
© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

Inverse Reinforcement Learning: a New Framework to
Mitigate an Intelligent Backoff Attack
Juan Parras, Alejandro Almodóvar, Patricia A. Apellániz, and Santiago Zazo

Abstract—The recent advances in Deep Learning have a significant
impact on the security of wireless networks, such as intelligent attackers
which are able to successfully exploit a possibly unknown defense
mechanism simply by interacting with it. Their capacity of adapting
to standard defense mechanisms, such as statistical tests, make them
a significant threat. In this paper, we develop two intelligent defense
mechanisms using inverse reinforcement learning tools, that can be used
to enhance the capabilities of current defense mechanisms. We test
our proposal on a backoff attack setup against an intelligent attacker,
obtaining very significant gains in the defense performance.

Index Terms—Inverse Reinforcement Learning, Markov Decision Pro-
cess, Wireless Network, Security, Artificial Intelligence

I. INTRODUCTION

TODAY, a lot of effort is devoted to the research on wireless
networks [1], [2], [3], where one of the main topics addressed is

security. The increase in the number of interconnected devices and the
increasing number of applications available to users has also brought
an important increase in the number of vulnerabilities. Whereas recent
research tries to include security in wireless network protocols, a
recent work states that many of these solutions are still at a proof-of-
concept level [4], and other authors claim that most defense solutions
are restricted to a few types of attacks [5].

In parallel, a field that has experienced a huge development in the
past few years is Deep Learning [6], whose advances have also been
applied to network security [7], [8]. A particular Artificial Intelligent
field that has taken advantage of the research in Deep Learning is
Reinforcement Learning (RL). RL is used to solve problems in which
decisions are made sequentially, and it tries to obtain an optimal
policy, i.e., an optimal control law, which defines the best action
to take at each moment. Currently, RL tools are used in several
problems in wireless networks, such as routing, data latency, path
determination, duty cycle management, QoS provisioning, or resource
management [9]. Besides, RL has been applied to enhance security
in wireless networks [10], [11], and more recently, Deep RL (DRL)
methods, that combine RL tools and Deep Learning advances, have
been proposed for attack detection [12], [13], for mobile offloading
[14], [15] or for jamming avoidance [16], [17].

The potential impact of DRL methods in security applications is
important. We note that the literature on attack detection is extensive,
with many papers ranging from general works, as [4], [18] or [19],
to works specialized in concrete attacks, such as byzantine attacks
[20], [21], DOS attacks [22], jamming situations [23] or backoff
attacks [24]. But all of these defense mechanisms have a common
point: since they have been designed against a concrete attack, they
all use a priori knowledge about that expected attack technique.
Hence, if the attacker is able to learn the weaknesses of a concrete
defense mechanism, it would be able to exploit it by changing its
attack strategy. Note that this idea is at the core of the security
field: novel attacks that exploit vulnerabilities of current defense
mechanisms are proposed, and in response, new defense mechanisms

J. Parras, A. Almodóvar, P. A. Apellániz and S. Zazo are with Informa-
tion Processing and Telecommunications Center, Universidad Politécnica de
Madrid, ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain.

Manuscript received April 19, 2005; revised August 26, 2015.

that address these vulnerabilities are developed. This process involves
carefully handcrafted strategies both for attack and defense, involving
human intervention. However, DRL methods can make the attack
strategy design automatic, as they are able to obtain the optimal
attack strategies simply by interacting with the defense mechanism.
Through this paper, we will use the term “intelligent” to describe
attackers able to modify their attack strategy depending on the defense
mechanism strategy, in order to exploit it as optimally as possible:
these intelligent attackers can be obtained using DRL tools [25], [26].
As noted in [5], current defense mechanisms would not be able to
cope with such intelligent attackers.

Thus, given the potential of RL tools to create intelligent attackers,
it is surprising that they are not well assessed yet on current literature.
This is shared by the authors of [27], and they hypothesize that
this may be due to the fact that DRL techniques face the problems
of sample efficiency and reward modelling, which, they propose,
could be overcome by training the DRL agent using a simulator.
A notable exception is the smart-grid field, where several recent
works propose using RL to design attack methods [28], [29], [30]
and defense mechanisms [31], [32], [33]. It is interesting noting that,
even in these works, it is frequently assumed that the attacker is
not intelligent, e.g., [31] detects attacks on a smart-grid setup using
RL tools, but these attacks have fixed equations that characterize
them. It has also been reported that RL techniques are successful
in attacking a crowdsensing system [34], and more important to our
work, RL attackers are also successful against defense mechanisms
used in WSNs [25], [26].

Thus, intelligent attackers based on DRL are a significant threat
to current defense mechanisms that are not well assessed yet in
literature. In this paper, we propose using DRL tools also to design a
defense mechanism that is successful against such attackers. The key
idea is to design a defense mechanism that makes as few assumptions
as possible about the attack technique, so that it is able to detect a
wide range of different attacks. More concretely, we propose using
Inverse RL (IRL) tools in order to design defense mechanisms that
are able to successfully deal with intelligent attacks, such as those
based on DRL tools. Our main contributions are:
• We use IRL tools in order to design two defense mechanisms

able to cope with intelligent attacks based on DRL in wireless
networks. These tools allow detecting an attack based on the
difference of behavior with regards to the case without attack,
operating in conditions of partial observability, which are fre-
quent in real-life problems.

• By not assuming a concrete attack type, our methods are able
to potentially detect a broad set of attacks.

• By taking advantage of recent developments in the Deep Learn-
ing field, our defense mechanisms are able to deal with high
dimensionality problems in an automatic fashion that requires
little tuning.

• We test our defense mechanisms in a backoff attack setup, which
may potentially affect any wireless network with CSMA/CA
multiple access method. The effects of this attack are that some
devices achieve a larger share of the network resources [35]: as
we will see, our defense mechanisms are able to successfully

1

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

counter this attack.

