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ABSTRACT

We study an underwater navigation problem, where an Under-
water Autonomous Vehicle must reach a target position in the pres-
ence of a disturbance that may be unknown. In order to deal with this
problem, we make use of Deep Reinforcement Learning tools, and
more concretely, we make use of robust control ideas, which allow
training an agent in the presence of uncertainty. We propose a robust
Proximal Policy Optimization agent and train it using simulations of
an underwater medium: this agent shows an excellent performance
when facing unknown disturbances, being able to approach the per-
formance of the optimal agent which had an exact knowledge of the
underwater disturbance.

Index Terms— Robust Control, Deep Reinforcement Learn-
ing, Underwater Autonomous Vehicle, Proximal Policy Optimiza-
tion, Underwater Disturbances

1. INTRODUCTION

The problem of autonomous underwater navigation has been tradi-
tionally a complex problem. First, because the water strongly at-
tenuates the radio signals, and hence, it is not possible to use GPS
underwater. And second, because the underwater medium is sub-
ject to disturbances that affect the Underwater Autonomous Vehicle
(UAV). The first problem has been subject to an intense research,
which has resulted in a set of methods designed to facilitate the un-
derwater navigation, as a recent survey notes [1]. A family of algo-
rithms used to address the underwater navigation problem is Rein-
forcement Learning (RL), a bio-inspired method for optimal control
in which an agent learns by interacting with an environment through
trial and error. The objective of the learning process is a set of trajec-
tories that are optimal in some sense, such as time to reach a certain
target or battery consumption, to mention some. Although RL was
applied to the underwater navigation problem several years ago [2],
[3], the recent advances in Deep Learning, and more concretely, on
Deep RL (DRL), have facilitate a set of works that apply these meth-
ods to high dimensional underwater navigation problems, as can be
seen in [4], [5], and the references therein.

However, most of the current works do not pay much attention
to the disturbances, and actually many papers do not consider them,
such as [3] or [4]. One exception is [2], which however, is limited
to a single disturbance type and only considers discrete states and
actions. But the role of disturbances should not be ignored: a re-
cent work using DRL for underwater target search shows that the
performance of the system worsens significantly when a disturbance
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is present [5]. Thus, it is important taking disturbances into account
for underwater autonomous systems: this is our objective.

However, even though we may simulate the effect of a distur-
bance, actual disturbances on the underwater medium may signifi-
cantly differ from the ones used in simulations. We may deal with
this uncertainty using Bayesian methods in combination with RL, as
in [6] and [7]. However, these methods rely on Gaussian Processes,
which are computationally complex, although recent advances in
Deep Learning may alleviate this [8]. We use a different approach,
based on robust control ideas [9], [10], [11], [12] or [13]. In these
methods, the agent is trained in an adversarial fashion, so that it is
able to face unknown situations. We apply these ideas to the au-
tonomous underwater navigation: our main contribution is develop-
ing an agent that is able to successfully cope with unknown underwa-
ter disturbances, which is a problem that has not been satisfactorily
addressed in current literature yet. We compare to a simple baseline
and an optimal agent that knows the actual disturbance. Our sim-
ulations show that the robust agent we propose is able to approach
the performance of the optimal agent, thus, robust tools are a good
approach to deal with disturbance uncertainty, which is a situation
that arises in most real-world underwater navigation systems.

The rest of the paper goes as follows: Section 2 introduces our
UAV model and the disturbances used in this work. Then, Section 3
introduces the necessary background on DRL and explains the algo-
rithms we use. Section 4 presents our empirical results, which shows
that our ideas are successful, and finally Section 5 draws some con-
clussions and proposes some possible future lines.

2. SETUP DESCRIPTION

We now present our UAV and disturbances models used in this work.

