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Abstract: We use the recent advances in Deep Learning to solve an underwater motion planning prob-
lem by making use of optimal control tools—namely, we propose using the Deep Galerkin Method
(DGM) to approximate the Hamilton–Jacobi–Bellman PDE that can be used to solve continuous time
and state optimal control problems. In order to make our approach more realistic, we consider that
there are disturbances in the underwater medium that affect the trajectory of the autonomous vehicle.
After adapting DGM by making use of a surrogate approach, our results show that our method is
able to efficiently solve the proposed problem, providing large improvements over a baseline control
in terms of costs, especially in the case in which the disturbances effects are more significant.

Keywords: optimal control; Hamilton–Jacobi–Bellman equation; autonomous underwater vehicle;
Deep Galerkin Method

1. Introduction

The problem of motion planning for Autonomous Underwater Vehicles (AUVs) is
to choose the best trajectory that satisfies a set of constraints, such as the maximum
acceleration and velocity of the AUV. Among all trajectories that satisfy these constrains,
the best trajectory is the one that optimizes a certain metric, such as time to reach a
certain target or computation time. Traditionally, there have been two ways to address the
problem of motion planning for AUVs: the field of robotics, which pays attention specially
to computational issues and real-time control, and the field of optimal control, which
emphasizes the optimization of the trajectory regarding a certain performance measure [1].

Even though the optimal control approach is very attractive, as it is able to return the
best trajectory that fulfills the constrains regarding the performance metric chosen, it suffers
from the so called “curse of dimensionality”: as the dimensionality of the problem grows
(i.e., the number of state variables of the AUV), the computational resources required to
use optimal control tools become too high. Even though there are exceptional cases in
which the solution is known, as the case of linear quadratic problems [2], the use of optimal
control tools in general leads to an intractable problem. As optimal control applies to many
problems of interest in different fields, a lot of efforts have been addressed to find efficient
ways to solve, in an exact or approximate way, optimal control problems, such as [3–8].
Some of these works are still unable to scale up to practical problems, and others require
a specific structure of the problem. However, the recent advances in the deep learning
field have brought a novel approach to solve optimal control problems, based on the Deep
Galerkin Method (DGM, [9]) that can be used to solve optimal control problems without
being subject to the “curse of dimensionality” [10] and is becoming popular due to its
competitive results [11–13].

In this work, we make use of DGM to develop a method that is able to address motion
planning problems for AUVs using optimal control tools. The use of neural networks to
address motion planning problems for ocean navigation is not new, as [14] already makes
use of such tools to approximate the solution of a Kalman filter for a surface ship navigation

Sensors 2021, 21, 5011. https://doi.org/10.3390/s21155011 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7028-3179
https://orcid.org/0000-0001-9073-7927
https://doi.org/10.3390/s21155011
https://doi.org/10.3390/s21155011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155011
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155011?type=check_update&version=2


Sensors 2021, 21, 5011 2 of 15

problem. In [15], the authors use optimal control tools for underwater navigation, but they
have to use a restricted mesh of discrete states to avoid the curse of dimensionality (as
in [16] for surface vehicles). A recent work close to ours is [17], where the authors use
optimal control tools for mine detection missions. They use autonomous vehicles that
move in the ocean surface, and seek to obtain optimal trajectories in the sense that they
maximize the mine detection probability using different detection sensor models. However,
they use coverage path planning, which consists of solving the optimal control problem
in a discrete environment, and then check whether the discrete solution can be applied
to a continuous system. A similar procedure is described in [18], where the authors first
find a discrete solution and then interpolate it. In contrast to these works, which rely on
discretization of the states, we solve the problem in the continuous domain, and also use
a different target function, as we intend to minimize the time to reach a certain target.
Another popular approach is based on using Model Predictive Control (MPC), which can
be used to approximate nonlinear control problems in an online or offline fashion [19–22].
MPC differs from our approach in that we obtain the optimal solution by obtaining first
the value function and also our approach may deal with continuous time without having
to use discretization.

A problem that arises in the underwater medium is localization: as GPS does not
reach the ocean depths, it is necessary to develop other location systems. This topic is
subject to intense research, as shown in [23], as we need accurate localization mechanisms
to implement optimal trajectories. However, this paper is focused on obtaining optimal
trajectories, and hence, we will consider that there is a localization mechanism in the AUV
such that its position and velocities are known (i.e., fully observable).

