
© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

A Distributed Algorithm to Obtain Repeated Games
Equilibria With Discounting

Juan Parras∗, Santiago Zazo

Information Processing and Telecommunications Center
Universidad Politécnica de Madrid

ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid (Spain)

Abstract

We introduce a distributed algorithm to negotiate equilibria on repeated games
with discounting. It is based on the Folk Theorem, which allows obtaining better
payoffs for all players by enforcing cooperation among players when possible.
Our algorithm works on incomplete information games: each player needs not
knowing the payoff function of the rest of the players. Also, it allows obtaining
Pareto-efficient payoffs for all players using either Nash or correlated equilibrium
concepts. We explain the main ideas behind the algorithm, explain the two key
procedures on which algorithm relies on, provide a theoretical bound on the
error introduced and show empirically the performance of the algorithm on four
well-known repeated games.

Keywords: Repeated games, Folk Theorem, Average Discounted Payoff, Nash
equilibrium, Correlated equilibrium, Multiagent learning

1. Introduction

Multi agent learning (MAL) is a field which deals with the problem of multi-
ple agents trying to learn while interacting with the rest of players. This problem
has been extensively studied using game theory tools: the learning environment
is modeled as a game and each of the agents is a player trying to maximize its
own payoff, which depends on the actions of the rest of the players.

A general framework used to model the MAL problem is based on stochastic
games [1]. In these games, each player tries to solve a Markov Decision Process,
whose transitions and payoffs are coupled to the actions of the rest of the play-
ers. Several algorithms have been proposed for these games, such as Minimax-Q
[2], WoLF [3], CE-Q [4], OPVar-Q [5] and Pepper [6]. A problem which arises

∗Corresponding author
Email addresses: j.parras@upm.es (Juan Parras), santiago.zazo@upm.es (Santiago

Zazo)

1

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

with stochastic games is the dimensionality: a large number of states signifi-
cantly hardens the problem of learning. To avoid this, several algorithms based
on approximations have been used, such as FAL-SG [7], AlphaGo Zero [8] or
Libratus [9]. The recent advances in deep learning have also brought several
new algorithms to the MAL problem [10].

However, many MAL problems can be solved using repeated games, which
are stochastic games with only one state (i.e., the payoff functions of the players
do not change along the game). In a repeated game, there is a static game,
called stage or one-shot game, which is repeated a certain number of times [11].
The payoff obtained in each stage game by each player are averaged in order to
obtain the total expected payoff of the game using a discount factor or not. If a
discount factor is used, the payoff at the first stages have a larger weight on the
total payoff. The simplest strategy for a repeated game consists in playing the
equilibrium of the static game. Yet it might also be possible for all players to
obtain higher payoffs by using different strategies: this fact is collected by the
Folk Theorems [12, 11]. Hence, when learning a repeated game, it is possible
either to learn the static equilibrium or learning a possibly better equilibrium
by using the Folk Theorem.

The topic of repeated games is nowadays subject to an intense research
from different perspectives as recent works show. To mention some, it has
been studied from a physics point of view [13], [14], from a social and natural
sciences perspective [15] and it has also been studied under a computer science
perspective [16]. This amount of research has produced many algorithms to
learn the stage game equilibrium, i.e., without using the Folk Theorem, such as
Regret Matching [17] [18], ReDVaLeR [19] or AWESOME [20]. There are also
algorithms that explicitly use the Folk Theorem without discounting, as [21]
or [22]. M-Qubed [23] makes an implicit use of the Folk Theorem by setting a
bound on the maximum losses that the players are willing to take.

The algorithms mentioned so far are based on the idea of online learning:
players learn how to play based on the previous behavior and rewards obtained.
In this approach, guaranteeing a certain performance bound while learning is
important, as ReDVaLeR or M-Qubed do for games without discounting. How-
ever, in games with discounting, the learning process can cause that the players
obtain a low payoff, as the first stages of the game are the ones that weight
the most in the total payoff as well as the ones in which the players have not
yet learned how to act optimally. A different approach is based in negotiation:
prior to play, the agents interchange messages in order to negotiate how to play.
This approach is used, for instance, in [24].

In this paper, we introduce Communicate & Agree (CA), a novel algorithm
that aims to fill a gap in current MAL algorithms: CA is a MAL algorithm that
computes equilibria of repeated game with discounting using the Folk Theorem
and negotiation. Some of CA highlights are:

• CA is a fully distributed algorithm, which does not need a central entity
to control the negotiation process.

• CA explicitly uses the Folk Theorem, and hence, it can obtain better

2

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

payoffs than the ones obtained by simply repeating the static game equi-
librium.

• When there are several payoffs that could be achieved by making use of
Folk Theorem tools, CA selects payoffs that are Pareto efficient.

• CA can be applied to compute different kind of equilibria, such as Nash
or Correlated equilibria.

• CA can solve games of incomplete information, as each player needs not
knowing the payoff functions of the others. Yet we assume that all players
can observe the actions of the other players, that is, we assume perfect
monitoring [12].

When compared to previous approaches, we observe that none of them has
all of CA features: none of these algorithms is able to deal with discounted
payoffs using the Folk Theorem, nor it is fully distributed nor it is based on
negotiation.

The rest of the paper goes as follows: in Section 2, a brief introduction to
repeated game theory and equilibria concepts is given, then in Section 3, CA
algorithm is introduced and described. Section 4 provides a theoretical bound
on the error that CA induces. Section 5 provides a testbench of CA algorithm
performance using some well-known games. Finally, Section 6 presents some
concluding remarks.

2. Repeated games background

2.1. Static games

A static game G is a tuple ⟨N,A, u⟩, where:

• N denotes the number of players, numbered as 1, ..., i, ..., N .

• ai ∈ Ai are the actions available to player i, being Ai the set of actions
available to player i. A ≡ ∏

i Ai is the set of actions available to all
players, and a ∈ A is a vector of actions of all players.

• u is a function u : A → RN that gives the game payoffs as a function of
the actions of the players. Each component of u is the payoff function for
player i: ui : A→ R.

If an action set is finite, each of its component can be denoted as pure action.
Mixed actions are distribution probabilities for each player that map each pure
action of the player with the probability that the player plays that action. We
will denote pure actions ap by using the superscript p and mixed actions a
without superscript.

Observe that the payoff functions denote the nature of the game. It can be
purely competitive: the gains of some players are the losses of the others and
thus,

∑
i ui = 0 (zero-sum games). It can be purely cooperative, if all players

3

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

2.2 Repeated games of perfect monitoring
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

share the same payoff function:
∑

i ui = Nui. It can finally range between
these two extreme cases: these games are known as general-sum or non-zero
sum games, on which we focus.

2.2. Repeated games of perfect monitoring

A repeated game is built by playing repeatedly over T periods a static
game, called stage game. We assume repeated games of infinite duration (i.e.,
T = +∞). We define a repeated game of perfect monitoring G(D) as a tuple
⟨N,A, u, σ,H t, D⟩ where:

• N,A and u are defined as in the static game.

• H t ≡ At denotes the set of histories. A history ht ∈ H t is a list of
t-action profiles played in periods t = [0, .., t − 1]. ht is the past actions
profile.

• A strategy for player i is a mapping from the set of all possible histories
into the set of actions: σi : H → Ai.