2.1. Underwater navigation model

We consider a UAV moving in a 2-D space (i.e., constant depth),
where x and y denote the horizontal and vertical coordinates, and
vx and vy represent the velocity components in x and y. The UAV
control variable is the acceleration angle θ (i.e., the heading angle),
and the time index is n. We consider that the disturbances affect
the acceleration of the UAV and its effect is modelled by two terms
dx(x, y) and dy(x, y). We model the friction as velocity depen-
dent (i.e., a low velocity case, [14]) using a parameter kf as in the
Isotropic Rocket problem [15]. Hence, we consider that the veloci-
ties depend on the acceleration (i.e., the control variable), the distur-
bance and a limit due to friction (so that the velocity does not grow
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unbounded). Thus, our dynamic system is:

xn+1 = xn + ∆ · vx,n
yn+1 = yn + ∆ · vy,n

vx,n+1 = vx,n + ∆ · (cos(θn) + dx(xn, yn)− kf · vx,n)

vy,n+1 = vy,n + ∆ · (sin(θn) + dy(xn, yn)− kf · vy,n)

, (1)

where ∆ is the time step and sn = (xn, yn, vx,n, vy,n) is the state
of the system.

2.2. Disturbance models

We use three significant disturbances that appear in the underwater
environment: swirls, currents, and constant fields. The constant field
is a fixed disturbance modeled using two scalar parameters a ∈ R
and α ∈ [0, 2 ·π), where the absolute value of a controls the strength
of the field, and α its orientation as:

(dx, dy) = a ·
(

cos(α), sin(α)
)
. (2)

A swirl vector field can be modeled using three scalar parame-
ters b ∈ R, x0 ∈ R and y0 ∈ R as:

(dx, dy) =
b√

(x− x0)2 + (y − y0)2
·
(
y − y0,−x+ x0

)
, (3)

where x0 and y0 control the location of the vortex of the swirl, the
absolute value of b controls the strength of the swirl and the sign of
b controls whether the swirl rotates clock or counterclockwise.

In this work, for simplicity, we consider only horizontal and ver-
tical currents. A horizontal current can be modeled using three scalar
parameters c ∈ R, w ∈ R and y0 ∈ R as follows:

(dx, dy) =

(
c · e−

(y−y0)2

w2 , 0

)
, (4)

where y0 locates the maximum current strength y-coordinate, the
absolute value of w indicates the breadth of the current, the abso-
lute value of c controls the strength of the current and the sign of c
controls whether the current direction is positive or negative. In an
equivalent way, a vertical current can be modeled as follows:

(dx, dy) =

(
0, c · e−

(x−x0)2

w2

)
. (5)

3. DEEP REINFORCEMENT LEARNING METHODS

We formulate our navigation problem as a discrete time Optimal
Control Problem (OCP), in which we want to minimize the time
that it takes to the UAV to reach the origin of coordinates in and
environment with disturbances. If we know the disturbance, we can
approximate the optimal control by making use of DRL methods.
However, in the real world this is seldom the case, and we face un-
known disturbances: we propose using robust control to deal with
this case.

3.1. Markov Decision Processes

A convenient framework to model discrete time OCPs are Markov
Decision Processes (MDPs), which are defined as [16], [17]:

Definition 1 (Markov Decision Process). An MDP is a 5-tuple
〈S,A, P,R, γ〉 where:

• S is the state set, containing all the possible states s ∈ S.

• A is the action set, containing all the possible actions a ∈ A.

• P : S×S×A→ [0, 1] is the transition probability function,
where P (sn+1|sn, an) denotes the probability of transition-
ing to the next state sn+1 given that the agent is in state sn
and takes action an.

• R : S × A → R is the reward function, where r(sn, an)
denotes the reward that the agent receives when it is in state
sn and takes action an.

• γ ∈ (0, 1) is a discount factor.

MDPs can be used to pose discrete time OCPs, and their solution
is a policy π : S → A, where π(sn) is a probability distribution over
A denoting the probability that the agent selects action an ∈ Awhen
it is in state sn. The optimal policy π∗ is the policy which returns
the highest cumulative reward to the agent, defined as:

Eπ,P
∞∑
n=0

γnr(sn, an), (6)

where E denotes the mathematical expectation. A classical way of
solving OCPs is Dynamic programming [18], [19], although if the
action and / or action spaces are large, the problem becomes com-
putationally intractable. Also, note that in many real cases, P and
R may be unknown. Both problems can be addressed by using RL
tools, which are biologically inspired and learn by interacting with
the system using trial and error. A complete introduction to the field
is given in [20], and this field has attracted a lot of attention recently
as Deep Learning advances have been applied to RL to provide DRL
methods that tackle with high dimensional problems.