The main contributions of our work are the following:

1. We solve a motion planning problem for an AUV using computationally efficient
tools, namely, DGM, which solves a continuous time and states nonlinear optimal
control problem. This tool will prove efficient computationally, and departs from
numerous approaches that rely on state discretization;

2. The optimal control problem we focus on consists of reaching a target position as soon
as possible. As this problem cannot be solved directly using DGM, as DGM required
a fixed time horizon, we develop a surrogate problem that can be solved using DGM
and returns an equivalent control to our original control problem. This supposes
an advance, as it extends the range of uses of DGM to problems with an unknown
time horizon;

3. We take into account the effect of several disturbances in the computation of our
optimal trajectory. The presence of disturbances is frequent in the ocean, where
currents and swirls affect the motion of the AUV. We model some disturbances and
show that DGM is able to obtain optimal trajectories that take into account the effect
of the disturbance.

In short, we make use of the recent advances in deep learning to efficiently solve the
optimal control problem applied to AUV motion planning in the presence of disturbances.
The rest of this paper goes as follows: Section 2 presents our setup and the disturbances
that we use in this work. Then, Section 3 presents the optimal control tools that we use,
and shows how it is possible to use DGM to solve a surrogate optimal control problem
for motion planning efficiently. Our ideas are validated via simulations in Section 4, and
finally, we draw some conclusions in Section 5.

2. Setup Description
2.1. Underwater Navigation Model

We consider an AUV that moves in the plane (i.e., constant depth), where the AUV
position is the vector (x, y), its velocity is (vx, vy), and we consider that the control variable
is the acceleration angle θ. If we assume that the disturbances affect the acceleration and
are modeled by the vector (px, py), and if we model the friction by a term that depends on
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the velocity and a parameter k f , the motion is controlled by the next Ordinary Differential
Equation (ODE) system:

ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = cos(θ(t)) + px(x(t), y(t))− k f · vx(t)

v̇y(t) = sin(θ(t)) + py(x(t), y(t))− k f · vy(t)

(1)

where ẋ represents the derivative with respect to time of the variable x. Note that k f limits
the maximum velocity that the AUV can reach (see the Isotropic Rocket problem [24]).
Additionally, it can be observed that we consider that the disturbances depend only on the
AUV position. Finally, note that we choose to solve a planar problem because we can plot
the results in a meaningful way, but all our developments can be easily extended to deal
with 3-D models as well. It is important to note that the procedure we describe in this work
could be applied to a different modeling of the problem; for instance, if the friction came
from pressure drag, it would be proportional to the square of velocity.

2.2. Disturbance Models

We model three disturbances that appear in the underwater environment: swirls,
currents and constant fields. The constant field is a fixed disturbance model that uses two
scalar parameters a ∈ R and α ∈ [0, 2π), where the absolute value of a controls the strength
of the field and α its orientation as:

px = a · cos(α)

py = a · sin(α)
(2)

A swirl vector field can be modeled using three scalar parameters, b ∈ R, x0 ∈ R and
y0 ∈ R, as:

px = b · y− y0√
(x− x0)

2 + (y− y0)
2

py = b · −x + x0√
(x− x0)

2 + (y− y0)
2

(3)

where x0 and y0 control the location of the vortex of the swirl, the absolute value of b
controls the strength of the swirl and the sign of b controls whether the swirl rotates clock
or counterclockwise.

In this work, for simplicity, we consider only horizontal currents, which we model
using three scalar parameters, c ∈ R, d ∈ R and y0 ∈ R, as follows:

px = c · e−
(y−y0)

2

d2

py = 0
(4)

where y0 locates the maximum current strength y-coordinate, the absolute value of d
indicates the breadth of the current, the absolute value of c controls the strength of the
current and the sign of c controls whether the current direction is positive or negative.

3. Optimal Control Motion Planning

An Optimal Control Problem (OCP) is an extension of the optimization problem to
the case in which time is involved, and we want to obtain a trajectory that is optimal in
a certain sense. In our case, a typical OCP is to determine the control trajectory (i.e., the
value of the acceleration as a function of time) that minimizes the time to reach a certain
position goal. There are several tools that could be used to solve such an OCP, depending



Sensors 2021, 21, 5011 4 of 15

on whether the time is discrete or continuous, and the literature on the topic is extensive
(see [2,25–27] and their references). In this work, we will work using continuoustime OCPs.