All these advantages make our defense mechanisms an important
step against intelligent attackers. The two closest works to ours in
current literature are [27] and [5]. In [27], the authors use RL for
attack mitigation using an SDN. They consider their work a proof-
of-concept to show that RL methods can be successfully used in
defense mechanisms, but their ideas limit to perfect observability en-
vironments with attack techniques known a priori. In [5], the authors
also use RL for detecting attackers which have more variability, as
their attackers may choose different threshold attacks. In that setting,
they use RL methods to design a defense mechanism that has a good
performance. However, these methods are restricted to the perfect
observability situation, and also, the attack techniques are somehow
limited, as none of their attacks has the intelligence of a DRL attacker.
On the contrary, our work presents a defense mechanism that is not
only able to operate in partial observability conditions, but also it is
able to counter an intelligent attacker, based on DRL.

The rest of the paper goes as follows: in Section II, we introduce
the RL theoretical framework in which our work is based on. Then,
Section III introduces key IRL concepts and methods. After, Section
IV introduces the backoff attack problem that we use as test-bench
and Section V explains the DRL intelligent attacker architecture.
Then, Section VI, introduces our two defense mechanisms based on
IRL tools, whose performance is tested in Section VII. Finally, some
conclusions are drawn in Section VIII.

II. THEORETICAL FRAMEWORK

Let us introduce the discrete time Markov Decision Process (MDP)
framework, which is a flexible, well-studied and widely used model
to describe dynamical systems [36], [37], [38]. We rely on this
framework in order to model the attack setup.

A. Markov Decision Process

An MDP is defined as follows [36], [38]:

Definition 1. An MDP is a 5-tuple 〈S,A, P,R, γ〉 where:

• S is the state set, containing all the possible states s ∈ S of the
dynamical system.

• A is the action set, containing all the possible action vectors
a ∈ A that the agent can use to interact with the dynamical
system.

• P : S × S × A → [0, 1] is the transition probability function,
where P (s′|s, a) denotes the probability of transitioning to state
s′ given that the agent is in state s and takes action a.

• R : S × A → R is the reward function, where r(s, a) denotes
the reward that the agent receives when it is in state s and takes
action a. We assume that R is bounded.

• γ ∈ (0, 1) is a discount factor.

In general, MDPs can be of finite or infinite horizon, depending
on whether the final time N is finite or infinite. As noted in [36],
the infinite horizon problem never holds in practice, however, it is
a reasonable approximation for problems with many time steps. In
this work we use methods for solving MDPs in infinite horizon
because these scale better for large state and action spaces compared
to methods for finite horizon cases [36].

A key idea behind an MDP is the Markovian property: the
probability of transitioning to state s′ by playing action a depends
only on the current state s and is independent of previous states.
Thus, the solution for an infinite horizon MDP is a stationary policy
π : S → A, which is a probability distribution over A denoting the
probability that the agent plays action a ∈ A where it is in state s.

Agent

Environment

ars

Fig. 1. MDP basic interaction scheme.

An MDP has the cyclic behavior shown in Figure 1. There is a
single agent that interacts with the dynamical system. At each time
step n, the system is in a certain state s known by the agent, who
plays an action a following a certain policy π. The system transitions
to state s′ and the agent receives a reward r(s, a).

B. Solving an infinite horizon MDP

In an infinite horizon problem, it is common to define the value
function Vπ(s) as a mapping Vπ : S → R that represents the expected
total reward when the agent starts in a state s and follows the policy
π as follows:

Vπ(s) = Eπ,P

[
∞∑
n=0

γnrn|s, a ∼ π

]
, (1)

where we use the shorthand rn = r(s, a) for time step n. Note that
the discount factor γ ∈ (0, 1) is used to weight rewards.

When P is known, it is possible to apply Dynamic Programming
tools in order to obtain the optimal policy for an MDP, i.e., the policy
that maximizes V (s) ∀s ∈ S [37], [39]. However, it is frequent
that P is unknown; in this case, model-free RL methods, which
approximate an optimal policy by interacting with the dynamical
system, can be used instead.

C. Reinforcement Learning

RL methods are biologically inspired and their basic intuition is
that it is possible to learn how to act optimally in a dynamical system
like the one shown in Figure 1 by using trial and error. Thus, the agent
stores data about its interactions in tuples (s, a, r, s′). This data is
then used by the agent to optimize a policy π that maximizes the
value (1). A complete introduction to the field is given in [39].

Recent advances in the Deep Learning field [6] have impacted
significantly RL algorithms. Deep Neural Networks (DNNs), which
are universal function approximators [40], [41], have been used to
create DRL methods that scale to large state and/or action spaces
[42], [43], [44]. These methods allow maximizing the value (1)
with respect to ω, where ω denotes the parameters of a DNN
that approximates the optimal policy function πω . A very popular
DRL method that uses this idea is Trust Region Policy Optimization
(TRPO) [45]. It solves the following optimization problem:

max
ω

Eπω,P

[
∞∑
n=0

γn
πω(a|s)
πold(a|s)

Aπω (s, a)

]
s.t. Eπold,P [DKL (πω||πold)] ≤ δ

, (2)

where πold refers to the value of the policy in the previous iteration.,
DKL (πω||πold) is the Kullback-Leibler divergence between πω and
πold, δ is a threshold and Aπω (s, a) is the advantage function, used
to estimate how good is action a when used in state s. Intuitively,
in (2) we optimize the policy that maximizes the expected reward,
where the maximum difference between the new policy with respect
to the old one is limited by δ. This limitation is used to avoid large
variations in the new policy, which may lead to poor performance:
the new policy is bounded to lie within a region bounded by δ.

2

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

D. Partially Observable MDP

In many dynamical systems, the state s is unknown to the agent,
who only has access to a partial or noisy observation o. This is known
as Partially Observable MDP (POMDP) [38], and it is defined as an
MDP adding:
• A set of observations O.
• An observation model Z : S × A → O, which denotes the

probability of observing o′ given that the system is in state s
and the agent takes action a.

In POMDPs, the Markovian assumption does not hold: the optimal
action depends on the whole history of previous observations and
actions. There are several methods proposed to solve POMDPs, as
shown in [38], [46] and [47]. It is also possible to use DRL tools to
solve them in at least two possible ways [48]. The first consists in
using recurrent DNNs, which allow incorporating the whole history
of observations and actions. The second consists in using as input to
the policy DNN a truncated history of fixed length, and then using
the MDP tools already described to solve it. The latter approach can
provide very good results [43], and it is followed in this work.