3.2. Proximal Policy Optimization

In this work, we use Proximal Policy Optimization (PPO) [21] as
DRL algorithm, which is an evolution of Trust Region Policy Opti-
mization (TRPO, [22]). Both algorithms use a Deep Neural Network
(DNN) of parameters ω to approximate the policy πω , and then, ω
is optimized in order to maximize the cumulative reward. The max-
imum variation between the policy DNN in two consecutive opti-
mization steps is bounded in order to avoid a performance collapse.
TRPO is a successful algorithm due to its good performance [23],
but it is computationally intensive: PPO was derived to alleviate that
computational load. The optimization problem that PPO solves is:

max
ω

Eπω,P

[
∞∑
n=0

γnL(πω, πold, Aπω )Aπω (sn, an)

]
, (7)

where πold refers to the value of the DNN policy in the previous
iteration, and Aπω (sn, an) is the advantage function, used to esti-
mate how good is action an when used in state sn, estimated using
another DNN. The key term is L, defined as:

L(πω, πold, Aπω ) = min

(
πω(an|sn)

πold(an|sn)
, g(ε, Aπω (sn, an))

)
,

(8)
where

g(ε, Aπω (sn, an)) =

{
1 + ε if Aπω (sn, an) ≥ 0

1− ε if Aπω (sn, an) < 0
. (9)

Intuitively, the basic idea of (8) is to limit the maximum differ-
ence between the old policy and the new one: the g term clips the
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maximum variation in terms of the advantage and an ε parameter (9),
and L chooses as minimization objective the smaller term between
the quotient of policies and the clipped g term, hence, avoiding a
too large difference between iterations. By properly adjusting ε, we
get a trade between faster training, as policies are allowed to change
more between iterations, and a safer training, as an abrupt change
between policies may lead to a performance collapse in the new pol-
icy. Note that if we train PPO with a certain disturbance, then PPO
will learn the optimal policy for that concrete disturbance, but if the
disturbance changes, then we would no have any guarantees about
its performance in the new environment.

3.3. Robust control

In real-life, a UAV faces uncertainty regarding the actual distur-
bance, that is, uncertainty regarding the transition model P . As
mentioned, we can deal with this uncertainty using Bayesian meth-
ods, which may be used to estimate the value function [24] or the
transition model [25], [26], but in this work we do not use these
methods due to their high computational cost. Instead, we deal with
uncertainty in the transition model using ideas of robust control, also
known as robust MDPs or robust dynamic programming. The basic
idea in this approach consists in using an additional fictitious agent,
denoted as nature, that “controls” P , while the UAV selects the ac-
tions a, and their combined action control the transition to the next
state. Agent and nature have opposite objectives: while the UAV
wants to maximize the cumulative reward, the nature wants to min-
imize it. Hence, the underlying mathematical model is a two-player
zero-sum game, in which the UAV maximizes and the nature mini-
mizes. Thus, what the UAV has to solve is no longer a maximization
problem, but a max-min problem, in which it maximizes the worst
possible transition in terms of value. This approach presents ad-
vantages, such as having a more stable training [27], facilitating the
transfer from simulations to real world [13], and allowing the agent
to face unknown situations, which in our case means that the UAV
can face disturbances it has not seen before. One disadvantage is that
robust control may learn an excessively conservative policy [28].

We adapt the popular robust control framework from [27] to our
UAV problem: we use PPO to model both the UAV and the nature,
where the UAV chooses its acceleration θn and the nature chooses
the disturbance value (dx, dy). Both agents are trained alternatively
in an adversarial fashion: first, the UAV is trained while the nature
policy is kept fixed, and then, the nature is trained while the UAV
policy is kept fixed. This allows us training a robust policy which, as
our simulations will show next, is able to face successfully unknown
disturbances.