3.1. Continuous Time Optimal Control

Let us assume the following OCP formulation [2] p. 104:

min J(s(t), u(t)) = K
(
(st f ), t f

)
+
∫ t f

0
L(s(t), u(t), t)dt

s.t.
ds
dt

= f (s(t), u(t), t)

s(0) = s0

Ψ(s(t f ), t f ) = 0

u(t) ∈ U, ∀t ∈
[
t0, t f

]
(5)

where we have that:

• t ∈ [0, t f ], t ∈ R is the time, where t f is the final time;
• s(t) ∈ Rm is the state trajectory, where s(t) is the state at time t;
• u(t) ∈ Rl is the control trajectory, where u(t) is the control at time t. The controls

belong to the set of admissible controls U;
• J : Rm × Rl × R → R is the cost functional to be minimized, that is formed by a

terminal cost functional K : Rm ×R→ R and a running cost functional L : Rm ×Rl ×
R→ R;

• The transition function f : Rm × Rl × R → Rm controls the state evolution as a
function of t, s(t) and u(t);

• s0 ∈ Rm is the initial state;
• Ψ : Rm ×R→ Rr is the final condition that must hold at t f .

Since we consider that the transition function f is deterministic, if we have the initial
conditions and a control trajectory, we can obtain the state trajectory and the total cost by
integrating (5). Note that we consider that time is a continuous variable, thus the name
of continuous time OCP; it is also possible to work using a discrete time OCP, where
some important changes from (5) are that integrals are replaced by sums, and differential
equations by difference equations, as shown in [2].

3.1.1. Dynamic Programming Methods for Continuous Time

There are two classical approaches to solve the OCP (5): the minimum principle and
dynamic programming methods [2], where the former provides necessary conditions and the
latter, sufficient conditions. We use a dynamic programming approach, which is based on the
concept of value function V(s, t), which is a continuous function that returns the optimal cost
that can be obtained in state s at time t. The function V is obtained by solving a nonlinear first
order Partial Derivative Equation (PDE) as Theorem 1 states, Section 3.3.5 in [2]:

Theorem 1 (Dynamic Programming: HJB). The sufficient conditions that a continuous and
unique function V(s, t) has to satisfy in order to be the optimal solution to the control problem (5)
are the following two expressions, known as the Hamilton–Jacobi–Bellman (HJB) equation:

0 =
∂V
∂t

+ min
u∈U

[
∂V
∂s

T
f (s, u, t) + L(s, u, t)

]
V
(

s(t f ), t f

)
= K

(
s(t f ), t f

)
+ νTΨ

(
s(t f ), t f

) (6)

Unfortunately, solving (5) using the HJB Equation (6) is, in many cases, intractable (a
notable exception being the linear quadratic case, which has a closed solution based on the
Ricatti equations, Section 3.5 in [2]). First, note that (6) involves solving a nonlinear PDE
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due to the minimization operator which need not have a classic solution, i.e., an everywhere
continuously differentiable V function. As noted by [28], we may think of admitting weaker
solutions, that is, V functions that are continuous but not everywhere differentiable.

Based on this idea, Crandall and Lions proposed the viscosity solutions [29]. The key
idea is that a viscosity solution to the HJB equation is a continuous but not everywhere
differentiable V function. The derivative of V at points in which the viscosity solution is
not differentiable is the derivative of a smooth function which touches V. Some important
characteristics of the viscosity solutions are [28]: (1) the viscosity method allows selecting
a single weak solution and (2) the optimal value function is the single viscosity solution
to the HJB equation. Hence, finding the viscosity solution to the HJB equation allows
obtaining V, and thus, it is no surprise that a large research has been addressed to these
viscosity solutions, as [28–35], to mention some.

Another key advance consists of using numerical approximations that are based
on discretizing the state space that, in the limit, converge to the viscosity solution of
the HJB [28]. The seminal paper in this area is [36], where the authors conclude that
any approximation method that satisfies the properties of monotonicity, stability and
consistency is guaranteed to converge in the limit to the viscosity solution. A popular
approach that is based on this framework is the finite-difference upwind method [3,4],
which is based on the following ideas:

• The state space is discretized. Note that this means that we may face the curse of
dimensionality if n is large;

• The value function is estimated iteratively by approximating the derivative with
respect to the state by using finite differences;

• Depending on the state drift, for each state, the derivative is approximated using the
backwards or the forward finite difference approximation.