III. INVERSE REINFORCEMENT LEARNING

Inverse RL (IRL), also known as Inverse Optimal Control, is the
complementary situation to RL: IRL tries to infer the reward that
best explains the given policy of an agent, usually called expert.
IRL can be used to model an unknown reward function [49] or to
model an agent [50]. In IRL, we are given a set of trajectories ζk =
{(s0, a0), (s1, a1)...}, composed of state-action pairs, and we want
to obtain the reward function rθ that best explains the trajectories,
where θ are the reward approximation parameters.

A. Maximum entropy inverse reinforcement learning

In the seminal paper [49], several linear methods are proposed to
obtain rθ function in simple IRL problems. However, these methods
assume that the expert policy is optimal in all circumstances, which
needs not be the case in real-life problems. To address this, the
Maximum Entropy Principle (MEP) [51] was used for deterministic
[52] and non-deterministic [53] policies. In both cases, the maximum
causal entropy distribution is a Boltzmann distribution, where the
reward is approximated as linear. However, these linear methods do
not usually work well in practice. It is possible to apply the MEP
ideas also to non-linear reward functions. In this case, again, we
obtain a Boltzmann distribution [54] for the trajectories:

Pθ(ζk) =
1

Z
exp(rθ(ζk)), (3)

where Z is the partition function. To obtain θ, let us assume that
we have a non-linear policy function parameterized by ω. IRL
means obtaining the reward rθ that best explains the behavior of
an expert, that is, the policy maximizes the total expected reward.
Mathematically, this means [54]:

max
θ

[(
max
ω

H(πω) + Eπω [rθ(s, a)]
)
+ Eπ∗ [rθ(s, a)]

]
, (4)

where Eπ[rθ(s, a)] denotes the expected reward under policy π, i.e.,
the value function (1), and H(π) is the causal entropy of policy π.
We can optimize iteratively:

1) We update ω, so that the policy πω both maximizes the causal
entropy of ζk and rθ , i.e., we use πω to define a policy similar
to the expert.

2) We update θ so that the difference between the reward induced
by the expert policy π∗ and the reward induced by the policy πω
is maximized. In other words, we try to find a reward function
that separates as much as possible the behaviors of π∗ and πω .

B. Generative Adversarial Imitation Learning

This iterative method, however, has to use an RL algorithm in the
first step to obtain a policy, which is computationally expensive when
having large S and A. An efficient way to solve (4) is Generative
Adversarial Imitation Learning (GAIL) [55], which uses DNNs to
approximate the policy and the reward functions and solves (4) using
a Generative Adversarial Network (GAN) [56].

A GAN is a generative model which trains two DNNs in an
adversarial fashion. The first DNN is called generator: it takes as
input a random noise and produces an output which tries to match a
certain distribution. The second DNN is called discriminator: it tries
to discriminate between samples coming from the generator and the
actual distribution. In GAIL, the generator approximates a policy πω:
it takes as input a state s and outputs the probability of using any
action a ∈ A. The discriminator is parameterized by θ and takes as
input a tuple (s, a) and outputs the probability that the input was
generated by the expert policy or πω . The reward function is:

rθ = − log(Dθ(s, a)). (5)

By training the GAN, GAIL obtains a saddle point (πω, Dθ) of
the following expression:

Eπω [log(Dθ(s, a))] + Eπ∗ [log(1−Dθ(s, a))]− νH(πω), (6)

where ν ≥ 0. Note that (6) is equivalent to (4) with minor imple-
mentation changes. First, GAIL uses a step of TRPO to minimize (6)
with respect to ω: this step makes πω similar to the expert policy.
GAIL relies crucially on TRPO, as the new policy is constrained to
be close to the previous one (2), so that divergence due to noise in
the gradient estimation is prevented. Second, GAIL uses an Adam
[57] step with respect to θ to maximize (6).

GAIL presents several advantages. First, it uses DNNs to approxi-
mate both the reward and policy, which allows these functions to be
very expressive, as DNNs are universal function approximators [40].
This means that GAIL could imitate arbitrarily complex behaviors
from the expert. Second, GAIL can be used in large, even continuous,
state and action spaces, as TRPO is able to deal with them. Third,
GAIL is computationally efficient, since we need not solve an RL
problem in each policy improvement step. Due to these properties,
we use GAIL as IRL method in this work.

IV. PROBLEM DESCRIPTION

Let us now describe the attack setup. We have a wireless network
that uses CSMA/CA in the MAC layer, with n1 Good Stations
(GSs) that respect the backoff procedure, and n2 Attacking Stations
(ASs) which do not respect the backoff procedure. For simplicity, we
consider that the backoff procedure is the binary backoff mechanism
described in IEEE 802.11 standard [58]. When the channel is idle,
in order to avoid a collision due to several stations transmitting
at once, each station starts a backoff counter which decrements
while the channel is idle. When the counter of a station reaches 0,
the station transmits. The counter is initialized following a uniform
random variable in the interval [0, CW], where CW is the backoff
window. If a collision is detected, CW is duplicated, and if a
transmission is successful, CW is divided by two. In all cases,
CW ∈ [CWmin, CWmax], where CWmax = 2µCWmin is the
maximum size of the backoff window, µ is the maximum backoff
stage and CWmin is the minimum size of the backoff window.

We assume a star topology in the network, where all stations
communicate with a central node where the defense mechanism
is located, which only observes the backoff window used by each
station in past transmissions [24]. In order to estimate whether a

3

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

station follows the binary exponential procedure or not, a Cramer-
von Mises statistical test [59] can be used: the result of this test
is the reputation t of each station. The test parameters are K, the
number of backoff observations from the station under test, L, a
number of samples obtained from the backoff distribution following
the established procedure, and λ, a threshold on the reputation t that
discriminates between ASs and GSs. For more details on this defense
mechanism, we refer the reader to [26].

V. INTELLIGENT ATTACKER DESCRIPTION

Let us now describe an intelligent attacker, based on DRL, which is
able to exploit the backoff defense mechanism explained in Section
IV as shown in [26]. The attacker solves a POMDP using TRPO,
where the state of the defense mechanism is the reputation of each
station, t, which is unknown to them. At each time step n, each of
the n2 ASs receives an observation oi and it uses πω(oi) to select
its action ai: it then receives a reward r and the next observation, o′i.
Thus:
• Each time step n corresponds to a backoff period, i.e., each n

corresponds to a moment in which each station may transmit or
not.

