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Abstract—We propose using a Bayes factor sequential hy-
pothesis test for the decision fusion problem in wireless sensor
networks, in which several sensors send a report to a fusion
center so that a global decision is taken. This problem is
frequently modeled in current literature as a hypothesis test
from Bernoulli samples. We propose using a sequential composite
hypothesis test based on Bayes Factor using Beta distributions
as prior distributions. We obtain closed form expressions for the
distributions, which allows us to develop a very efficient algorithm
to implement our approach. When we validate our approach via
simulations, we observe that, when compared to the common
counting rule, our algorithm provides a lower average error and
requires a smaller number of samples to make a decision.

Index Terms—Bayes factor, Beta prior, Decision fusion, Wire-
less sensor networks

I. INTRODUCTION

The problem of testing hypothesis from Bernoulli samples
is a recurrent problem that appears in several applications in
the signal processing field. For instance, it appears in radar
applications [1], pattern identification [2] and sensor fusion
in sensor networks [3] [4], [5] [6]. A very used and simple
test proposed for this problem is the Neyman Pearson test
[7], which for equal confidence reduces to the Counting Rule.
Other tests which are also used are the Rao and Wald tests
[8].

In all these works, the number of samples used during the
testing procedure is fixed. Let us focus in a sensor fusion
problem, in which several wireless sensors send a report to a
centralized fusion center, in which the information provided by
the sensors is combined. Having a fixed number of samples
means that the fusion center needs to have a fixed number
of reports from the sensors. Even though this could make
sense in certain setups, in others it may be better to use a
sequential test, such as the Sequential Probability Ratio Test
(SPRT) [9], [10]. These statistical tests are specialized on data
streams, whose sample size is not fixed in advance. This means
that the data is collected and evaluated and according to a
predefined stopping rule, a decision is taken on-the-go. The
decision might be to stop the analysis because there is enough
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information to make a decision or to collect more data until
there is enough information.

Even though SPRT was originally developed to test simple
hypotheses, several approaches have been proposed to deal
with composite hypothesis, as shown in [11]. Also, a unified
framework for treating composite hypotheses is found in
[12], where the author also proposes a nearly-optimal Bayes
sequential test for the case of one-sided composite hypothesis.
In general, SPRT allows using fewer samples to make a
decision, which causes a shorter delay to decide and also,
means that fewer transmissions are needed from the wireless
sensors to the fusion center, with a subsequent saving both in
energy and communication bandwidth. These advantages of
the SPRT test are very appreciated in sensor fusion related
problems, and thus, it has been the base of several works as
[13] or [14].

A different way to approach the problem consists in using
the Bayes Factor [15], which traces back to the work of
Jeffreys [16], [17]. This approach involves the use of prior
probability distribution functions which must be integrated
and thus, may cause this approach to be computationally very
expensive if there are no closed form expressions of these
integrals, which unfortunately happens often.

In this work, we propose using Bayes Factor sequential
probability tests in the sensor fusion problem of Bernoulli
samples. Until today, many works use fixed length tests, such
as [5], [6] or [18]. However, a variable length test may bring
some advantages over a fixed length one in issues of capital
concern for wireless sensor network such as battery con-
sumption or bandwidth use. In [19], a framework for change
detection in sensor networks which uses a non-parametric
model is proposed, however, they do not make use of any
prior information that may be available. And in [20] there is a
study on Bayes Factor sequential probability ratio test, which
however is computationally costly and hence, is not adequate
for sensor networks.

The major problem with a Bayesian approach in sensor
networks is the computational cost. In order to avoid this
problem, we use Beta prior distributions, which allow us
not only to obtain closed form expressions of the proba-
bility distributions involved, but also, allows us to develop
an updating rule very efficient both in terms of time and
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computational resources. Thus, our contribution consists on
a very efficient algorithm that can be used as an alternative
to the simple Counting Rule, which (1) may make use of
prior information because it is a Bayesian approach, (2) is
implemented sequentially, hence, offering all the advantages
of sequential tests for wireless sensor networks and (3) has a
very high computational efficiency.