This method is shown to satisfy the three properties of monotonicity, stability and
consistency in [5], and hence, it converges to the viscosity solution in the limit. Two useful
sources to implement these methods are [4], where several schemes and examples are
described, and [5], where the upwind scheme algorithm is thoroughly described. The main
problem that the upwind method faces is that it suffers from the curse of dimensionality,
and hence this method is generally not useful to solve problems with a state dimension
higher than 3, as the problem (1).

There are several other methods proposed to solve the HJB equation in Theorem 1,
such as the ones based on level-set method and semi-Lagrangian schemes [6], which,
however, are also based on a discrete grid and, hence, subject to the curse of dimensionality.
Several methods have been proposed to alleviate this problem and scale to large state
spaces, such as [7,8], which require obtaining mathematical expressions that link the
original state space with a reduced state space, where the HJB equation is solved. Finally, a
very promising method makes use of the recent deep learning advances in order to solve
the HJB approximately without being subject to the curse of dimensionality: the method is
known as deep Galerkin method (DGM) [9,10], which we now proceed to explain.

3.1.2. Deep Galerkin Method

Let us first assume that we know the optimal control u∗ that minimizes the second
term of the first equation from (6). Hence, in this case, the PDE we have to solve is:

0 =
∂V
∂t

+
∂V
∂s

T
f (s, u∗, t) + L(s, u∗, t)

V
(

s(t f ), t f

)
= K

(
s(t f ), t f

)
+ νTΨ

(
s(t f ), t f

) (7)

DGM approximates V(s, t) using a deep neural network (DNN), whose inputs are
the state vector s and the scalar t. By means of using the backpropagation algorithm, it
is possible to obtain the exact gradients ∂V

∂s and ∂V
∂t . The DGM takes advantage of this to

approximate the PDE using batches of samples: given the state and time space, we sample
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two sets of points: a set of interior points (s, t) that belong to the interior of the state and
time space and a set of terminal points (s, t f ). The set of interior points is used to minimize
the following training loss:(

∂V
∂t

+
∂V
∂s

T
f (s, u∗, t) + L(s, u∗, t)

)2

(8)

where we note that (8) is the squared error of the first term from (7): as (8) approaches 0,
the first term of (7) is approximated. Then, the set of terminal points is used to train the
NN in order to fulfil the final condition from (7) as:(

V
(

s(t f ), t f

)
− K

(
s(t f ), t f

)
+ νTΨ

(
s(t f ), t f

))2
(9)

where again, as (9) approaches 0, the final condition from (7) is approximated. Thus, the
DGM approximately provides a solution for (7) by minimizing the sum of the loss terms (8)
and (9). As the loss sum approaches 0, the DNN is the approximation of the optimal value
function. Note that a very important property of the DGM is that is a meshless method:
we do not train the DNN using a mesh over the state space, but samples, and let the DNN
generalize to the states that have never been seen before. As shown by [9], the DGM is
able to solve PDEs in very high dimensional spaces without being subject to the curse of
dimensionality; due to this significant advantage, we used the DGM in this work.

However, the original DGM method, proposed in [9], assumed that the optimal control
u∗ is known, which need not be the case in all control problems. In order to overcome this
problem, ref. [10] proposed a modification of the DGM known as DGM-PI (Deep Galerkin
Method—Policy Iteration), in which a second DNN is used to approximate the optimal
policy function. In our problem, however, we do know the optimal control u∗, so we can
use the standard DGM.

3.2. Continuous Time Surrogate Control

The continuous time OCP that we want to solve is the problem of minimizing the total
time that it takes to an AUV to reach the origin. Hence, in our OCP, K = 0, L = 1, the final
position must be the origin, the transition model is (1) and the control is the acceleration
angle; thus, the OCP we want to solve is:

min J = t f

s.t. ẋ(t) = vx(t), ẏ(t) = vy(t)

v̇x(t) = cos(θ(t)) + px(x(t), y(t))− k f · vx(t)

v̇y(t) = sin(θ(t)) + py(x(t), y(t))− k f · vy(t)

s(0) =
(
x(0), y(0), vx(0), vy(0)

)
x(t f ) = y(t f ) = 0, θ(t) ∈ [0, 2 · π), ∀t ∈

[
0, t f

]
(10)

and the HJB Equation (6) for this OCP is:

0 =
∂V
∂t

+ min
θ

[
∂V
∂x
· vx(t) +

∂V
∂y
· vy(t)

+
∂V
∂vx
·
(

cos(θ) + px(x(t), y(t))− k f · vx(t)
)

