk with the actions of the rest of players
(remember that −k indexes all players but k). By observing the ex-
pressions in (9), we can note that the partial derivative with respect
to pBS

j is always negative, i.e, if other BSs increase their transmis-
sion power, the reward for BSk decreases. But at the same time, we
can see that the partial derivative with respect to pBS

k is positive if
the following condition holds:

γpBS
k < N0 + IBSk (p

BS
k , pBS

−k ), (10)

which can be simplified by replacing (7) in order to obtain:

N0 +
∑

n∈{1,...,K},n̸=k

(
pUn lBSk,Un + γpBS

n lBSn,BSk

)
> 0, (11)

where (11) means that BSk may increase its reward by increasing
its transmission power as long as the sum of the thermal noise and
the interference received from the rest of BSs is positive, which is a
condition that is always fulfilled.

In other words, the reward of BSk always increases by increas-
ing its own transmission power pBS

k , and decreases if any other
BS increases its transmission power. This means that the described

game is very competitive, and indeed, the only NE of the stage
game consists on each BS transmitting with its maximum power [3],
which also means maximizing the interference to the rest of players.

However, by considering an RG, which means that there is more
than a single communication between each BS and its associated
U , players may cooperate to obtain a better equilibrium thanks to
the Folk Theorem. If all players follow a Grim trigger strategy, they
may transmit with a power level that lowers the interference and in-
creases the reward for all players if such transmission power exists.
In order to enforce that strategy, if any BS is caught deviating (i.e.,
transmitting with a higher power), the rest of BSs switch to their
maximum transmission power forever, where the deviation would
be detected by checking whether the interference has increased.

This idea is followed in [3], where the transmission power ao

for the Grim trigger strategy is obtained by an initial phase of trial
and error, where each BS transmits different power levels until they
all are satisfied with the rewards they obtain. However, there are two
main caveats to this algorithm: the first one is that it has a potentially
high energy consumption during the training phase, as it may last
a long time until all players converge to a good power level. The
second problem is the duration of the training phase, which means
that the communication system is not completely available while the
players are finding a good transmission level. Also, in [5], an online
method is used to play an RG without prior negotiation, trying to
use the Folk Theorem to improve an NE. The main advantage of this
method is the lack of training phase, but its main disadvantage is that
it may yield results far from being Pareto-efficient.

We propose using CA in order to alleviate these problems: as CA
is based on negotiation, the learning phase using CA consists on in-
terchanging messages between BSs, which does not make the trans-
mission system unavailable. Also, CA provides a Pareto-efficient
payoff by design. And finally, the number of messages interchanged
between BSs for negotiation can be adjusted, so the traffic gener-
ated can be controlled. Note also that this is an advantage in self-
organizing networks, as when a new BS appears or disappears from
the network, BSs only need to run a new negotiation in order to
find an adequate transmission power level. And due to the fact that
the discount factor can be used to account for the expected duration
of the game, i.e., the expected time until a new player is added or
removed, then the proposed scheme has clear advantages to be im-
plemented in self-organizing networks.

4. EMPIRICAL VALIDATION

We validate our approach using simulations. We consider that we
have K = 2 BSs, and we locate each node in the following plane
coordinates: (10, 10) for BS1, (0, 0) for BS2, (1, 8) for U1 and
(5, 5) for U2, where all positions are in meters. Then, we set pUk =
10 W, k ∈ {1, 2}, and consider that the transmission powers that
each BS may choose are pBS

k = {5, 10, 15, 20, 25, 30} W, k ∈
{1, 2}. Regarding the rest of transmission parameters, we consider
that the noise floor is N0 = 0.001 W, the co-channel interference
factor is γ = 0.001 and the path loss is computed as aa,b = d−4

a,b,
where da,b is the distance between a and b. Using these parameters,
we can observe in Figure 1 that the NE is not Pareto efficient, as
there are other transmission powers that provide a better payoff for
both BS1 and BS2 (note that we choose K = 2 so that we are able
to plot the payoff region).

In order to improve the payoffs, we compare CA with the al-
gorithm proposed in [3], which we use as a baseline. In order to
compare them, we first run the learning phase in the baseline and the
negotiation phase in CA. For a fair comparison, we use a parameter
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Nc, that represents the number of iterations of the learning phase
in case of the baseline (i.e., the number of times that each player
tests a transmission power level), and the number of communica-
tions between players in CA (i.e., the number of times that each BS
proposes a set of transmission powers to the other BS). Then, we
use the strategy proposed by each algorithm in the game and obtain
the total payoff (1). The results obtained are in Figures 1 and 2.