The rest of the paper goes as follows: in Section II, we
describe our problem and the Counting Rule commonly used
to solve these problems. In Section III, we introduce the Bayes
Factor approach using Beta priors, and then, Section IV intro-
duces our algorithm, that takes advantage of several properties
of the Gamma function in order to achieve efficiency. Our
approach is compared to the Counting Rule in Section V, and
finally, some conclusions are given in Section VI.

II. PROBLEM DESCRIPTION

A. Problem setup

We consider a decentralized hypothesis test, in which there
are M sensors that are used to discriminate between two differ-
ent hypotheses: H0 and H1 which represent, respectively, the
absence or the presence of a certain phenomenon of interest.
When required by a central fusion center (FC), the sensor
m ∈ {1, 2, ...,M} measures the phenomenon and takes a
certain decision xm ∈ {0, 1}. We define Pd = P (xm = 1|H1)
and Pfa = P (xm = 1|H0) as the probability of detection
and false alarm of each sensor m, where P (a|b) denotes the
conditioned probability of a given b.

Under a fixed sample length schema, the FC would ask
K reports from the sensors, where K is the sample length
size, and then, take a decision. Under a variable sample length
schema, the FC asks sequentially for a report xm

n to sensor m
in each time step n = 1, 2, ..., where the superscript indexes
the sensor and the subscript the time step. The report xm

n is
processed in the FC and either a decision is made, or a new
sample xm′

n+1 is collected from a sensor m′. Note that we
are assuming that there are no transmission error between the
sensors and the FC: this assumption is frequent in the literature
[6], or in [5], where transmission errors are neglected when
designing the fusion rules.

We also assume that Pfa and Pd are independent and iden-
tically distributed among all M sensors and that Pd > Pfa,
as in [5]. Note that we do not consider the case in which each
sensor has a different Pd and / or Pfa value [19]. Both H0 and
H1 are modeled using a Bernoulli distribution B(θ), where:{

H0 : xn ∼ B(θ = Pfa), n = 1, 2, ..., N
H1 : xn ∼ B(θ = Pd), n = 1, 2, ..., N

(1)

where xn is the stream of data from the sensors.
Since we assume that Pd > Pfa, the hypothesis test that

the FC faces is: {
H0 : θ = Pfa

H1 : θ > Pfa
(2)

Note that, as in [5], Pd concrete value need not be explicitly
known. Finally, we define sn =

∑n
i=1 xi as the sum of the

sensor data up to time n. Note that sn follows a Binomial

distribution and that it contains information coming from all
the sensors called by the FC.

B. The Counting Rule

The counting rule (CR) is a decision rule used in many
works due to being simple but nonetheless able to outperform
more complex mechanisms [5], because it is the universally
most powerful test [8] for the fixed length hypothesis test (2).
It uses sn as test statistic for a predetermined value of n, and
decides H1 if sn ≥ γ, where P (sn ≥ γ|Pd) ≤ α allows fixing
the decision threshold γ as a function of the significance level
α fixed a priori. The power of the test depends on α and n: a
larger n brings a higher power to the test, at the cost of a longer
delay to the decision and a larger number of communications
required. Hence, note that there is a tradeoff between precision
and resources consumption.

III. BAYES FACTOR USING BETA PRIORS

Under a Bayesian scheme, we assume to know a prior prob-
ability distribution for each hypothesis, p(H0) and p(H1) =
1 − p(H0). Using Bayes theorem, it is possible to obtain
p(Hk|xn) as:

p(Hk|xn) =
p(xn|Hk)p(Hk)∑
k p(xn|Hk)p(Hk)

, k = {0, 1} (3)

The expression (3) can be manipulated to obtain:

p(H1|xn)

p(H0|xn)
=

p(xn|H1)

p(xn|H0)

p(H1)

p(H0)
= B10

p(H1)

p(H0)
(4)

In (4), we observe that the posterior odds are the prior odds
times a B10 term , which is the Bayes factor (BF). Intuitively,
the BF carries information about how likely is the data xn

to have been generated under models H0 or H1. There are
several thresholds proposed for the value of the BF in order
to take a decision [15].