+
∂V
∂vy
·
(

sin(θ) + py(x(t), y(t))− k f · vy(t)
)
+ 1

]
V
(

x, y, vx, vy, t f

)
= 0

(11)
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3.3. Surrogate OCP for Continuous Time

However, we cannot solve (10) using DGM directly, as DGM assumes a fixed final
time t f , and in (10), t f is the minimization objective, and hence it is not fixed but free.
Instead, we propose the following surrogate OCP

min J =
∫ t f

0
tanh

(√
x(t)2 + y(t)2

)
dt

s.t. ẋ(t) = vx(t), ẏ(t) = vy(t)

v̇x(t) = cos(θ(t)) + px(x(t), y(t))− k f · vx(t)

v̇y(t) = sin(θ(t)) + py(x(t), y(t))− k f · vy(t)

s(0) =
(
x(0), y(0), vx(0), vy(0)

)
θ(t) ∈ [0, 2π), ∀t ∈

[
0, t f

]
(12)

where the main changes are the following ones:

• The problem now has a fixed terminal time t f , which is required by the DGM;
• As t f is fixed, we must change the functional J. Recall that our target was to move

the AUV as close as possible to the origin; we achieve this by using, as a running
cost, a hyperbolic tangent function that depends on the distance of the AUV to the
origin at each time, which is

√
x(t)2 + y(t)2. Thus, note that L→ 1 when the AUV is

far from the origin, and as the AUV approaches the origin, L→ −1. In other words,
our surrogate cost functional penalizes for being far from the origin, and rewards
positions of the AUV that are as close as possible to the origin.

Thus, the HJB Equation (6) for the surrogated OCP is:

0 =
∂V
∂t

+ min
θ

[
∂V
∂x
· vx(t) +

∂V
∂y
· vy(t)

+
∂V
∂vx
·
(

cos(θ) + px(x(t), y(t))− k f · vx(t)
)

+
∂V
∂vy
·
(

sin(θ) + py(x(t), y(t))− k f · vy(t)
)

+ tanh
(√

x(t)2 + y(t)2
)]

V
(

x, y, vx, vy, t f

)
= 0

(13)

As we have mentioned in Section 3.1.2, in order to use DGM to solve (13), we need
to solve the minimization problem in the PDE. Note that the minimization problem is the
following, which we obtain by dropping all terms that do not depend on θ

min
θ

[
∂V
∂vx
· cos(θ) +

∂V
∂vy
· sin(θ)

]
(14)

By obtaining the derivative of (14) and equalling to zero, we obtain the candidate
points to be a minimum:

θ∗DGM =

arctan


∂V
∂vx
∂V
∂vy

, arctan

−
∂V
∂vx

− ∂V
∂vy


 (15)

where the sign of each fraction determine the quadrant of the angle. Note that there are
two candidate angles: the first one corresponds to the minimization solution, in which the
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AUV travels towards the origin, and the second corresponds to the maximization solution,
in which the AUV tries to separate from the origin. Also, observe that we constrain the
controls to lie in the set θ ∈ [0, 2π) (as shown in (10) and (12)), and this constrain is naturally
enforced by using the arctan operation. Thus, we now can solve the surrogate OCP (12), by
making use of DGM to approximate the value function that satisfies the HJB PDE (13).

4. Empirical Simulation

In this section, we extensively study the results obtained by making use of the OCP
tools explained in Section 3 applied to the setup described in Section 2. The steps we
follow are:

• First, we explain the setup we use for our simulations in Section 4.1;
• Then, we train DGM and obtain the optimal control for the surrogate problem.

We study the value function and control functions obtained, as well as the train-
ing convergence, in Section 4.2;

• Afterwards, we study the performance of DGM in the surrogate problem (12) in
Section 4.3;

• Finally, we intensively study how the control obtained in the surrogate problem
applies to our original problem, i.e., the time minimization problem (10), in Section 4.4.

4.1. Simulation Setup

As mentioned, we validate our ideas by solving the surrogate OCP (12) using the
DGM. For all our simulations, we use the following discretized version of (1):

xn+1 = xn + ∆ · vx,n

yn+1 = yn + ∆ · vy,n

vx,n+1 = vx,n + ∆ ·
(

cos(θn) + px(xn, yn)− k f · vx,n

)
vy,n+1 = vy,n + ∆ ·

(
sin(θn) + py(xn, yn)− k f · vy,n

) (16)

where n denotes time indexes, ∆ = 0.01 s is the time step, and we set the friction parameter
k f = 0.5. Note that we solve the OCP using continuous time tools, but we simulate using a
discrete time setup: for values small enough of ∆, the error introduced by the discretization
will be negligible.