• A is formed by two discrete actions: transmit and not transmit.
• The reward is −1 if a GS starts transmitting at time step n,

and 0 otherwise. Note that this reward models the target of the
backoff attack: that GSs transmit less than ASs.

• Each observation contains the normalized time difference be-
tween the current time step and the last K transmissions and
a flag indicating whether that transmission was successful or
collided, as well as a flag indicating whether the station has
been banned from the network.

We also consider the case in which there are several ASs that attack
coordinately. We assume that ASs are able to communicate, and in
this case, each oi is built by concatenating the local observation of
each agent, the mean of the observations sent by the other ASs and
the mean of the observations of the GSs. Using the mean makes the
concatenated vector invariant to the order and number of stations.

The intelligent attacker uses TRPO in order to obtain an optimal
policy πω(o) such that it maximizes its cumulative reward. In case
of having several agents, we use the training procedure described in
[60] and [61]: a single policy is trained using data from all ASs, and
then each AS executes a copy of the centralized policy.

VI. INTELLIGENT DEFENSE MECHANISM DESCRIPTION

We now propose an intelligent defense mechanism, which is able to
cope with the intelligent attacker from Section V. To present a defense
mechanism as general as possible, we use IRL tools, namely, GAIL.
The main idea behind our method consists in using IRL on GSs to
obtain the reward function rθ(s, a) that explains the behavior of the
GSs. Since ASs have a different reward function, the distributions of
rewards will differ between ASs and a GSs; and hence, it will be
possible to detect the ASs.

Note that our approach presents very significant advantages. First,
by using GAIL, we do not need to analytically model the reward
function of GSs explicitly as GAIL approximates it. Second, GAIL
is a model-free method, thus we do not need to model the transition
probability function, which may be very complex, as shown in [25];
we only need a simulator of the dynamical system. And third, GAIL
is an IRL method efficient and accurate. We propose two possible
ways to use GAIL in our problem: a method in which GAIL is
trained prior to any network interaction that we call offline defense
mechanism, and a second method in which GAIL is also trained
during the interactions among the network stations, which we call
online defense mechanism.

A. Offline defense mechanism

Before starting the interactions in the network, we train GAIL using
ζGS , a set of trajectories in which all stations are GSs, to obtain the
reward function rθ(s, a) that maximizes rGS = rθ(ζGS), that is, the
reward of GSs. Then, if we are given ζm, a set of trajectories from
station m with unknown type (station m could be a GS or AS), we
can obtain rm = rθ(ζm). Note that both rGS and rm are two sets
of rewards: if the values of rm are similar to those of rGS , then
m is likely to be a GS, and an AS otherwise. In order to decide,
we propose using a statistical test using the empirical CDF of rGS .
We define η as the α-percentile over the empirical CDF of rGS .
Mathematically, given α ∈ [0, 1], we have that η is:

η =argmin
rGS

CDF (rGS)

s.t. CDF (rGS) ≥ α
, (7)

where we note that α controls the tradeoff between false alarm
probability and power of the test.

Then, when we have interactions in the network, we collect ζm for
each station m, where we consider that ζm is composed by j state-
action pairs, and proceed to test. First, we obtain rm = rθ(ζm), the
rewards for station m assuming that station m is a GS. Then, we
compute i ≤ j: the number of times that rm ≤ η. A low i indicates
that ζm comes from a GS, while a large i provides evidence that ζm
comes from an AS.

Let us further assume that rm are i.i.d. This assumption needs not
be true, as consecutive state-action pairs are correlated through the
transition probability function P . However, we follow this assumption
because it simplifies our model, allows using simpler calculations
and does not require to know P for the correlation. Thus, i follows
a Binomial distribution i ∼ B(j, α), where j is the number of
experiments (i.e., the number of elements of rm) and α is the
probability of j = 1 (i.e., rm ≤ η, assuming that m is a GS). Observe
that if m is a GS, i should be low, and if m is an AS, i should be
high, since rθ , obtained using GAIL, maximizes the rewards for the
policy of GSs, and hence, rm is low if m is an AS. Then, our decision
rule is: {

Station is GS if i < ρ
Station is AS if i ≥ ρ , (8)

where ρ is a threshold that can be obtained as follows:

ρ = arg min
k∈0,...,j

L =arg min
k∈0,...,j

(
j

k

)
αk(1− α)j−k

s.t. L ≥ 1− α
, (9)

where L is the Binomial distribution probability mass function. Note
that k, in (9) is the number of successes, and hence, is equivalent
to i: the number of times that rm ≤ η. Thus, we are modeling the
probability of obtaining k values of reward below η. The constraint
is the threshold of our test: we use the same α value, although a
different value could be used, in order to set ρ as the threshold to
decide that lower values of i are generated by GSs, but higher ones
are not, with a confidence level of α.

A flow diagram for both the training and classification stages can
be observed in Figures 2 and 3. The whole procedure can be observed
in Figure 4, where we note that we train GAIL only once, but the
classification stage may be run more than once.

Note that the decision method we propose, based on η and ρ,
could be replaced by other decision methods, such as measuring the
Kullback-Leibler divergence between the distribution rGS and rm,
or other statistical tests [62]. In this work, we only focus on using η
and ρ because it is a simple and computationally fast method which,
nonetheless, provides good results.

4

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

ζGS α

Obtain rθ, rGS using GAIL

Obtain η (7)

Obtain ρ (9)

rθ , η, ρ

Fig. 2. Flow diagram for the training stage of the proposed defense
mechanism, both for online and offline cases.

ζm, rθ , η, ρ

Compute the rewards rm = rθ(ζm)

Compute i using rm and η

Make a decision using i and ρ

Fig. 3. Flow diagram for the classification stage of our proposed defense
mechanism, for both online and offline cases.