The densities p(xn|Hk) need to be computed in order to
obtain the BF. By assuming that each hypothesis is modeled
using a distribution p(θ|Hk) with an unknown parameter θ,
the densities p(xn|Hk) can be obtained by integration as:

p(xn|Hk) =

∫
p(xn|θ,Hk)p(θ|Hk)dθ, k = {0, 1} (5)

By taking into account that in our problem xn follows a
Bernoulli distribution, (5) becomes:

p(xn|Hk) =

∫ 1

0

θsn(1− θ)n−snp(θ|Hk)dθ, k = {0, 1}
(6)

A major problem to use the BF is that (6) can be hard
to obtain, see for instance [15], where several numerical
methods are reviewed. In the best case, (6) can be analytically
evaluated and hence, there is no need of numerical methods.
This also brings a significant improvement both in computa-
tional efficiency and precision. For choosing a prior p(θ|Hk)
analytically evaluable, the family of conjugate distributions is
of special interest because the conjugacy property holds: the
posterior distribution is in the same family of distributions
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as the prior [21]. These reasons motivate us to choose Beta
distributions as priors, which belong to the exponential family.
As we will see, this choice will allow us to design a simple
and efficient sequential update algorithm to obtain (6). The
beta distribution has two parameters γ1 > 0 and γ2 > 0,
which we fix a priori. The pdf of the Beta distribution is:

Beta(θ|γ1, γ2) =
θγ1−1(1− θ)γ2−1

B(γ1, γ2)
(7)

where the normalization factor B(γ1, γ2) is the Beta function
(also known as Euler integral of first kind):

B(γ1, γ2) =

∫ 1

0

θγ1−1(1− θ)γ2−1dθ =
Γ(γ1)Γ(γ2)

Γ(γ1 + γ2)
(8)

where Γ(a) stands for the gamma function of a.
We choose to use as prior a weighted sum of L Beta

distributions, because they allow us to model complicated pri-
ors, such as multimodal distributions. The choice of the prior
parameters will be chosen as to adapt to the prior information
available. We define γk as the matrix of parameters of the prior
distribution of θ under hypothesis Hk, with L rows containing
the beta distribution parameters (γl,k

1 , γl,k
2 ). Using (7), our

prior becomes:

p(θ|γ) =
L∑

l=1

wlbeta(θ|γl,k
1 , γl,k

2 )

=

L∑
l=1

wl
θγ

l,k
1 −1(1− θ)γ

l,k
2 −1

B(γl,k
1 , γl,k

2 )

(9)

where
∑L

l=1 wl = 1 and each wl ≥ 0, so that (9) defines a
distribution. We now can compute the posterior probabilities
p(xn|Hk) using (6) and (9) as follows:

p(xn|Hk) =∫ 1

0

θsn(1−θ)n−sn

L∑
l=1

wl
θγ

l,k
1 −1(1− θ)γ

l,k
2 −1

B(γl,k
1 , γl,k

2 )
dθ

=

L∑
l=1

wl

∫ 1

0
θsn+γl,k

1 −1(1− θ)n−sn+γl,k
2 −1dθ

B(γl,k
1 , γl,k

2 )

=

L∑
l=1

wl
B(sn + γl,k

1 , n− sn + γl,k
2 )

B(γl,k
1 , γl,k

2 )

(10)

IV. BAYES FACTOR UPDATE ALGORITHM

The expression obtained for p(xn|Hk) in (10) allows ob-
taining an efficient sequential algorithm to update the prior in
a sequential test, as new samples xn arrive. First, we express
(10) in terms of the Gamma function using (8) as follows:

p(xn|Hk) =

L∑
l=1

wlS
n
l,k (11)

where

Sn
l,k =

Γ(sn + γl,k
1 )

Γ(γl,k
1 )

Γ(n− sn + γl,k
2 )

Γ(γl,k
2 )

Γ(γl,k
1 + γl,k

2 )

Γ(n+ γl,k
1 + γl,k

2 )
(12)

The values for Sn
l,k in (12) can be obtained recursively with

the help of Lemma 1.