4. RESULTS

In this Section, we show the experimental results obtained. For each
disturbance model presented in Section 2.2, we first train a PPO UAV
to obtain the optimal policy for that case, and compare it both to ro-
bust agents and a simple baseline policy θb, which consists in accel-
erating towards the origin. Even though θb is a simple policy, which
does not take into account disturbances or the velocity of the UAV,
nonetheless it provides very good results in many cases, as it corre-
spond to the intuitive case in which the acceleration points towards
the origin, and as we will see, in some cases its performance is close
to the optimal. Mathematically:

θb = arctan

(
−yn
−xn

)
. (10)

4.1. Simulation setup

For our simulations, we consider that x, y ∈ [−10, 10] m, and
vx, vy ∈ [−2, 2] m/s, and implement a simulator following (1), with
∆ = 0.1 s and kf = 0.5. At each time step n, the UAV observes its
current state sn, chooses an action θn, and the environment transi-
tions to the next state sn+1 and returns the UAV a reward of −1 if
the distance of the UAV to the origin is larger than 1 m. Note that it
may happen that the UAV wanders without reaching the origin: in
order to avoid lockouts, if the UAV does not find the origin within
100 time steps, the episode is finished. We set γ = 0.9999, so that
by the end of the episode, the value of γn has not become negligible.

The PPO agent is implemented following [29]. The DNN policy
is a feedforward NN, with an initial layer whose size is the state size,
two hidden layers of 64 neurons, and a final layer which contains the
mean and variance for the two action components, which we normal-
ize so that the actions are the sine and cosine of θn. The cumulative
reward is estimated using another DNN, with the same layers and
sizes than the policy DNN, but the output is an scalar that estimates
(6). We use the Generalized Advantage Estimation [30], with the
default ε and λ = 0.97, to estimate Aπω by using the cumulative re-
ward estimation. The UAV using PPO interacts with an environment
with a certain disturbance which is kept fixed during training, but
which is unknown a priori to the agent. The training allows the PPO
agent to find the optimal policy for each disturbance, but note that
this policy needs not be optimal if the disturbance varies. We train
each PPO agent using 2000 iterations: in each one, the agent first
interacts with the environment and stores 10000 experience vectors,
formed by pairs of (sn, an, rn, ss+1), which are then used to train
the value and policy DNN. Both DNNs are trained using Adam [31].

It has to be emphasized that PPO needs to train using an envi-
ronment with the concrete disturbance it has to face. In most real-
life cases of interest, the disturbance that the agent will face is un-
known. We address this by training a robust policy, in which two
PPO agents with opposite interests are trained iteratively. The first
agent is the UAV, while the second is the nature, that controls the dis-
turbance: we consider that the actions of the nature are (dx, dy) =
(0.5 · cos(β), 0.5 · sin(β)). We limit the maximum value of the ac-
tions of the nature to be smaller than the UAV action, so that the
UAV is obstaculized by the nature, but not overpowered. We train
both agents using 2000 iterations: in each one, we first train the UAV
gathering 10000 experience vectors and then training the UAV as de-
scribed in the previous paragraph. Then, we gather another 10000
experience vectors, and train the nature agent, which is a PPO agent
with the same parameters as the UAV agent.

As we have mentioned, robust methods may provide too conser-
vative policies [28], due to the fact that the adversary they trained
against had a worse effect than the actual disturbance that they may
face. In order to address this situation, that arises in our simula-
tions, we decided to test the robust methods using two different set
of observations. In the first one, the UAV and the nature observe the
current state only, sn (as with PPO): we denote this case as robust
PPO without memory. In the second case, we provide as observation
to both the UAV and the nature the states sn and sn−1: we denote
this case as robust PPO with memory. Note that this allows both
agents to infer what kind of adversary they face, and hence, adapt to
it. In our case, it means that the UAV could be able to infer which
are the local effects of the disturbance, and adapt to it. Even though
this idea may lead to better performance, it also means increasing
the state space, which beings a more difficult training.
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PPO (Optimal) Robust PPO with memory Robust PPO without memory Baseline

S −64.93± 23.4 (−71.04± 26.3) −69.19± 25.0 (−69.67± 25.2) −75.84± 25.5 (−82.36± 24.4) −79.11± 25.2
V −62.30± 22.5 (−67.24± 25.4) −70.44± 24.9 (−71.24± 24.9) −66.08± 23.7 (−76.41± 26.0) −68.90± 23.6
H −61.61± 23.2 (−64.37± 24.4) −66.41± 25.0 (−67.35± 25.1) −71.07± 25.1 (−78.30± 25.6) −69.04± 24.9
C −58.09± 18.6 (−73.79± 25.9) −62.37± 21.8 (−63.56± 22.3) −61.81± 20.3 (−74.12± 25.5) −59.07± 17.6