B. Online defense mechanism

The offline defense mechanism already described presents a poten-
tial problem: the behavior of GSs could be influenced by the actions
of ASs. As GAIL is trained offline, using trajectories ζGS from a
network in which there are only GSs, the same GSs in presence of
ASs may present a different behavior as a consequence of the actions
of the ASs: note that the behavior of GSs and ASs is coupled, as they
affect each other. This could cause that some GSs are detected as ASs.
In order to address this potential problem, we propose continuously
training our defense mechanism by rerunning the training phase using
trajectories from trusted GSs: this means that the GAIL classifier is
updated continuously taking into account the effect of the ASs over
the GSs. Note that the trusted GSs used for training GAIL must be
known a priori, and their behavior is used to classify the rest of
stations. This is what we denote as online defense mechanism, and
a flow diagram describing it can be seen in Figure 5. Note that the
main difference with respect to the offline case is that now, GAIL
is updated during the interaction phase using state-action pairs from
the trusted GSs. We note that the online defense mechanism has a
higher computational complexity, as now GAIL is updated several
times; but it also explicitly takes into account the effect of the ASs
over the GSs, and hence, it can provide better results.

C. Discussion

Both of our proposed defense mechanisms rely on three assump-
tions: (1) the interaction between each station and the central node can
be modeled using the MDP / POMDP framework, where sequences
of states / observations and actions can be obtained and we have
access to a simulator of the system, (2) GAIL can be used to obtain
a solution to the IRL problem of the GSs, and (3) the behavior of
ASs is different from the GSs in terms of IRL reward. These three
assumptions are very general, and hence, they allow dealing in a very

ζGS , α GAIL training

rθ , η, ρ

GAIL classificatorζm

Decision

Fig. 4. Flow diagram for the offline defense mechanism, where the training
stage is explained in Figure 2 and the classification stage is explained in
Figure 3. Note that GAIL is trained once and offline, while there might be
multiple decision: the thresholds obtained by GAIL are used each time that
a decision is made.

ζm, ζGS , α ζGS , α

GAIL training

rθ , η, ρ

GAIL classificator

ζm

Decision

Fig. 5. Flow diagram for the online defense mechanism, where the training
stage is explained in Figure 2 and the classification stage is explained in Figure
3. Note that the main difference with respect to the offline case in Figure 4 is
that now GAIL is trained more than once, using ζGS collected from trusted
GSs. Note that the thresholds obtained by GAIL are updated every time that
GAIL is updated, whereas in the offline case the thresholds were fixed after
the initial training.

general way with unknown attacks. The third assumption is related
to the fact that GAIL searches for a reward function that explains the
trajectories: an AS behaves differently, and hence, we can use this
reward function to discriminate between GSs and ASs.

Our approaches also present several weaknesses. The first one is
that we do not take into account additional information about the
ASs, as ours are general defense mechanisms. The more we know
about the attack, the more an ad-hoc defense mechanism can be
used. However, ad-hoc defense mechanisms could be exploited by
minor attack variations [25]. We present general defense mechanisms,
potentially valid against a broad set of attackers. Note that our
defense mechanisms could also be used together with other defense
mechanisms in order to incorporate more information about the
attacker: we explore this idea in Section VII.

A second weakness is derived from the computational complexity
associated with our methods. Even though GAIL is an efficient IRL
method, nonetheless it has a significant resource consumption. Note
that this is a problem that affects specially to the online defense
mechanism, as it needs to train GAIL several times. Hence, there
is a trade-off between a defense mechanism general enough and the
computational load required. A final weakness affects only the online
method: if the trusted GSs used to update GAIL are compromised,
the defense mechanism may be exploited.

Our defense mechanisms also present several advantages. The first
one is that they are very general and require very little knowledge
about the concrete setup. The second is that we train only using GSs,
so our methods are able to detect, potentially, any AS that presents a
different behavior from GSs. And finally, observe that we need not
model the transition probability function, as GAIL only needs access

5

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

to a simulator of the system we want to defend.

VII. EMPIRICAL RESULTS: THE PARTIALLY OBSERVABLE

BACKOFF ATTACK

We validate our defense mechanism from Section VI in the backoff
attack setup described in Section IV, facing our defense mechanism
to the intelligent attacker from Section V. The policy of the ASs is
a feedforward DNN which takes as input the observation oi and has
three layers: the first two layers have 256 neurons and use rectified
linear units activations, i.e., f(x) = max(0, x). The last layer of the
policy DNN outputs the actions of the agent, i.e., whether to transmit
in the current time step or not.

We test for 10 GSs and {1, 5} ASs, in order to study the influence
of communication among ASs in the attack. Thus, in total we have
{11, 15} stations in our network. As defense mechanism we use the
scheme described in Section IV, with parameters λ = 0.5, K = 5
and L = 1000. The backoff mechanism implementation follows the
values of the 802.11 IEEE standard [58]. Each episode simulates the
backoff environment for 5·105 µs. We train the ASs using 200 TRPO
iterations, where each TRPO policy update uses 2500 time steps.

We incorporate our proposed defense mechanisms as an additional
security layer to the defense mechanism described in Section IV. Note
that our security mechanism only observes the transmission times of
a station, i.e., the time steps in which station m transmitted. This
observation is the input to the reward DNN estimator that is trained
using GAIL. We use a DNN with two hidden layers with 256 neurons
each and hyperbolic tangent activation function. Note that the attacker
is solving a POMDP by incorporating the observation information
about the last K = 5 transmissions; our defense mechanism also uses
a truncated history and keeps a record of the last 5 transmissions of
each station.

For the training phase of GAIL in the offline defense mechanism,
we use the trajectories from 100 episodes of 5 · 105 µs. In each
of these episodes, we consider that there are {11, 15} GSs. Then,
we use GAIL to obtain an estimation of the reward function using
10 GAIL iterations: we update 3 times the generator and once the
discriminator in each of these iterations. We use 10 iterations as there
was no further improvement by increasing the training time, and set
α = 0.05 in order to obtain η and ρ using (7) and (9).

In the online defense mechanism, we use the same classifier DNN
as in the offline case, but the training phase differs. We use the state-
action pairs of 5 trusted GSs and train GAIL at the end of each TRPO
iteration of the attackers. Hence, each time that the ASs update their
policy, GAIL updates the reward estimator.

We run our defense mechanisms together with the statistical test
described in Section IV for three cases: a baseline in which we only
use the statistical test described in Section IV, and the cases in which
the statistical test is combined with the online and offline defense
mechanisms respectively. Our defense mechanism classifier is run
every time that there are 5 new state-actions pairs per station, and if
a station is detected as an AS by either defense method, it is banned
from the network. Finally, for each value of the ASs, we simulate
using 10 different seeds, and we use a discount factor γ = 0.995.