As disturbances, we used the three models introduced in Section 2.2: a constant
field disturbance following (2), with parameters (a, α) = (1/2, π/4); a swirl following (3),
with parameters (b, x0, y0) = (1/2, 5, 1); and a current following (4), with parameters
(c, y0, d) = (1, 5, 3).

Finally, we compared the results obtained by DGM with the following baseline control
θb(t), which consists of always accelerating towards the origin:

θb(t) = arctan
(−y(t)
−x(t)

)
(17)

Note that the baseline is an intuitive control, which does not take into account the
velocities nor the disturbances. Yet, if the velocities have a small magnitude and the the
disturbances have a small effect, this baseline will provide good results, which we try to
improve by using the DGM.

4.2. Training Results

We proceeded to train the DGM to solve the OCP (12), that is, we used the DGM to
solve the HJB (13). We followed the DGM implementation used in [10]. For each of the three
disturbances we studied, we used a three layer DGM neural network, where each layer has
50 nodes. The architecture can be seen in Figure 1. We trained the DGM during 104 epochs;
in each epoch, we randomly sampled 104 interior points to minimize the loss (8) and other
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104 terminal points to minimize (9). Then, these points were used to minimize both losses
during 10 iterations, and then, we started another epoch, where we sampled new points. As
optimization algorithm, we used Adam [37], as it is a widely used minimization algorithm
to train neural networks. Each time that we sampled state points, we followed a uniform
distribution where x(t), y(t) ∈ [−10, 10] m, and vx(t), vy(t) ∈ [−2, 2] m/s. Finally, note
that we set t f = 10 s.

h0 = (s, t)
h 1

=
w

1
·h

0
+

b 1

D
G

M
la

ye
r

1

h2
D

G
M

la
ye

r
2

h2

D
G

M
la

ye
r

3

h3 V(s, t) = w2 · h3 + b2 θ

Figure 1. Block diagram showing the DGM architecture used in this work. Each DGM layer follows
the implementation detailed in [10], where wi and bi denote weights and biases of the initial and final
feed-forward layers. Each DGM layer is similar to an LSTM layer, as detailed in [10], and we used
a dimension of 50 nodes for each of the 3 DGM layers. Note that the input is the pair (s, t) and the
output of the neural network is the value function V(s, t). We obtained the control θ using (15). After
convergence, both the value function and the control approximated the optimal ones.

With these parameters, DGM converges, as shown in Figure 2, where we can see
that both losses are minimized during training and reach low values. This means that
we obtained a neural network that estimates both the value function V(s, t) and the
optimal control θ∗(t), and both can be observed in Figures 3 and 4 for the concrete cases
when vx = vy = 0. First, in Figure 3, we observed the value function as a function of
(x, y, vx = 0, vy = 0, t = 0), where we note that we have to particularize the values of vx,
vy and t to obtain a 3-D plot. As expected, each value function is different, reflecting the
influence of the disturbance. For instance, by comparing the value function of the constant
disturbance in Figure 3 and the disturbance effect from Figure 5, we can observe how the
cost is smaller as x and y decrease, as the disturbance pushes the AUV towards the origin,
while the cost increases as x and y increase, as the disturbance pushes the AUV far from
the origin.
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(c) Horizontal current

Total loss Interior loss Terminal loss

Figure 2. Training losses of DGM for the surrogated OCP solution (13): the horizontal axis represents
the training epoch, while the vertical axis represents the losses (lower is better). We represent the
total loss, which is the sum of the interior loss (8) and the terminal loss (9): as the latter is around one
order of magnitude smaller than the former, the total loss is dominated by the interior loss. Note how
all losses are minimized as the training advances, which means that DGM converges to a solution of
the HJB equation.

(a) Swirl. (b) Constant. (c) Current.

Figure 3. Value function obtained by DGM for each disturbance, where the horizontal axes represent
x and y, respectively, and considering that vx = vy = 0. The value plot represent the value function
V(s, t) that DGM estimates as the solution to the HJB Equation (13) at t = 0; note that each disturbance
model yields a different value function, where we can see the shape of the disturbance (compare with
the disturbances shown in Figure 5).