• Average discounted payoff to player i is given by:

Ui(σ) = (1− δ)

∞∑
t=0

δtui(a
t(σ)) (1)

where δ ∈ [0, 1), δ ∈ D is the discount factor. Observe that we will use Ui

(capitalized) to refer to the average payoff of the repeated game (1) for
player i and ui to denote the payoff of the static game for player i.

We focus on games of perfect monitoring [12]: the history ht is known to
all players. We also focus in observable mixed actions: if all players randomize
their actions (i.e., use mixed actions), the output of their randomizing devices
is also observed by other players [25].

2.3. Equilibrium of the game

A Nash equilibrium (NE) [26] of an N -player game is an action vector such
that no player can gain by deviating unilaterally. Mathematically, for a static
game, an action vector a is a Nash ϵi-equilibrium of the game G, where ϵi ≥
0,∀i ∈ N if:

ui(ai, a−i) ≥ ui(a
′
i, a−i)− ϵi, ∀i,∀a′i ̸= ai (2)

where ai denotes the possibly mixed action of player i and A−i the action of all
players but player i. When ϵi = 0,∀i, we have a Nash equilibrium. A non-zero
sum game is guaranteed to have at least one NE [27].

The correlated equilibrium (CE) concept was introduced by Aumann [28]. A
correlated ϵi-equilibrium of a game G is a distribution probability ϕ over the set

4

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

2.3 Equilibrium of the game
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

of all pure actions ap ∈ Ap =
∏

i A
p
i such that no player can gain by deviating

unilaterally [11]:∑
ap
−i∈Ap

−i

ϕ(ap−i|api)ui(a
p
i , a

p
−i) ≥

∑
ap
−i∈Ap

−i

ϕ(ap−i|api)ui(a
p′

i , ap−i)− ϵi, ∀i,∀ap
′

i ∈ Ap
i , a

p
i ̸= ap

′

i

(3)

When ϵi = 0,∀i, we have a CE. The set of NE is contained in the set of CE.
Hence, NE are particular cases of CE, thus a non-zero sum game always has at
least one CE. The CE set is easier to compute than the NE set [29].

For repeated games, the equilibrium concepts are defined similarly. A strat-
egy profile σ is a Nash ϵi equilibrium of the repeated game G(D) if:

Ui(σ) ≥ Ui(σ
′
i, σ−i)− ϵi, , ∀i,∀σ′

i ̸= σi (4)

Similarly, a distribution probability ϕ is a ϵi-correlated equilibrium of the
repeated game G(D) if:∑

ap
−i∈Ap

−i

ϕ(ap−i|api)Ui(a
p
i , a

p
−i) ≥

∑
ap
−i∈Ap

−i

ϕ(ap−i|api)Ui(a
p′

i , ap−i)− ϵi, ∀i,∀ap
′

i ∈ Ap
i , a

p
i ̸= ap

′

i

(5)

In each case, when ϵi = 0,∀i, we have an NE or a CE. The main difference
between the static and the repeated game equilibria concepts is that the equilib-
ria of the repeated games are defined in terms of the averaged discounted payoff
(1). In the repeated game, the equilibrium concept is refined by imposing ad-
ditionally the sequential rationality requirement: the behavior followed by the
players must be optimal in all circumstances. This gives place to the Subgame
Perfect Equilibrium (SPE) concept [12].

The equilibria of the stage game (static equilibria) will also be equilibria
of the repeated game. But additionally, the Folk Theorems state that for suffi-
ciently high values of δ (i.e., δ is close enough to 1), there will be even more SPE
in the game [12]. There are many possible strategies σ that are potential candi-
dates to be SPE. In this paper we will focus on grim trigger strategy, because it
is a simple strategy that gives good results [12]. However, our approach is not
specific for grim trigger, thus it can be adapted to other strategies as well. Grim
trigger has two actions profiles, ao and ap. The latter is a punishment strategy,
which must be an equilibrium of the game. We consider ap to be an equilibrium
of the stage game, which will provide player i with payoff Ui(ap). The strategy
ao is such that provides each player a payoff Ui(ao) ≥ Ui(ap). Also, ao must
satisfy that no player can improve her payoff by a unilateral deviation from ao.
This condition is checked by using the punishment strategy ap: since all play-
ers can observe the actions of other players (we assume perfect monitoring), if

5

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

2.3 Equilibrium of the game
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

any of them deviates, the rest will switch to the punishment strategy forever.
Mathematically, using Bellman equation to express (1) in the case of NE (4),
that means:

(1−δ)ui(ao) + δVi(ao) ≥
(1−δ)max

a′
i

ui(a
′
i, a−i,o) + δVi(ap)− ϵi, a′i ̸= ai,o,∀i ∈ N (6)

where Vi(ai) denotes the expected future payoff that player i will achieve by
playing action ai. The strategy ao will be an equilibrium to player i if she cannot
do better by unilaterally deviating. Grim trigger is an unforgiving strategy: once
a player deviates, all players will switch forever to the punishment strategies,
thus: Vi(ap) = ui(ap). While no player deviates, they play using ao, which
means that Vi(ao) = ui(ao). Then, (6) can be rewritten as:

ui(ao) ≥ (1− δ)max
a′
i

ui(a
′
i, a−i,o) + δui(ap)− ϵi, a′i ̸= ai,o,∀i ∈ N (7)

We can proceed similarly for the case of CE. Using again Bellman equation
to express (1), the condition in case of CE (5) becomes:∑

ap
−i∈Ap

−i

ϕ(ap−i|api)
{
(1− δ)

(
ui(a

p′

i , ap−i)− ui(a
p
i , a

p
−i)
)

+δ (Vi(ap)− Vi(ϕ))
}
≤ ϵi, ∀i,∀ap

′

i ∈ Ap
i , a

p
i ̸= ap

′

i

(8)

where ϕ denotes the equilibrium distribution (equivalent to ao in Nash equi-
librium case). Again, we use grim trigger strategy, and we assume that the
punishment strategy ap is a static equilibrium, hence Vi(ap) = ui(ap). Also,
Vi(ϕ) =

∑
ap∈Ap ϕ(ap)ui(a

p) is the payoff expected if all players follow the cor-
related equilibrium ϕ (where ϕ(ap) denotes the probability assigned to each pure
action vector ap). Hence, (8) becomes:

∑
ap
−i∈Ap

−i

ϕ(ap−i|api)
{
(1− δ)

(
ui(a

p′

i , ap−i)− ui(a
p
i , a

p
−i)
)

+δ

(
ui(ap)−

∑
k

ϕkui(a
p
k)

)}
≤ ϵi ∀i,∀ap

′

i ∈ Ap
i , a

p
i ̸= ap

′

i

(9)

Observe than in a CE, each player equilibrium condition will be a certain
number of linear equations (9). The number of equations that each player has
to solve depends on the number of pure actions that she has.

The Folk Theorem asserts that grim trigger strategy will be able to reach, for
sufficiently high values of δ, any achievable payoff such that Ui(ao) ≥ Ui(ap).
In other words, a repeated game may have infinitely many valid equilibrium
points. Selecting one of these equilibria is the problem of equilibrium selection,
also known as bargaining in literature [30, 31, 32]. All of these solutions are
Pareto-efficient. A vector v is said to be Pareto-efficient if there is no other vector

6

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

u such that uk ≥ vk for all the k components of the vector. In other words,
a vector is Pareto-efficient if there is no other vector that provides a higher
value for all of its components. In our problem, a vector of payoffs for a certain
strategy a, U(a), is said to be Pareto-efficient if there is no other strategy a′ such
that all players have higher payoffs, i.e., ∄a′ ∈ A : {Ui(a

′) ≥ Ui(a),∀i ∈ N}.