First, in Figure 1, we show the payoffs that are available for both
players for δ = 0.95. We can clearly see that there are payoffs that
are better than the NE to both players, and actually, these payoffs
can be achieved by making use of a Grim trigger strategy. Thus, it is
desirable that the network operates using these transmission powers,
as it implies having lower interferences, and thus, increasing the net-
work capacity. Figure 1 also shows how CA works: it first obtains
a set of payoffs that are better than the NE for all players (action
space sampling phase), and then, the players choose a payoff such
that there is no other payoff that is better for both players. We em-
phasize that both steps are done in a completely distributed fashion,
which is one of the main features of CA.

−5.2 −5 −4.8−4.6−4.4

−3

−2.5

BS1 payoff

B
S
2

pa
yo

ff

Fig. 1. Payoff region of the proposed game. In blue, we plot the
possible payoff points given by all the combinations of transmission
powers. The red square represents the NE payoff, obtained by trans-
mitting at maximum power: note that there are payoffs that are better
for both players. We also show an example of the results of each step
of CA algorithm: the black crosses represent the candidate ao that
are sampled during the action space sampling step, where all of these
actions provide a higher payoff than the NE. Among the candidate
ao set, CA selects an action that provides a payoff that cannot be
improved for both players, which is the green point. For this plot,
δ = 0.95 and Nc = 30 for CA.

Second, in order to obtain the payoff for both players, we run
CA and the baseline for a certain Nc value, and then use the strategy
proposed to run a repeated game, which we truncate after 500 stages
in order to compute the payoff (1). This procedure is repeated 50
times in order to average the results for each combination of δ and
Nc. The results are in Figure 2, where the first subplot shows the
comparison for different values of δ and the second subplot shows
the comparison for different values of Nc. We remark that, in all
cases, the payoff gain provided by CA with respect to the NE is pos-
itive (i.e., it always provides a better payoff than the NE for both
players), and also, in all cases, CA provides a larger combined gain
than the baseline for both players. Moreover, note that CA needs
very few communications in order to achieve a good payoff (Figure
2, (b)), which means that CA negotiates fast and it introduces a very
small overhead in the network traffic. CA is also faster than online
learning algorithms, which need a training phase to obtain a good

strategy (in a similar way to our baseline), and hence, they may take
a long time to converge, such as [19], [20] or [21]. At the same time,
CA provides better payoffs in the resource allocation setup than an
online algorithm that does not need a training phase [5]. Thus, our
empirical results suggest that CA is an ideal candidate for negoti-
ating RG strategies in a networking setting, as the network nodes
already communicate among them, and this facilitates the exchange
of information for the negotiation phase.
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(a) Payoff gain for δ values.
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(b) Payoff gain for Nc values.

Fig. 2. Results comparison between CA and the baseline. We plot
the payoff gain that each of these algorithms provides compared to
the NE strategy. Baseline results are in blue, CA results are in black.
Dashed lines represent the payoff of each BS: the circles are for
BS1 and the crosses, for BS2, while solid lines are for the sum of the
gains of both players. Note that CA always provides positive gains,
which means that is always better than the NE, and also note that CA
always provides a larger gain for both players than the baseline.

5. CONCLUSIONS

In this paper, we test CA as an algorithm for negotiating RG equi-
libria in network settings. We show that it is an ideal algorithm for
self-organizing networks, as it provides good results in terms of pay-
offs, the traffic overhead that introduces can be adjusted, and it is fast
to obtain valid strategies. We test CA on a distributed power alloca-
tion problem, and CA provides a significant gain in terms of payoffs
to all players, which in our setting means decreasing the interference
to other nodes and increasing the network capacity.

There are several topics that can be further explored. First, CA
requires each player to know its own payoff function, but it may
happen that they do not know it exactly, and thus, they would have
an imperfect information game, which may change the negotiation
process. And second, we have assumed that the network was static,
i.e., the network nodes did not move, and there were no changes in
the number of network nodes. As we have mentioned, it is possible
to use δ in order to account for the uncertainties derived of these
phenomena, and this is another interesting line of future research.
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