Figure 4 shows the optimal control obtained using the DGM, where the control is
obtained by following (15). Note that the optimal control depends on the derivative of the
value function; hence, it may suffer from noise if the value function estimate is not good.
We observe several interesting points in this figure: First, note how the optimal control
obtained is very similar to the baseline control (17), as the control tends to be pointing
towards the origin. Second, note how there are variations in the control depending on the
disturbance; this is expected, as the DGM is able to obtain optimal control functions for
each concrete disturbance. Finally, note that when we are far from the origin, the quality
of the control obtained by DGM worsens, as it may indicate to accelerate in directions
that separate the AUV from the origin. This is due to the fact that the cost functional
J in (12) depends on the distance to the origin, and note that we sample uniformly in
x and y, which in turn means that the distribution of points used to train DGM is not
constant with the distance, as lower distances will have more data. Hence, what we
observe is reasonable: larger distances present worse estimations, as they have appeared
less frequently during training.
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(a) Swirl. (b) Constant.

(c) Current.

Figure 4. Control obtained by DGM for each disturbance, where the horizontal and vertical axes
represent x and y, respectively, and considering that vx = vy = 0. Note that these plots represent
the optimal control obtained using (15), which depends on the gradient of the value function from
Figure 3. We represent the control for different values of t, where cold colors represent t → 0 and
warm colors t→ t f . We observe that the quality of the control obtained by DGM worsens slightly as
the distance from the origin increases, as mentioned.

4.3. Surrogate Problem Results

Now, we proceed to compare the results obtained by the control obtained by the DGM
and the baseline control. In order to benchmark the performance of both controls, we set
100 initial states sk(0), where k ∈ {1, 2, 3, . . . , 100}, where each initial state is formed by
an initial velocity vx(0), vy(0) ∈ [−2, 2] m/s, and an initial position x(0), y(0) ∈ [−8, 8] m.
Note that the initial velocity is sampled in the same limits that were used to train the DGM,
but the initial position is sampled using reduced limits to avoid the points in which DGM
obtained a bad estimation of the control, as explained in the previous section.

We define the cost error as follows:

e =
100

∑
k=1

ek =
100

∑
k=1

(J(sk(0), θDGM(t))− J(sk(0), θb(t))) (18)

where e is the error between the total costs of the DGM control θDGM(t) and the baseline
control θb(t), averaged using the 100 different initial states sk(0). Note that as we are
dealing with a minimization problem, e ≤ 0 means that the DGM obtains better results
than the baseline (i.e., a lower cost—that is, the DGM is better), and e > 0 means that the
baseline returns a trajectory with smaller cost (i.e., the baseline is better). Note that we use
the cost functional J from (12).

The results obtained can be seen in Table 1, where we represent both the error e
following (18) and the proportion of trajectories in which the DGM provides a lower
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cost than the baseline, i.e., the improvement proportion of trajectories. Note that in both
metrics, the DGM provides considerably better results than our baseline: the error is
always negative, which means that the DGM is better than the baseline, and then, the
improvement proportion of DGM is higher than 80% across all disturbances. Note that this
is an important result, as we have trained the same architecture of DGM and it has obtained
good results for all the disturbances tested; this implies that the DGM may generalize
and work with many other types of disturbances, which makes it a very powerful and
flexible approach.

Table 1. Results for the surrogate OCP (12), comparing DGM and the baseline control. DGM provides
better results, not only in terms of lower cost and average error (remember that negative error values
mean that DGM is better), but also in that more than 80% of the trajectories present a lower cost
with DGM.

Disturbance Swirl Current Constant

Average J DGM 5.26 4.26 5.12
Average J baseline 6.97 4.64 6.95

e −1.70 −0.38 −1.83
Improvement proportion 0.84 0.81 0.83

4.4. Original Problem Results

The results from the previous section were expected, as we trained the DGM to
approximate the solution of the HJB (13). Now, it is time to evaluate whether our surrogate
problem is effective in solving our original OCP (10). In order to evaluate this, we used the
same 100 initial conditions from the previous section to evaluate the cost that yield both
the baseline and DGM controls. Note that the key difference with the previous section is
that now, instead of evaluating the cost using the cost functional from (12), we use the cost
functional J from (10). Additionally, the original problem finished when the origin was
reached; in our case, as we implemented the discrete version (16), we were satisfied that
the origin was reached when the distance to the origin was smaller than 0.5 m.