3. The CA algorithm

In this section, we introduce our novel algorithm. It allows obtaining a
Pareto-efficient NE or CE in a repeated game of N players. We call it CA:
Communicate and Agree. CA requires the following inputs for each player:

• The discount factor δ.

• The payoff function for player i, ui. Each player does not need to know
other players payoff function, which in turn means that the player does not
know what kind of opponents she is facing (i.e., it is a game of incomplete
information). CA is able to work in a wide variety of environments: from
extreme competition to extreme cooperation games, without needing a
priori knowledge of the kind of game. Each player also needs to know na,
the dimension of the action vectors a ∈ A. This parameter is required to
sample A.

• The punishment action for player i, ai,p and its punishment payoff, ui,p.
This is the payoff that CA will try to improve by using repeated game
tools. We use a static equilibrium which can be obtained, for instance,
using Regret-Matching (RM) algorithm [17]. This requirement appears in
other MAL algorithms, such as [20].

• The number of players of the game, N .

• Nc, the maximum number of communications allowed. This parameter
allows controlling the negotiation time.

We assume that all players know the equilibrium concept (Nash or corre-
lated) and the strategy that all players will use, which in our case is grim trig-
ger. CA could be modified to use other strategies, by changing the equilibrium
conditions (7) or (9).

CA assumes that players communicate among them, as in [24]. We will use
this communication for players to interchange strategies that they are willing
to follow: player i proposes a strategy that leads her to an equilibrium, and if
this strategy is also an equilibrium to the other players, then it constitutes an
equilibrium of the repeated game.

CA proceeds in two steps. The first step is called action space sampling.
All players sample the set of actions A and interchange messages in order to
obtain As, the set of sampled actions which are valid equilibria for all players.
In order to do this, each player samples actions profiles and tests them to check

7

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

3.1 Action space sampling
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

which yield an equilibrium for her (i.e., using (7) or (9)). When a player finds
an equilibrium strategy a, it communicates it to other players, and they test
whether a is also an equilibrium for them or not. If it is an equilibrium for all
players, all players do As = As ∪ a. This is repeated a certain number of times,
controlled by Nc.

The second step is called Pareto pruning: the players must choose one strat-
egy from As. In order to do so, they coordinate to randomly choose a strategy
ac ∈ As. Then, all players discard all strategies a ∈ As so that Ui(a) < Ui(ac)
(i.e., they discard all strategies that are Pareto dominated by strategy ac).
Hence, As is pruned by eliminating all Pareto-dominated strategies. This pro-
cedure is repeated until As is a single strategy. By construction, this strategy is
guaranteed to be Pareto-efficient, because if it were Pareto-dominated, it would
have been pruned.

Algorithm 1 CA algorithm for each player i

Input: δ, ui, ai,p, ui,p, N , Nc, na
1: As ← sample− actions(δ, ui, ai,p, ui,p, N,Nc, na)
2: if As = ∅ then
3: As = ai,p
4: else
5: while |As| > 1 do
6: As ← pareto− prune(As, ui)
7: end while
8: end if

Output: As

A schematic description of CA can be found in Algorithm 1, where |As|
denotes the number of elements in the set As. Each subroutine is detailed in
the following sections, as well as in Algorithms 2 and 3.

3.1. Action space sampling

Action space sampling is the first component of CA algorithm. Roughly
speaking, we try to obtain the subset of actions that leads all players to an
equilibrium (other approaches try to find the achievable set of payoffs, [33]).
More formally, in case of NE:

As :
{
a ∈ A, ui(a) ≥ (1− δ)max

a′
i

ui(a
′
i, a−i) + δui,p, a

′
i ̸= ai,o

}
which are the conditions from (7). Using (9) we reach the condition for CE; in
this case, the sampling applies to ϕ distributions instead of actions a:

As :
{
ϕ ∈ Φ, so that (9) is satisfied

}
In general, As is not easy to obtain. We propose using an independent sam-

pling scheme to approximate As: each player uses a possibly different sampling

8

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

3.1 Action space sampling
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

method to obtain Ãi, a sampled version of A (the subscript i emphasizes that
each player might obtain a different Ãi set). Then, player i checks which action
profiles a ∈ Ãi that are equilibria for her. Then, player i shares her equilibrium
points with the rest of the players. If this point is a valid equilibrium for all
players, then they all add a to As, that is, As = As ∪ a. Note that for NE, we
sample actions a, and for CE, ϕ distributions.

Observe that each player can use a different sampling schema. We propose
three different sampling methods. The first is equispaced sampling on the action
space A or the ϕ space. The second is random sampling: each player randomly
obtains a sampled space Ãi following a certain distribution. Those two methods
are brute-force ones. The third method we propose is using an intelligent sam-
pling method, based on optimization. Each player samples A trying to maximize
her payoff. We define the following reward function for each player i:

fi(a) = λri(a) + (1− λ)r−i(a) (10)

where ri(a) is a function that measures how good action a is to player i, r−i(a)
does the same for the rest of the players and λ ∈ [0, 1] is a parameter that allows
modeling how much fi(a) takes into account player i reward and the rest of the
players. We use:

ri(a) =

 ||ui(a)− ui,p|| if
ui(a) ≥ ui,p and

a is an equilibrium
−||ui(a)− ui,p|| if otherwise

r−i(a) =
∑
j ̸=i

rj(a)

(11)

where ||x|| is the Euclidean norm of vector x. Our definition of ri(a) is positive
only if the payoff that action a provides to player i is higher than the punishment
payoff - and the highest this payoff is, the highest ri(a) will be. Also observe
that r−i(a) provides an average on the payoff gain of the rest of the players;
other metrics, such as the minimum payoff gain, could be used as well. Observe
that in (11), each player computes ri(a) and then shares it to the rest of the
players. If this is not desired or possible, we set λ = 1, and thus, fi(a) = ri(a):
each player does not take into account the rest of the players.

The intelligent sampling proposed is based on each player maximizing (10).
Intuitively, we sample A so that we maximize (10): this sampling is intelli-
gent because it finds actions a (or ϕ distributions) with high probabilities to
be equilibria to all players. As optimization algorithm, we will use Simultane-
ous Optimistic Optimization (SOO) [34]. SOO is a non-convex optimization
algorithm that allows maximizing a deterministic function when the function is
smooth around one of its global maxima, using a limited number of evaluations.

SOO is a very adequate algorithm for this sampling method. First, because
our objective function (10) is deterministic and possibly unknown: each player
only knows her own payoff (and hence, the term ri(a)), but she does not know
the payoff of the other players. This means that, unless λ = 1, each player does

9

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

3.2 Pareto pruning
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

not know a term of the objective function (10). Second, because it allows finding
an approximation to a maximum with a finite number of evaluations: this means
that SOO will try to find a maximizer as good as possible with a fixed number of
samples. And third, because SOO does not require the objective function (10)
to be convex, but only to be locally smooth around a local maximum, which
(10) and (11) satisfy.

We limit the maximum number of communications that each player can
initiate to Nc - i.e., each player can ask up to Nc times whether an action
is a valid equilibrium or not to other players. This assumes that the cost of
evaluating whether a point is an equilibrium or not is negligible when compared
to the cost of communicating. If that were not the case, we can limit the
maximum number of points sampled. We set this limit in order to control the
time that CA takes in execute.