The simulation results averaged on the best 5 seeds for the defense
mechanism can be observed in Table I, where we show the total
reward, the proportion of stations banned and the proportion of bits
transmitted by each station, for all the cases tested. The results
indicate the following:
• In terms of ASs reward, both of our defense mechanisms sig-

nificantly outperform the baseline. Remember that this reward,
defined in Section V, was −1 each time that a GS transmitted.
Thus, note that a smaller reward means that GSs transmit

1 AS 5 ASs

Reward
Baseline −40.64± 8.44 −19.59± 3.73
Offline −41.34± 6.60 −21.83± 4.44
Online −81.19± 2.86 −28.57± 4.44

Proportion
ASs banned

Baseline 0.19± 0.39 0.60± 0.26
Offline 0.64± 0.48 0.73± 0.27
Online 1.00± 0.00 0.86± 0.19

Proportion
GSs banned

Baseline 0.002± 0.01 0.001± 0.01
Offline 0.27± 0.23 0.17± 0.14
Online 0.17± 0.12 0.08± 0.12

Proportion
bits per AS

Baseline 0.16± 0.05 0.11± 0.02
Offline 0.12± 0.05 0.10± 0.02
Online 0.04± 0.01 0.07± 0.02

Proportion
bits per GS

Baseline 0.08± 0.01 0.04± 0.01
Offline 0.09± 0.01 0.05± 0.01
Online 0.10± 0.01 0.06± 0.01

TABLE I
FINAL RESULTS OBTAINED AVERAGING 100 EPISODES FOR EACH OF THE
BEST 5 SEEDS AFTER TRAINING. WE SHOW THE MEAN FINAL VALUE, ±

ONE STANDARD DEVIATION. BOLD ENTRIES ARE THE VALUES WITH BEST
MEAN, WHERE A WELCH TEST IS USED TO DETECT WHETHER MEANS ARE

SIGNIFICANTLY DIFFERENT FOR A SIGNIFICANCE LEVEL OF 0.01 WITH
RESPECT TO THE BASELINE. THE METRICS USED ARE THE TRPO REWARD
FOR ASS, THE PROPORTION OF STATIONS BANNED FROM THE NETWORK,

AND THE PROPORTION OF BITS TRANSMITTED PER STATION.

more often, which is worse for the attacker, but better for the
defense mechanism. Regardless of the number of ASs, the online
mechanism outperforms the offline one. As we will show later,
this is due to the fact that GSs behave differently when ASs are
present, and hence, the offline mechanism performs worse than
the online one, although better than the baseline.

• In terms of proportion of stations banned, note that we can
ban an AS (true positive) or a GS (false positive). In terms
of ASs banned (true positive rate), note that both online and
offline improve the baseline, which was the main objective of
our defense mechanisms. They are able to detect more ASs
based only on analyzing the behavior of GSs. Note that the
online method also offers higher accuracy than the offline one:
as mentioned, this is due to the fact that online method is
continuously analyzing the behavior of GSs. Regarding the
proportion of GSs banned (false positive rate), the best method
is the baseline, and then the online method. Again, the online
method takes advantage of continuously analyzing the GSs
behavior, to obtain a false positive rate half of the offline method.

• In terms of transmitted bits, let us recall that the backoff attack
targets to reduce the bits transmitted by GSs, which means that
ASs transmit more than GSs. In the baseline case, note how ASs
have a proportion of bits transmitted up to nearly three times
higher than GSs, illustrating the consequences of the backoff
attack. However, both of our defense mechanisms reduce this
gap, specially the online one, which is able to enforce a more
fair use of the network resources.

Thus, our proposed defense mechanisms outperform the baseline,
specially the online method. The only difference between online
and offline methods are that the online method keeps continuously
updating η, and hence, it adapts to the change in GSs behavior
due to ASs, since the actions of ASs (transmit or not) do affect to
GSs. Figure 6 shows the rewards distribution for the offline method.
Observe how the distribution of rGS changes after the introduction
of a single AS: even though the change seems small, note how the
critic part of the histogram is the left queue, used to define the η
threshold value. Small changes in that region mean that GSs will be
wrongly classified as ASs, and hence, banned. The online method,
on the contrary, updates η continuously, and hence, it has a lower

6

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

0.2 0.4 0.6 0.8 1

0

1

2

3

r

GSs train GSs attack AS attack

Fig. 6. Distribution of rewards in the offline method for GSs without attack
(i.e., during training), under attack (i.e., with 1 AS) and the rewards of the
AS. The vertical red line is η, the reward threshold value. Observe that the
AS puts more weight in lower values of the reward, and also, note how the
introduction of a single AS changes the distribution below η (the red line).

probability of misclassifying stations (see Table I). Finally, note also
how the AS in Figure 6 does pose a challenge to be detected, as it
mimics quite good the behavior of GSs. Thus, intelligent attackers
pose a significant threat to current defense mechanisms that may not
be prepared to deal with them.

VIII. CONCLUSIONS

In this work, we have given a step forward towards intelligent
defense mechanisms that are able to cope with intelligent attackers
based on DRL tools. As we have seen in our simulations, intelligent
attackers are able to exploit unknown defense mechanisms simply by
interacting with them, and we can think of such attackers as automatic
exploit discoverers, whose success has already been shown [25], [26].

In order to address this challenge, we have proposed two different
defense mechanisms based on IRL, that make little assumptions about
the attack used, and hence, can potentially adapt to a wide set of
attacks and attackers. Our results show that both mechanisms are
successful in detecting intelligent attackers. Although our methods
require a significant computational effort, we propose an offline
mechanism, that can be trained offline and then deployed. However,
this offline mechanism does not adapt to the effect that ASs have over
GSs, and we propose another online method that obtains remarkable
results, at a higher computational cost.

This work poses several interesting future lines. First, the classifier
proposed is simple and powerful, as it detects many ASs, but at the
same time, it has a non negligible false positive rate that affects
GSs: thus, finding a classifier that improves the false positive rate is
one line of work. Note that we could use tools based on anomaly
detection tools [63], other statistical tests [62], or distribution-related
metrics, such as the Kullback-Leibler divergence. And second, we
have remarked that ASs affect GSs, as both types of stations are
coupled. This situation could be modelled using dynamic game theory
tools, which face the problem of computational complexity, although
there is a lot of promising work ongoing in that direction [64].