The results obtained are in Table 2 and Figure 5. First, in Table 2, we represent both
the error e following (18) and the proportion of trajectories in which the DGM provides a
lower cost than the baseline, i.e., the improvement proportion of trajectories. Note that,
in both metrics, the DGM provides considerably better results than the baseline: first, the
error is always negative, which means that the DGM is better than the baseline, and then,
the improvement proportion of DGM is of 87% for all disturbances tested.

Table 2. Results for the original OCP (10), comparing DGM and the baseline control. The DGM
provides better results, not only in terms of lower cost and average error (remember that negative
error values mean that the DGM is better), but also in that more than 85% of the trajectories present a
lower cost with the DGM.

Disturbance Swirl Current Constant

Average J DGM 5.45 4.75 5.63
Average J baseline 7.68 5.55 7.81

e −2.25 −0.80 −2.17
Improvement proportion 0.87 0.87 0.87

Finally, in Figure 5, we plot several trajectories for each disturbance and control law.
Observe that the subtle differences in controls between the baseline (17) and the control
obtained by DGM (see Figure 4) are translated into significant differences in terms of
trajectories, and hence, in costs. DGM is able to adapt to the disturbance, and specially in
regions where the effect of the disturbance is strong, as close to the swirl or current centers,
its advantage over the baseline is clearly seen, as it is able to obtain a control law that
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minimizes the time to reach the origin. As we mentioned, in regions where the disturbance
effect is small, the baseline control is good, and the DGM provides similar values to it.

−10 0 10

−10

0

10

(a) Swirl

−10 0 10

−10

0

10

(b) Constant

−10 0 10

−10

0

10

(c) Horizontal current

DGM Baseline

Figure 5. Example trajectories for each control law and disturbance, where the horizontal axis
denotes the x coordinate, and the vertical axis is y. The vector field represents the disturbance, the
red trajectories are obtained using DGM and the blue trajectories are obtained with the baseline
control (17). Observe how DGM trajectories differ the most as the disturbance effect increases, thus
giving a strong advantage to DGM over the baseline when the disturbance effect is not negligible.

5. Conclusions

In this work, we propose solving the OCP for navigation by means of using the DGM,
an efficient meshless method that allows approximating the solution of the HJB equation
making use of the recent advances in deep learning in an efficient way. Since optimal
navigation problems generally are formulated in terms of minimizing the time in which
a certain target is reached, we propose a novel approach in which we use a surrogate
problem to transform this problem into a fixed-horizon problem, which we can solve using
the DGM. When we test in the presence of disturbances, we note that DGM offers strong
results compared to the baseline consisting in accelerating towards the origin, as it provides
significant improvements in terms of cost, specially when the effect of the disturbances is
not negligible.

There are several future lines of work that may arise from this work. First, it would
be interesting checking how the DGM behaves when using different disturbances. Even
though in this work we have tested using three different disturbance models, which are
swirls, currents and constant disturbances, it would be interesting checking whether the
DGM works on a wider set of disturbances and disturbances parameters. Another line
of work could be trying to address the border effects that appeared in the control in
Figure 4; one possibility would be sampling during training using a uniform distribution
taken from Polar coordinates rather than Cartesian, so that the DGM is trained uniformly
on the distances to the origin. Another possible line would consist of evaluating the
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effects of the uncertainties in localization that arise in the underwater medium [23] in our
proposed method.

Another line of work would consist of adding more constrains to the problem we
are solving, to make it more realistic in different aspects. One of them could be using a
noisy observation as input, instead of the actual state, as underwater location mechanisms
are noisy. Another would be adding constrains to the control that reflect the actuators
limitations. Note that (5) can deal with admissible controls, and in (10) we limit our controls
to lie in the set θ ∈ [0, 2π) (which is enforced by the arctan operation in (15)). However,
different control constrains could be enforced in our formulation depending on the AUV
actuators. Additionally, our approach could also be tested using obstacles, by means of
modifying the cost functional to have an additional term that increases the cost as the
distance to an obstacle increases.

It would also be possible to add uncertainty about the disturbance. Note that, in this
work, we have trained a neural network for each disturbance, and hence, our method
requires knowing the disturbance in advance, as well as its parameters. A possible way to
address this would be to extend the state to include the disturbance parameters as inputs:
the negative counterpart would be an increase in the computational load as a result of the
growth of the state space.

Finally, it would also be interesting checking the performance of the DGM compared
to other methods used to approximately solve OCPs, such as deep reinforcement learning
ones, which have already been applied to navigation ([38,39]) and offer an interesting
alternative to compare the DGM with.
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