Observe that our sampling scheme also allows to exploit the heterogeneity
of the players: some players might have a higher computational capacity than
the rest. The more computationally powerful players might sample using more
complicated schemes than the other players, which benefits them and also may
benefit the other players. Also, observe that the aim of the players is to dis-
tributedly obtain As. They are only allowed to ask other players whether an
action vector is a valid equilibrium for them. In this way, each player needs not
knowing what is the payoff function of other players and hence, CA works for
incomplete information games.

Finally, it might happen that no equilibrium point is found (i.e., As = ∅).
This might occur for two reasons: either the sampling is not fine enough or
there is no possibility to obtain a better payoff than the punishment payoff. The
former case could be solved by performing a denser sampling, which increases
the computational cost. The latter is the case in which the static equilibrium
used as punishment cannot be improved, such as in zero-sum games or in cases
where δ values are not high enough to satisfy the Folk Theorem. When As = ∅,
each player makes A = ai,p. Hence, CA guarantees to return a strategy that
provides all players with a payoff equal or higher to the punishment payoff.

The action space sampling procedure is summarized in Algorithm 2. Note
that players may simultaneously question others about a point a and at the
same time, be asked about other point. Due to this, we have put the tasks of
asking, answering and updating As as separate threads.

3.2. Pareto pruning

The second component of CA algorithm is Pareto pruning. This mecha-
nism selects one of the valid equilibria found in the action space sampling stage.
Hence, the problem is distributedly choosing a strategy from As for all players.
CA algorithm assumes that all players seek to optimize their own payoff func-
tions selfishly. Hence, choosing an equilibrium a ∈ As is not straightforward:
each player may prefer different equilibria and no player should dominate others
when choosing.

We solve this by using a jointly controlled lottery [35]. A jointly controlled
lottery is a procedure that allows obtaining a random outcome distributedly. In

10

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

3.2 Pareto pruning
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

Algorithm 2 Action space sampling for player i

Input: δ, ui, ai,p, ui,p, N , Nc, na
1: {Questioning thread}
2: Initialize As = ∅
3: for Nc iterations do
4: a = obtain− sample(na) {Use the sampling scheme desired}
5: if a is an equilibrium ((7) or (9)) and ui(a) ≥ ui,p then
6: Ask other players if a is a valid equilibrium
7: if All player answer ’YES’ then
8: As = As ∪ a
9: Tell all players that a is a valid equilibrium

10: end if
11: end if
12: end for
13: {Answering thread}
14: for all a that player is asked about do
15: if a is an equilibrium ((7) or (9)) and ui(a) ≥ ui,p then
16: Answer ’YES’
17: else
18: Answer ’NO’
19: end if
20: end for
21: {Updating thread}
22: for all a that other players tell as valid equilibria do
23: As = As ∪ a
24: end for
Output: As

[12], the following join controlled lottery is proposed for two players: each player
simultaneously chooses a random number that follows a uniform distribution in
[0, 1], that is, wi ∼ unif(0, 1). Then, we obtain w as:

w =

{
w1 + w2 if w1 + w2 < 1

w1 + w2 − 1 if w1 + w2 ≥ 1
(12)

and w will follow a uniform distribution in [0, 1]. If one player chooses wi

deterministically, still w will follow a uniform random distribution. Thus, player
i ensures a random w by simply using a random wi.

Now, let us assume that As has a certain indexing equal for all players. If
we have L actions in As, where each action has an index l ∈ {1, 2, ..., L}, players
select the action with index l:

l = ⌊1 + (L− 1)w⌋ (13)

where ⌊x⌋ denotes the integer part of x. The action index l follows a uniform
distribution in the interval [1, L] and hence, a random action al will be selected.

11

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

3.2 Pareto pruning
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

Algorithm 3 Pareto pruning

Input: As, ui

1: while |As| > 1 do
2: Run jointly-controlled lottery (e.g., use (12))
3: Obtain random action al ∈ As (e.g., use (13))
4: for all a ∈ As, a ̸= ac do
5: if ui(a) < ui(al) then
6: As = As \ a
7: Inform other players that a is not a valid equilibrium
8: end if
9: end for

10: {Listening thread}
11: for all Actions a that other players communicate as non valid equilibrium

do
12: As = As \ a
13: end for
14: end while
Output: As

It is important to remark that al has been randomly selected among all valid
actions in As to avoid a player dominating this choice. This procedure can be
extended to more than two players.

After choosing al, each player prunes the actions a ∈ As such that ui(a) <
ui(al). That is, each player eliminates the actions that are Pareto-dominated by
al. When a player erases an action a, it communicates to other players, so that
all players can update As by erasing a as well. After each pruning procedure,
it may happen that |As| = 1 (i.e., As = {al}), which means that al is an action
that Pareto-dominates the rest of actions a ∈ As and hence, it is Pareto-efficient
and returned as the grim trigger strategy. Otherwise, |As| > 1 means that there
is another action that Pareto-dominates al. In that case, the process starts
again: a new jointly controlled lottery is performed, a new action al is chosen
and the set As is pruned again, until |As| = 1.

A description of the Pareto-pruning procedure is in Algorithm 3. Note that
in each pruning, players may simultaneously inform and be informed: due to
this, we have separated the questioning and the listening tasks as a separate
threads. Also, all players must wait each other to have fully pruned As before
checking whether |As| > 1 and prune again or not.

Observe that CA scalability depends on two aspects: the ability of each
player to sample the actions space and check if a point is a valid equilibrium
(computational cost, which increases with the number of players and actions)
and also, on the efficiency of the communications among players, which depend
on the network topology and protocols used. If we assume that the former cost
is negligible compared to the communications cost, we can model the scalability
of CA by observing that it is an example of the atomic-commitment problem

12

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

[36]. The atomic-commitment problem appears in a distributed system, in which
different subsystems have to apply an operation if and only if all subsystems
apply it successfully; otherwise, the operation is reversed. In our case, the
operation is checking whether a joint-action vector a is an equilibrium for player
i and adding it to As if and only if a is an equilibrium for all players. In
[36], it is shown that in absence of communication failures, there is an efficient
(polynomial time) algorithm that minimizes this cost. Thus, the total cost of CA
depends on Nc for the action space sampling and it is polynomial for the Pareto
pruning, assuming that the computational cost is negligible when compared to
the communication cost among players.