ACKNOWLEDGMENT

This research was funded by the Spanish Ministry of Science and
Innovation under the grant PID2020-112502RB-C41 (NAUTILUS).
We gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan V GPU used for this research.

REFERENCES

[1] K. Yang, Wireless sensor networks. Springer, 2014.

[2] P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sensor
networks: a survey on recent developments and potential synergies,” The
Journal of supercomputing, vol. 68, no. 1, pp. 1–48, 2014.

[3] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software defined
networking for improved wireless sensor network management: A sur-
vey,” Sensors, vol. 17, no. 5, p. 1031, 2017.

[4] I. Tomić and J. A. McCann, “A survey of potential security issues in
existing wireless sensor network protocols,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 1910–1923, 2017.

[5] T. Gu, A. Abhishek, H. Fu, H. Zhang, D. Basu, and P. Mohapatra,
“Towards learning-automation iot attack detection through reinforcement
learning,” in 2020 IEEE 21st International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE, 2020,
pp. 88–97.

[6] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[7] Y. Shi, Y. E. Sagduyu, T. Erpek, K. Davaslioglu, Z. Lu, and J. H.
Li, “Adversarial deep learning for cognitive radio security: jamming
attack and defense strategies,” in 2018 IEEE International Conference
on Communications Workshops (ICC Workshops). IEEE, 2018, pp. 1–6.

[8] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “Iot security techniques
based on machine learning,” arXiv preprint arXiv:1801.06275, 2018.

[9] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[10] J. Cannady, “Next generation intrusion detection: Autonomous reinforce-
ment learning of network attacks,” in Proceedings of the 23rd national
information systems security conference, 2000, pp. 1–12.

[11] Y. Gwon, S. Dastangoo, C. Fossa, and H. Kung, “Competing mobile
network game: Embracing antijamming and jamming strategies with re-
inforcement learning,” in Communications and Network Security (CNS),
2013 IEEE Conference on. IEEE, 2013, pp. 28–36.

[12] L. Xiao, Y. Li, G. Liu, Q. Li, and W. Zhuang, “Spoofing detection with
reinforcement learning in wireless networks,” in Global Communications
Conference (GLOBECOM), 2015 IEEE. IEEE, 2015, pp. 1–5.

[13] Y. Li, D. E. Quevedo, S. Dey, and L. Shi, “Sinr-based dos attack on
remote state estimation: A game-theoretic approach,” IEEE Transactions
on Control of Network Systems, vol. 4, no. 3, pp. 632–642, 2017.

[14] L. Xiao, C. Xie, T. Chen, H. Dai, and H. V. Poor, “A mobile offloading
game against smart attacks,” IEEE Access, vol. 4, pp. 2281–2291, 2016.

[15] L. Xiao, Y. Li, X. Huang, and X. Du, “Cloud-based malware detection
game for mobile devices with offloading,” IEEE Transactions on Mobile
Computing, vol. 16, no. 10, pp. 2742–2750, 2017.

[16] M. A. Aref, S. K. Jayaweera, and S. Machuzak, “Multi-agent reinforce-
ment learning based cognitive anti-jamming,” in Wireless Communica-
tions and Networking Conference (WCNC), 2017 IEEE. IEEE, 2017,
pp. 1–6.

[17] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming
communication based on deep reinforcement learning,” in Proceedings
of the 42nd IEEE International Conference on Acoustics, Speech and
Signal Processing,, 2017.

[18] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on
security threats and detection techniques in cognitive radio networks,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 428–445,
2013.

[19] P. Sengar and N. Bhardwaj, “A survey on security and various attacks in
wireless sensor network,” International Journal of Computer Sciences
and Engineering, vol. 5, no. 4, pp. 78–84, 2017.

[20] L. Zhang, G. Ding, Q. Wu, Y. Zou, Z. Han, and J. Wang, “Byzantine
attack and defense in cognitive radio networks: A survey,” IEEE Com-
munications Surveys & Tutorials, vol. 17, no. 3, pp. 1342–1363, 2015.

[21] J. Wu, Y. Yu, H. Zhu, T. Song, and J. Hu, “Cost-benefit tradeoff
of byzantine attack in cooperative spectrum sensing,” IEEE Systems
Journal, vol. 14, no. 2, pp. 2532–2543, 2019.

[22] K. Lakshmi Narayanan, R. Santhana Krishnan, E. Golden Julie,
Y. Harold Robinson, and V. Shanmuganathan, “Machine learning based
detection and a novel ec-brtt algorithm based prevention of dos attacks
in wireless sensor networks,” Wireless Personal Communications, pp.
1–25, 2021.

[23] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou,
“A survey on jamming attacks and countermeasures in wsns,” IEEE
Communications Surveys & Tutorials, vol. 11, no. 4, 2009.

[24] W. Wang, Y. Sun, H. Li, and Z. Han, “Cross-layer attack and defense
in cognitive radio networks,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, 2010, pp. 1–6.

7

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

[25] J. Parras and S. Zazo, “Learning attack mechanisms in wireless sensor
networks using markov decision processes,” Expert Systems with Appli-
cations, vol. 122, pp. 376–387, 2019.

[26] J. Parras, M. Hüttenrauch, S. Zazo, and G. Neumann, “Deep reinforce-
ment learning for attacking wireless sensor networks,” Sensors, vol. 21,
no. 12, p. 4060, 2021.

[27] M. Zolotukhin, S. Kumar, and T. Hämäläinen, “Reinforcement learning
for attack mitigation in sdn-enabled networks,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2020, pp. 282–
286.

[28] Y. Chen, S. Huang, F. Liu, Z. Wang, and X. Sun, “Evaluation of
reinforcement learning-based false data injection attack to automatic
voltage control,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp.
2158–2169, 2018.

[29] Z. Ni and S. Paul, “A multistage game in smart grid security: A
reinforcement learning solution,” IEEE transactions on neural networks
and learning systems, vol. 30, no. 9, pp. 2684–2695, 2019.

[30] Z. Wang, H. He, Z. Wan, and Y. Sun, “Coordinated topology attacks
in smart grid using deep reinforcement learning,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 2, pp. 1407–1415, 2020.