Table 1. Total cumulative reward obtained for each method, using the same 100 initial states, where S stands for swirl, V for vertical current,
H for horizontal current, and C for constant field. The numbers are mean ± the standard deviation: the best seed results come first, and the
best three seeds results are in brackets. Very remarkably, robust PPO with memory consistently provides good results, even though it was
trained without any knowledge of the disturbances.

4.2. Simulation results

We test out ideas training the PPO agent, as described before, in
four environments, each with a different disturbance: a swirl (3),
whose parameters are (b, x0, y0) = (1/2, 5, 1); a constant field (2),
with parameters (a, α) = (0.1, π/4); an horizontal current (4), with
parameters (c, y0, w) = (1, 5, 3); and a vertical current (5), with
parameters (c, x0, w) = (1, 5, 3). The PPO agent trained in these
environments will learn the different optimal policies for each case,
but as mentioned before, a change in the disturbance parameters or
the type of disturbance may cause that the policy yields low rewards.
The PPO UAV is trained using 10 different seeds, as DRL methods
convergence is seriously affected by initial conditions [32]. We also
train the robust PPO agents described, with and without memory:
note that robust PPO is trained without knowledge of any distur-
bance, as their training is against the nature. Again, we train both
PPO robust agents using 10 different seeds.

After training all agents, we compare their performance using
the same 100 initial conditions s0. For each disturbance, we com-
pare the performance of PPO, robust PPO with and without memory,
and the baseline 10. The results obtained can be observed in Table
1 and Figure 1. In Table 1, we represent the cumulative rewards ob-
tained by averaging the results obtained both using the best and the
three best seeds of each algorithm. If we focus on the best seed, in all
cases PPO returns the best value, and this is to be expected, as PPO
was trained in the environment with disturbance. Very remarkably,
the results of robust PPO closely match the results of PPO, but note
that robust PPO was trained without knowing the disturbance: the
same robust PPO polices are used for the four disturbances and ob-
tain good results, specially in the case of robust PPO with memory.
This is the great advantage of using robust methods: they are able to
provide very good results, even though the training conditions and
test conditions differ. If we focus on the best three seeds average
in Table 1, note that robust PPO with memory is the algorithm that
provides a more stable training (i.e., small difference between the
best seed results and the three best seeds), and thus, it provides the
smallest variability on the results. By comparing both robust PPO
methods, we observe that having memory is an advantage, not only
in terms of less variability on the results, but also in the capacity to
approximate the optimal policy results. Finally, note that the simple
baseline provides in all cases worse or very similar results to robust
methods: this, together with the fact that robust methods are trained
once and may adapt to any disturbance, provides a strong reason to
use them in UAV navigation problems.

5. CONCLUSIONS

In this work, we show that a robust PPO agent successfully copes
with an underwater navigation problem with unknown disturbances,
being able to match the performance of the PPO agent which knows
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Fig. 1. Trajectory examples for each method for different distur-
bances, where the vector field in gray represent the disturbance effect
and the black dots the initial positions. In all cases, the objective is
to reach the origin as fast as possible, where the disturbance affects
the trajectories. The initial conditions are randomly chosen and are
the same for all disturbances.

the disturbance and offering better performance than a trivial solu-
tion, which consists in accelerating in the direction of the target.
Thus, if we do not have a precise knowledge of the disturbances,
robust DRL offers a valid tool to deal with this situation. Also, as
we have shown, the robust agent strongly benefits from having a
memory: a future line to this work could use more complex mem-
ory structures, such as LSTM neural networks [33]. Note that this
may result in even better results, as these networks may be not only
able of coping with unknown disturbances by using a robust method,
but also with uncertainty about the state of the UAV: this situation is
known as partial observability and has used LSTM to address this
problem, as in [4]. We strongly believe that using LSTM not only
helps managing partial observability situations, but also unknown
disturbances.
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