4. Error bounds in CA algorithm

4.1. General theoretical bounds

In this section, we study the error introduced by CA algorithm. We start
with the NE error, whose equilibrium condition is (7). Observe that the error
comes from the sampling method: if we were able to sample all points in A (that
is, A = Ã), there would be no error. Let us assume that each player samples
with a method that guarantees that the maximal distance between two actions
for player i in Ãi is ∆ai. Thus, for two sampled actions ã, ã′ ∈ Ãi, with ãk = ã′k
if and only if k ̸= i - i.e., the two actions vectors differ only in the action of
player i:

max ||ã1 − ã2|| ≤ ∆ai (14)

Now, observe (7). CA algorithm checks this equilibrium condition after sam-
pling, which means that the equilibrium condition that each player computes,
for two actions ã, ã′ ∈ Ãi, with ãk = ã′k if and only if k ̸= i is:

(1− δ)ui(ã
′) + δui(ap)− ui(ã) ≤ 0, ∀ã′ (15)

We can simplify by observing that the equilibrium condition for player i
assumes that the actions of the other players are fixed, hence, it is a condition
that only affects the actions of player i, ai:

(1− δ)ui(ã
′
i) + δui(ap,i)− ui(ãi) ≤ 0,∀ã′i (16)

However, due to sampling, there might be an action ai, which has not been
sampled, such that ui(ai) > maxã′

i
ui(ã

′
i). We define ∆ui = ui(a) − ui(ã

′),
as the difference in payoffs. This would mean that the equilibrium that CA
algorithm computes would not be anymore an NE, but a Nash ϵi-equilibrium,
when ∆ui > 0. Hence, (16) would become:

(1− δ) [ui(ã
′
i) + ∆ui] + δui(ap,i)− ui(ãi) ≤ ϵi,∀ã′i (17)

Using (16) and (17), we obtain the following lower bound for ϵi:

ϵi = (1− δ)∆ui (18)

13

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

4.2 Theoretical bounds on a 2 player, 2 action game, equispaced sampling
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

In order to bound ∆ui, we will assume that ui functions are Lipschitz-
continuous in the action set A, that is:

||ui(a1)− ui(a2)|| ≤ Ci||a1 − a2||,∀a1, a2 ∈ A (19)

where Ci is the Lipschitz constant for the function ui(x). The lowest Ci that
satisfies (19) is called the best Lipschitz constant, and will be denoted by C∗

i .
Let us assume that in (19), a1 = ãi is a sampled action and a2 = ai is an

action which was not sampled. In the worst case, according to (14), ||ãi−ai|| =
∆ai and hence, using (19), ||ui(ãi)− ui(ai)|| ≤ C∗

i ∆ai. Since the function ui is
a function returning real numbers, ||ui(ãi) − ui(ai)|| = |ui(ãi) − ui(ai)| = ∆ui

if ui(a) > ui(ã
′). Hence, ∆ui ≤ C∗

i ∆ai. Thus, we can bound the error as:

ϵi = (1− δ)C∗
i ∆ai (20)

Observe that ∆ui measures the error induced by the possible actions ai
which are not sampled and which cause that the sampled action ãi is not an
equilibrium, but an ϵi-equilibrium. Hence, the case when ui(a) < ui(ã

′) is not
of interest to us, because the action not sampled returns a lower payoff than the
sampled and hence, (16) holds for ϵi = 0.

The result in (20) means that there are three factors that contribute to the
error in the equilibrium obtained. The first one is the discount factor: as δ
tends to 1, the error decreases. It also depends on Ci, which is an upper bound
on the variation of the function as can be observed in (19). Since Ci is an upper
bound, the tightest ϵi will be achieved with the lowest Ci possible, which is C∗

i .
Finally, the last component is the maximal distance between a sampled and a
not sampled action. As the number of actions sampled tends to infinity, this
term will tend to 0 and hence, ϵi → 0, which means that CA algorithm finds a
NE asymptotically.

In the case of CE, CA does not introduce any error. Note that for any value
of ϕ̃, if (9) holds, it will be a CE, with no error. In CE, we sample distributions ϕ̃
instead of actions, thus, when a sampled ϕ̃ distribution satisfies the equilibrium
condition (9), it will be an exact CE.

Finally, we note that we do not provide any guarantees on whether CA will
be able to find a repeated game equilibrium. This depends on the discount
factor, the kind of game (zero-sum or general sum) and the sampling density.
But we do assure that when CA finds a Nash SPE, it will be an ϵi-equilibrium
for each player bounded by (20) and when CA finds a correlated SPE, it will
contain no error.

4.2. Theoretical bounds on a 2 player, 2 action game, equispaced sampling

In this section, we particularize (20) for the case in which there are N = 2
players and each player has 2 pure actions. We denote the pure actions payoffs
that player i receives as up

i (j, k), where i denotes the player, j denotes the
pure action of player 1 and k denotes the pure action of player 2. Note that
i, j, k = {1, 2}. We denote the mixed action of player 1 as (y, 1 − y), where

14

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

4.2 Theoretical bounds on a 2 player, 2 action game, equispaced sampling
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

y is the probability that player 1 assigns to her pure action 1 and 1 − y the
probability assigned to her pure action 2. The mixed action of player 2 is
defined equivalently by (z, 1− z). Thus, the mixed action space of the game A
is the unit square A = A1 × A2 = A = [0, 1] × [0, 1], where one axis are the y
values and the other, the z values.

We sample A using equispaced sampling, withKi samples in each dimension.
Hence, for each player, the sampled mixed actions are {0, 1

Ki−1 ,
2

Ki−1 , ..., 1}.
The maximum distance between a sampled action and a not sampled one will
take place when the not sampled action lies in the middle of two sampled actions,
hence, ∆ai =

1
2(Ki−1) .

The payoff function ui has the following form:

ui(y, z) =yzup
i (1, 1) + y(1− z)up

i (1, 2) + (1− y)zup
i (2, 1) + (1− y)(1− z)up

i (2, 2)

=Aiyz +Biy + Ciz +Di

(21)

where

Ai =up
i (1, 1)− up

i (1, 2)− up
i (2, 1) + up

i (2, 2)

Bi =up
i (1, 2)− up

i (2, 2)

Ci =up
i (2, 1)− up

i (2, 2)

Di =up
i (2, 2)

(22)

Since the payoff functions ui(y, z) are polynomials, they are continuous,
derivable and with bounded derivatives in A, which is a convex subset of R2. A
continuous function f(x) with bounded derivatives is Lipschitz-continuous with
C∗ = supx ||∇f(x)|| (see [37, Lemma 2.18]).

Now, here there are two possible approaches. Remark that player i is in-
terested in computing ϵi, a bound on the error she is committing when she
evaluates an NE. Since she knows the actions of other players, player i can fix
the actions of other players in ui, so that ui becomes a one variable function
that only depends on ai. In that case:

C∗
i = max

ai

dui(ai, a−i)

dai

∣∣∣∣∣
a−i

Yet this implies that player i bound, ϵi, depends on a−i, the actions of

the other players. A second option is the worst case one by using C∗
i =

sup(ai,a−i) ||∇ui(ai, a−i)||. This option yields a higher Lipschitz constant and
hence, a less tight ϵi value, but it provides an upper bound for ϵi independent of
the actions of other players. Using (21), we obtain ∇ui = (Aiz +Bi, Aiy + Ci)
and ||∇ui|| =

√
(Aiz +Bi)2 + (Aiy + Ci)2. Hence, we obtain the following ϵi

bound using (20):

ϵi =
1− δ

2(Ki − 1)

{
max

0≤y≤1,0≤z≤1

√
(Aiz +Bi)2 + (Aiy + Ci)2

}
(23)

15

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.(

(1,−1) (−1, 1)
(−1, 1) (1,−1)

)
(a) Matching pennies (MP).

(
(2, 2) (−1, 3)
(3,−1) (0, 0)

)
(b) Prisoner’s dilemma (PD).(

(2, 1) (0, 0)
(0, 0) (1, 2)

)
(c) Battle of sexes (BS).

(
(−10,−10) (1,−1)
(−1, 1) (0, 0)

)
(a) Chicken game (CG).