[31] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack
detection in smart grid: A reinforcement learning approach,” IEEE
Transactions on Smart Grid, vol. 10, no. 5, pp. 5174–5185, 2018.

[32] F. Wei, Z. Wan, and H. He, “Cyber-attack recovery strategy for smart
grid based on deep reinforcement learning,” IEEE Transactions on Smart
Grid, vol. 11, no. 3, pp. 2476–2486, 2019.

[33] C. Roberts, S.-T. Ngo, A. Milesi, S. Peisert, D. Arnold, S. Saha,
A. Scaglione, N. Johnson, A. Kocheturov, and D. Fradkin, “Deep
reinforcement learning for der cyber-attack mitigation,” in 2020 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2020, pp. 1–7.

[34] M. Li, Y. Sun, H. Lu, S. Maharjan, and Z. Tian, “Deep reinforcement
learning for partially observable data poisoning attack in crowdsensing
systems,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6266–6278,
2019.

[35] J. Parras and S. Zazo, “Wireless networks under a backoff attack: A
game theoretical perspective,” Sensors, vol. 18, no. 2, p. 404, 2018.

[36] D. P. Bertsekas, Dynamic programming and optimal control. Athena
Scientific, 2005, vol. 1.

[37] ——, Dynamic programming and optimal control. Athena Scientific,
2007, vol. 2.

[38] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[40] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[41] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[44] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proceedings of the 31st
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32.
Bejing, China: PMLR, 22–24 Jun 2014, pp. 387–395.

[45] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[46] M. L. Littman and R. S. Sutton, “Predictive representations of state,”
Advances in neural information processing systems, pp. 1555–1561,
2002.

[47] S. P. Singh, M. L. Littman, N. K. Jong, D. Pardoe, and P. Stone,
“Learning predictive state representations,” Proceedings of the 20th
International Conference on Machine Learning (ICML-03), pp. 712–
719, 2003.

[48] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” Proc. of Conf. on Artificial Intelligence, AAAI, 2015.,
2015.

[49] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in ICML, vol. 1, 2000, p. 2.

[50] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[51] E. T. Jaynes, “Information theory and statistical mechanics,” Physical
review, vol. 106, no. 4, pp. 620–630, 1957.

[52] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[53] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction
via the principle of maximum causal entropy,” in Proceedings of the
27th International Conference on International Conference on Machine
Learning. Omnipress, 2010, pp. 1255–1262.

[54] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A connection between
generative adversarial networks, inverse reinforcement learning, and
energy-based models,” arXiv preprint arXiv:1611.03852, 2016.

[55] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 4565–
4573.

[56] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp. 2672–
2680.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR,
2015.

[58] IEEE, “IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropolitan
area networks–Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,” pp.
1–3534, December 2016.

[59] T. W. Anderson, “On the distribution of the two-sample cramer-von
mises criterion,” The Annals of Mathematical Statistics, pp. 1148–1159,
1962.

[60] A. Šošić, W. R. KhudaBukhsh, A. M. Zoubir, and H. Koeppl, “Inverse
reinforcement learning in swarm systems,” in Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2017, pp. 1413–1421.

[61] M. Hüttenrauch, A. Šošić, and G. Neumann, “Deep reinforcement
learning for swarm systems,” Journal of Machine Learning Research,
vol. 20, no. 54, pp. 1–31, 2019. [Online]. Available: http://jmlr.org/
papers/v20/18-476.html

[62] M. Hernandez, G. Epelde, A. Alberdi, R. Cilla, and D. Rankin, “Stan-
dardised metrics and methods for synthetic tabular data evaluation,”
2021.

[63] Y. Wang, J. Wong, and A. Miner, “Anomaly intrusion detection using one
class svm,” in Proceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004. IEEE, 2004, pp. 358–364.

[64] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote, “A
survey of learning in multiagent environments: Dealing with non-
stationarity,” arXiv preprint arXiv:1707.09183, 2017.

Juan Parras received his B.S in Telecommuni-
cations Engineering from Universidad de Jaén in
2014, and MSC and PhD in Telecommunications
Engineering from Universidad Politécnica de Madrid
(UPM) in 2016 and 2020. He is currently an As-
sistant Professor at UPM and his research interests
include audio and radio signal processing, game
theory and deep reinforcement learning applied to
communications networks.

8

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694
http://jmlr.org/papers/v20/18-476.html
http://jmlr.org/papers/v20/18-476.html

© 2022. This accepted manuscript version is made available under the CC-BY-NC-ND 4.0 license. Published version here.

Alejando Almodóvar received his bachelor’s de-
gree and MSc in Telecommunications Engineering
from Universidad Politécnica de Madrid (UPM) in
2020 and 2022. He is working as a researcher at
UPM since 2021, with the goal of obtaining a PhD
focused on signal processing and machine learning
applications.

Patricia A. Apellániz completed her Bachelor’s
degree program in Telecommunication Engineering
by the Universidad Autónoma de Madrid (UAM) in
2018 and, later, she received her Master’s degree in
Telecommunication Engineering at the Universidad
Politécnica de Madrid (UPM). She is working to-
wards her PhD at UPM on deep learning algorithms
for medical applications and is also a researcher in
this field. Her research interests go from audio and
image signal processing to different deep learning
applications.

Santiago Zazo is Dr. Engineer by the Universidad
Politécnica de Madrid (UPM) in 1995. In 1998
he joined UPM, where currently he is Professor
in Signal Theory and Communications. His main
research activities are in the field of Signal Pro-
cessing. More recently, he has been mostly focused
on distributed optimization, optimum control, game
theory and reinforcement learning. He is author /
coauthor of more than 40 journal papers and about
200 conference papers.

9

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/JIOT.2022.3194694

	Introduction
	Theoretical framework
	Markov Decision Process
	Solving an infinite horizon MDP
	Reinforcement Learning
	Partially Observable MDP

	Inverse Reinforcement Learning
	Maximum entropy inverse reinforcement learning
	Generative Adversarial Imitation Learning

	Problem description
	Intelligent attacker description
	Intelligent defense mechanism description
	Offline defense mechanism
	Online defense mechanism
	Discussion

	Empirical results: the partially observable backoff attack
	Conclusions
	References
	Biographies
	Juan Parras
	Alejando Almodóvar
	Patricia A. Apellániz
	Santiago Zazo