Figure 1: Payoff matrices for the four games proposed. Player 1 is row player, and player 2 is
column player, hence, the first row stands for pure action 1 of player 1, and row 2 for her pure
action 2. The first column contains the pure action 1 of player 2, and the second column, her
pure action 2. In each matrix, the payoff entries for each pair of pure actions are (u1, u2).

5. Testbench

5.1. Games description

In order to test the performance of CA, we have tested it on four repeated
games with N = 2 players with 2 pure actions each. We choose games with very
different characteristics, whose payoff matrices are in Figure 1. Remark that a
static NE for these games will have the form a1 = (y, 1− y), a2 = (z, 1− z) and
each static NE is also a CE of the form ϕ = (yz, y(1−z), (1−y)z, (1−y)(1−z)).

The first game is matching pennies (MP), a zero-sum game. This means
that u1 = −u2 and hence, the gains of one player are the losses of the other.
This game has only one static NE: a1 = a2 = (1/2, 1/2) (the equivalent CE is
ϕ = (1/4, 1/4, 1/4, 1/4)), which yields each player a payoff of U1 = U2 = 0. No
gain in payoffs can be achieved by repeating the game with respect to the static
equilibrium.

The second game is the prisoner’s dilemma (PD), which is a non-zero sum
game, used frequently to illustrate the Folk Theorem [12]. There is only one
static NE, which is a1 = a2 = (0, 1), which provides each player with a payoff
of U1 = U2 = 0 (the equivalent CE is ϕ = (0, 0, 0, 1)). However, when the game
is repeated for a sufficiently high value of δ, new equilibria arise, and in this
case, it is possible to achieve a payoff as high as U1 = U2 = 2 using grim trigger
strategy (for a theoretical analysis, see [12, Ch. 2, 3]).

The third game is the Battle of sexes (BS), which is a non-zero sum game
with three different static NE, namely, a1 = (2/3, 1/3), a2 = (1/3, 2/3), which
yields the players a payoff of U1 = U2 = 2/3, a1 = (1, 0), a2 = (1, 0), which
yields payoffs (U1, U2) = (2, 1), and a1 = (0, 1), a2 = (0, 1), which yields them
payoffs (U1, U2) = (1, 2). The two pure action equilibria are Pareto-efficient.

The fourth game is the chicken game (CG), which is a non-zero sum game
with three different static NE, namely, a1 = a2 = (1/10, 9/10), which yields
the players a payoff of U1 = U2 = −1/10, a1 = (1, 0), a2 = (0, 1), which yields
payoffs (U1, U2) = (1,−1), and a1 = (0, 1), a2 = (1, 0), which yields them
payoffs (U1, U2) = (−1, 1).

16

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

5.2 Simulation 1
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

5.2. Simulation 1

Firstly, we obtain an empirical taste of the differences among the sampling
methods proposed. We use the PD game with δ = 0.9. The analytical solutions
to PD game can be found in [12]. For the δ value we are using, the Pareto-
efficient region is:

Up =

{
U2 = −U1+8

3 if U1 ∈ [0, 2]
U2 = −3U1 + 8 if U1 ∈ [2, 8/3]

(24)

We define ξ as the distance between a payoff and the Pareto frontier:

ξ = min ||U(a)− Up|| (25)

where U(a) is the repeated game payoff vector to all players by playing action
vector a and Up is the Pareto region (24). We use ξ to compare the performance
of the three sampling methods we proposed: equispaced, random and SOO.
In order to show empirically the advantages of using SOO, we will limit in
equispaced and random sampling the number of communications to Nc, and in
SOO, we only sample Nc times (see section 3.1). We test for Nc ∈ [5, 200].

First, we obtain a static equilibrium using regret matching (RM) algorithm
[17], which provides a static equilibrium for all players. We use 103 iterations for
RM. The equilibrium that RM returns is used as punishment for CA algorithm.

Then, we run CA using all the sampling scheme proposed. In case of NE,
the mixed action space is a square A = [0, 1]× [0, 1]. For equispaced sampling,
we used Ki = 50 samples in each dimension. In the case of CE, we equispacedly
sample a simplex of dimension 3: note that

∑4
k=1 ϕk = 1. We used approx-

imately the same number of points that for the NE case, 2500 - i.e., we test
approximately 2500 ϕ distributions.

Then, we tested using random sampling, following a uniform distribution.
In the case of NE, each player randomly generates a pair of actions following a
uniform distribution between 0 and 1, that is, (y, z) ∼ (unif(0, 1), unif(0, 1)).
We limit the maximum number of actions tested to 104 for each player: if no
equilibrium is found, the sampling procedure is exited. For the CE concept, each
player samples uniformly in a simplex and again, we limit to 104 the maximum
number of samples if no equilibrium is found.

Finally, we test SOO sampling method. We use (10) and (11), with Nc = 10
and λ = {0.5, 1}, for both NE and CE.

In order to test in NE whether there are profitable deviations or not (see
(7)), we sample a′i ∈ [0, 1] equispacedly using 50 samples. This is used to check
the NE deviation condition every time that is needed.

For each value of Nc (Ns in SOO case), we run 100 times CA, and the re-
sulting payoff errors were computed using (25) and (24). The results can be
observed in Figure 2, where we observe that CA approaches the Pareto frontier
as the number of communications increases. We also observe that SOO sampling
method outperforms the others, even though it has a stricter limitation (num-
ber of samples instead of number of communications). Thus, SOO intelligent
sampling presents a clear advantage over the other methods proposed.

17

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

5.3 Simulation 2
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

0 20 40 60 80 100 120 140 160 180 200
10−2

10−1

100

Nc

ξ

RM NE eq NE unif
NE SOO λ = 0.5 NE SOO λ = 1 CE eq

CE unif CE SOO λ = 0.5 CE SOO λ = 1

Figure 2: Average values of ξ for simulation 1. Equispaced sampling is ’eq’, random uniform
sampling is ’unif’ and ’RM’ stands for regret-matching results. We observe that, as we increase
the number of communications allowed Nc, the error ξ decreases. Recall that ξ measures how
far the CA results are from the theoretical Pareto frontier (see (25)). Thus, lower is better, as
it implies that the players achieve a payoff closer to the Pareto frontier. Note that a greater
Nc allows getting closer to the Pareto frontier. The sampling methods order, from the worst
to the best performance, are equispaced, random uniform and SOO. Even though in SOO we
use a stricter limitation (samples taken instead of communications), it outperforms the other
sampling methods.

5.3. Simulation 2

We also simulated the performance of CA in the four games described above.
We use three possible values for the discount factor: δ = {0.1, 0.5, 0.9}. For each
δ value and each game, we run 100 different repetitions: in each repetition we
use the same 9 algorithms that we used in Simulation 1: regret matching and
8 different instances of CA, 4 for NE and other 4 for CE. We use the same
parameters as in Simulation 1, except we fix Nc = 100 for equispaced and
random sampling, and Ns = Nc for SOO sampling.

We run the simulations and obtain the region of payoffs for each algorithm
and the payoff that, in average, is obtained in each setup. The results can
be observed in Figure 3, where we plot the payoff increase in the four games
described that CA yields for the static equilibrium that RM provides. For MP,
BS and CG, it is possible to observe that there is no significant increment in
payoffs between CA and RM, as we expected. MP is a zero-sum game and
hence, the Folk Theorem does not apply. In BS and CG, RM returns a static,
Pareto-efficient payoff: since the payoff is already efficient, CA does not find a
better one.

The case of PD is the most important and interesting one, because it is a
game in which both players can benefit of repeating the game. It is possible to
observe that CA does not improve the theoretical payoff for δ = 0.1, because

18

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

5.3 Simulation 2
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

Game δ = 0.1 δ = 0.5 δ = 0.9
MP 0.0509 0.0283 0.0057
PD 0.0569 0.0316 0.0063
BS 0.0509 0.0283 0.0057
CG 0.2558 0.1421 0.0284

Table 1: Comparison of theoretical ϵi values for the Nash equilibrium concept, when using
equispaced sampling, according to (20), where Ki = 50. In all cases, ϵ1 = ϵ2, that is, both
players had the same bound.

with that discount factor, the only equilibrium of the repeated game is the static
one. Yet as δ increases, new equilibria arise and the gains of using CA appear.

As an example, in Figure 4 we include some of the payoff regions returned
by CA algorithm. We observe that in case of PD game, as δ increases, a whole
region of new payoffs appears: these payoffs can be achieved by repeating the
game following the grim trigger strategy proposed. Although this needs not be
the case in all games: in the case of BS game, the static equilibrium used as
punishment is already Pareto-efficient and hence, CA cannot improve it. We
also show how SOO provides similar results in terms of Pareto-efficient payoffs,
with significantly fewer samples and equilibria evaluations.

In Table 1, it is possible to observe the different ϵi values obtained, using
(20), for equispaced sampling and NE. It is possible to observe that the ϵi
values are low, except in the game of the chicken, due to the higher values of
the derivatives in this payoff matrix.

Recall that in all simulations, we used as CA input the RM equilibrium,
in order to be used as punishment equilibrium and explore the possibility of
obtaining a better payoff in the repeated game by using grim trigger strategy.
In our game testbench, that was the case only of PD, and in that case, CA
algorithm outperforms clearly RM, because it exploits the new equilibria that
appear when repeating the game.

Yet this increment came at no cost. Observe that for games where the
best possible equilibrium is the static one, CA algorithm does not improve RM.
Hence, CA does not make sense if we know for sure that we can obtain no gain
by repeating the game. Yet if we know or hope that new equilibria may arise
by repeating the game, CA may find equilibria which yield better payoff for all
players, such as in PD. Recall that CA needs no a priori information on the
kind of game being played and hence, it works on imperfect information games.

Also, in the case of PD, observe that there are differences between the dif-
ferent implementations of CA. In general, NE yields higher payoff than CE,
because the region of Nash equilibria is smaller - a square in the plane - than
the correlated equilibria region - a simplex with 3 dimensions. Some aspects
that may help in practice are:

• First, think whether CE makes sense in our game setup. This means
that either we have access to a correlating device or to a jointly-controlled

19

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

lottery [35]. CE has two advantages over NE: first, the region of CE always
contains NE, so there might be games in which there are CE that yield a
better payoff than NE. And secondly, CA algorithm guarantees that any
CE found will be exact, whereas NE have a bounded error, according to
(20) (see Table 1). Yet since CE region has a higher dimensionality than
NE region, the sampling schemes perform poorer.

• The computational capacity for sampling purposes. Using SOO and lim-
iting the number of samples allows performing fewer sampling operations,
(see Figure 4). Yet it implies implementing SOO algorithm [34].

• A final aspect is related to the ability of detecting a deviation. Grim
trigger strategy needs to detect deviations immediately. In the case of
NE, this means having access to the mixed actions of each player. In the
case of CE, since a deviation is not following the recommendation ϕ, if
we have an entity that sends the ϕ recommendation to each player, this
device can detect whether a player deviates or not instantaneously, i.e.,
it player i does not play the pure action recommended. Thus, CE eases
detecting a deviation.

6. Conclusions

We introduce CA, a novel MAL negotiation-based algorithm that allows
computing equilibria of repeated games of perfect monitoring using the averaged
discounted payoff criterion under a grim trigger strategy. CA is based in the
idea that players can communicate each other the strategies they are willing to
use. This allows, if possible, to reach a repeated game equilibrium.

CA is a powerful and flexible algorithm, with plenty of positive features:
is completely distributed, is valid for N players, it is valid for imperfect in-
formation games, improves when possible an input static equilibrium, chooses
Pareto-efficient payoffs, works both using NE or CE and may be adapted to
different strategies by modifying the equilibrium conditions (7) or (9), can use
intelligent sampling methods and finally, CA takes advantage of heterogeneous
computational capacity of each player in the sampling stage.

CA requires that each player knows the discount factor, her payoff function,
a punishment equilibrium - which CA tries to improve - and a sampling method
for the action space. In case of NE, it returns an ϵi-equilibrium for all players,
where ϵi is bounded. In case of CE, it returns an exact equilibrium. Hence, CA
is a powerful and flexible algorithm that takes advantage of the new equilibria
that may arise by repeating the game, according to the Folk Theorem, in order
to improve the payoff that all players can obtain in a repeated game.

7. Acknowledgements

This work was supported by a Ph.D. grant given to the first author by
Universidad Politécnica de Madrid, as well as by the Spanish Ministry of Science
and Innovation under the grant TEC2016-76038-C3-1-R (HERAKLES).

20

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

© 2020. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

8. References

References

[1] L. S. Shapley, Stochastic games, Proceedings of the national academy of
sciences 39 (10) (1953) 1095–1100.

[2] M. L. Littman, Markov games as a framework for multi-agent reinforcement
learning, in: Machine Learning Proceedings 1994, Elsevier, 1994, pp. 157–
163.

[3] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate,
Artificial Intelligence 136 (2) (2002) 215–250.

[4] A. Greenwald, K. Hall, R. Serrano, Correlated q-learning, in: ICML, Vol. 3,
2003, pp. 242–249.

[5] N. Akchurina, Multi-agent reinforcement learning algorithms., Ph.D. thesis,
University of Paderborn (2010).

[6] J. W. Crandall, Just add pepper: extending learning algorithms for re-
peated matrix games to repeated markov games, in: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, International Foundation for Autonomous Agents and Multia-
gent Systems, 2012, pp. 399–406.

[7] M. Elidrisi, N. Johnson, M. Gini, J. Crandall, Fast adaptive learning in
repeated stochastic games by game abstraction, in: Proceedings of the 2014
international conference on Autonomous agents and multi-agent systems,
International Foundation for Autonomous Agents and Multiagent Systems,
2014, pp. 1141–1148.

[8] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of go
without human knowledge, Nature 550 (7676) (2017) 354.

[9] N. Brown, T. Sandholm, Superhuman ai for heads-up no-limit poker: Li-
bratus beats top professionals, Science (2017) eaao1733.

[10] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, J. Perolat, D. Silver,
T. Graepel, et al., A unified game-theoretic approach to multiagent rein-
forcement learning, in: Advances in Neural Information Processing Sys-
tems, 2017, pp. 4193–4206.

[11] D. Fudenberg, J. Tirole, Game theory, MIT press Cambridge, MA, 1991.

[12] G. J. Mailath, L. Samuelson, Repeated games and reputations: long-run
relationships, Oxford university press, 2006.

[13] G. Szabó, G. Fath, Evolutionary games on graphs, Physics reports 446 (4-6)
(2007) 97–216.

21

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

REFERENCES
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

[14] M. Perc, J. J. Jordan, D. G. Rand, Z. Wang, S. Boccaletti, A. Szolnoki,
Statistical physics of human cooperation, Physics Reports 687 (2017) 1–51.

[15] M. Perc, A. Szolnoki, Coevolutionary games—a mini review, BioSystems
99 (2) (2010) 109–125.

[16] P. Hernandez-Leal, M. Kaisers, T. Baarslag, E. M. de Cote, A survey of
learning in multiagent environments: Dealing with non-stationarity, arXiv
preprint arXiv:1707.09183 (2017).

[17] S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated
equilibrium, Econometrica 68 (5) (2000) 1127–1150.

[18] S. Hart, A. Mas-Colell, Simple adaptive strategies: from regret-matching
to uncoupled dynamics, Vol. 4, World Scientific, 2013.

[19] B. Banerjee, J. Peng, Performance bounded reinforcement learning in
strategic interactions, in: AAAI, Vol. 4, 2004, pp. 2–7.

[20] V. Conitzer, T. Sandholm, Awesome: A general multiagent learning algo-
rithm that converges in self-play and learns a best response against sta-
tionary opponents, Machine Learning 67 (1-2) (2007) 23–43.

[21] M. L. Littman, P. Stone, A polynomial-time nash equilibrium algorithm
for repeated games, Decision Support Systems 39 (1) (2005) 55–66.

[22] E. M. De Cote, M. L. Littman, A polynomial-time nash equilibrium al-
gorithm for repeated stochastic games, arXiv preprint arXiv:1206.3277
(2012).

[23] J. W. Crandall, M. A. Goodrich, Learning to compete, coordinate, and co-
operate in repeated games using reinforcement learning, Machine Learning
82 (3) (2011) 281–314.

[24] Y. Hu, Y. Gao, B. An, Multiagent reinforcement learning with unshared
value functions, IEEE transactions on cybernetics 45 (4) (2015) 647–662.

[25] D. Abreu, On the theory of infinitely repeated games with discounting,
Econometrica: Journal of the Econometric Society (1988) 383–396.

[26] J. Nash, Equilibrium points in n-person games’, proceedings of the national
academy of sciences of the united states, 36, 48-9, INTERNATIONAL LI-
BRARY OF CRITICAL WRITINGS IN ECONOMICS 67 (1996) 52–53.

[27] T. Basar, G. J. Olsder, Dynamic noncooperative game theory, Vol. 23,
Siam, 1999.

[28] R. J. Aumann, Subjectivity and correlation in randomized strategies, Jour-
nal of mathematical Economics 1 (1) (1974) 67–96.

22

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

REFERENCES
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

[29] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani, Algorithmic game
theory, Vol. 1, Cambridge University Press Cambridge, 2007.

[30] J. F. Nash Jr, The bargaining problem, Econometrica: Journal of the
Econometric Society (1950) 155–162.

[31] E. Kalai, M. Smorodinsky, Other solutions to nash’s bargaining problem,
Econometrica: Journal of the Econometric Society (1975) 513–518.

[32] E. Kalai, Proportional solutions to bargaining situations: interpersonal
utility comparisons, Econometrica: Journal of the Econometric Society
(1977) 1623–1630.

[33] M. Dermed, L. Charles, Value methods for efficiently solving stochastic
games of complete and incomplete information, Ph.D. thesis, Georgia In-
stitute of Technology (2013).

[34] R. Munos, Optimistic optimization of a deterministic function without the
knowledge of its smoothness., in: NIPS, 2011, pp. 783–791.

[35] R. J. Aumann, M. Maschler, R. E. Stearns, Repeated games with incom-
plete information, MIT press, 1995.

[36] O. Wolfson, A. Segall, The communication complexity of atomic commit-
ment and of gossiping, SIAM Journal on Computing 20 (3) (1991) 423–450.

[37] J. K. Hunter, B. Nachtergaele, Applied analysis, World Scientific Publishing
Co Inc, 2001.

23

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

REFERENCES
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

N
E

eq

N
E

rn

N
E

op
1

N
E

op
2

C
E

eq

C
E

rn

C
E

op
1

C
E

op
2

−1
−0.5

0

0.5

1
·10−3

(a) MP
N
E

eq

N
E

rn

N
E

op
1

N
E

o
p
2

C
E

eq

C
E

rn

C
E

o
p
1

C
E

op
2

0

0.5

1

1.5

2

(b) PD

N
E

eq

N
E

rn

N
E

op
1

N
E

op
2

C
E

eq

C
E

rn

C
E

op
1

C
E

op
2

0

0.2

0.4

0.6

0.8

1
·10−2

(c) BS

N
E

eq

N
E

rn

N
E

op
1

N
E

op
2

C
E

eq

C
E

rn

C
E

op
1

C
E

op
2

0

1

2

3

·10−3

(d) CG

P1 δ = 0.1 P1 δ = 0.5 P1 δ = 0.9
P2 δ = 0.1 P2 δ = 0.5 P2 δ = 0.9

Figure 3: Payoff results: for each game, we represent the average payoff increment ∆Ui

between CA and RM for different values of δ. Thus, higher is better, as it means that CA
provides better payoffs than RM. We use four sampling methods for CA: equispaced (eq),
random uniform (rn), SOO with λ = 0.5 (op1) and SOO with λ = 1 (op2), for NE and CE.
When CA takes advantage of the Folk Theorem, it outperforms RM, as happens in PD. And
when using the Folk Theorem provides no advantage in payoffs, as in MP, BS and CG, CA is
not worse than RM, as expected.

24

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

REFERENCES
© 2020. This accepted manuscript version is made available under the

CC-BY-NC-ND 4.0 license. Published version here.

−1 0 1 2 3
−1

0

1

2

3

U1

U
2

(a) PD, δ = 0.5

−1 0 1 2 3
−1

0

1

2

3

U1
U
2

(b) PD, δ = 0.9

−1 0 1 2 3
−1

0

1

2

3

U1

U
2

(c) PD, δ = 0.9, SOO

0 0.5 1 1.5 2
0

0.5

1

1.5

2

U1

U
2

(d) BS, δ = 0.9

Figure 4: Comparison of NE payoff regions in PD and BS games. In light blue, we observe
the possible payoff region, the gray darker region is the set of payoff equilibria in the repeated
game. The red circles are the theoretical static payoff equilibria, the green squares are the
payoff equilibria returned by RM and the black triangles are the payoff equilibria returned
by CA. Note that RM always provides a static equilibrium payoff. Sampling in regions (a),
(b) and (d) is equispaced with 2500 samples, whereas region (c) was sampled using SOO with
λ = 1. We note that (1) increasing δ might provide a larger payoff equilibria region, as the
Folk Theorem says: compare (a) and (b); (2) if a static equilibrium is already Pareto-efficient,
CA cannot improve it, as shown in (d); (3) SOO provides similar equilibria to equispaced
sampling taking much fewer samples: compare (b) and (c). Thus, CA with SOO sampling
produces the best results both in terms of payoffs and samples taken.

25

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.amc.2019.124785

	Introduction
	Repeated games background
	Static games
	Repeated games of perfect monitoring
	Equilibrium of the game

	The CA algorithm
	Action space sampling
	Pareto pruning

	Error bounds in CA algorithm
	General theoretical bounds
	Theoretical bounds on a 2 player, 2 action game, equispaced sampling

	Testbench
	Games description
	Simulation 1
	Simulation 2

	Conclusions
	Acknowledgements
	References