Lemma 1. The following identity holds for a ∈ {0, 1, 2, 3...}
and k > 0:

Γ(k + a)

Γ(k)
=

{ ∏k+a−1
i=k i if a ≥ 1

1 if a = 0

Proof. For a = 0, the proof is straightforward:

Γ(k + a)

Γ(k)

∣∣∣∣
a=0

=
Γ(k)

Γ(k)
= 1

For a ≥ 1, we will use the following property of the gamma
function which holds for any real number z > 0:

Γ(z + 1) = zΓ(z) (13)

Proceeding by induction, for a = 1 and k > 0:

Γ(k + 1)

Γ(k)
=

kΓ(k)

Γ(k)
= k

where we used (13). For a = 2, we have that:

Γ(k + 2)

Γ(k)
=

(k + 1)Γ(k + 1)

Γ(k)
= (k + 1)k

where again we used (13). Now, we assume that for a > 1,
the following holds:

Γ(k + a)

Γ(k)
=

k+a−1∏
i=k

i

and proceed to obtain the value for a+ 1:

Γ(k + a+ 1)

Γ(k)
=

(k + a)Γ(k + a)

Γ(k)
= (k + a)

k+a−1∏
i=k

i =

k+a∏
i=k

i

which finishes the proof.

Lemma 1 allows obtaining the values for Sn
l,k in (12)

sequentially, as new data xn arrives. Observe that (12) can
be expressed as:

Sn
l,k = Sn

1,l,kS
n
2,l,k

(
Sn
3,l,k

)−1
(14)

where: 

Sn
1,l,k =

Γ(γl,k
1 + sn)

Γ(γl,k
1 )

Sn
2,l,k =

Γ(γl,k
2 + n− sn)

Γ(γl,k
2 )

Sn
3,l,k =

Γ(γl,k
1 + γl,k

2 + n)

Γ(γl,k
1 + γl,k

2 )

(15)

In these expressions, sn, n− sn and n are natural numbers
and hence, we can apply Lemma 1 to recursively update Sn

l,k

as new data xn arrives. Observe that all γ parameters are
greater than zero, for the Beta distribution parameters must
be positive. Thus, all conditions from Lemma 1 are satisfied.

The updating procedure depends on each new xn. If xn = 1,
then sn and n increase one unit with respect to their previous
values, whereas n − sn remains the same. Hence, we must
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update Sn
1,l,k and Sn

3,l,k only. If xn = 0, then n − sn and n
increase one unit with respect to their previous values, whereas
sn remains the same. Hence, we must update Sn

2,l,k and Sn
3,l,k

only. Thus, when a sample xn arrives, we always update S3
c,l,k

and depending on whether xn = 1 or xn = 0 we update
Sn
1,l,k or Sn

2,l,k. Note that these updatings are straightforward
according to Lemma 1. If sn = 0, then Sn

1,l,k = 1. And if
sn ≥ 1, then Sn

1,l,k = (γl,k
1 +sn−1)Sn−1

1,l,k. A similar reasoning
applies to Sn

2,l,k and Sn
3,l,k.

Algorithm 1 Sequential Bayes test
Input: γk, wl, Bt,0, Bt,1

1: Initialize stop = False, n = 1, s0 = 0
2: Initialize S0

1,l,k = S0
2,l,k = S0

3,l,k = 1
3: while stop is False do
4: Obtain a new sample xn

5: Update sn =
∑n

i=1 xi = sn−1 + xn

6: for k = 0, 1 do
7: for l = 1, 2, ..., L do
8: Sn

3,l,k = (γl,k
1 + γl,k

2 + n− 1)Sn−1
3,l,k

9: if xn = 1 then
10: Sn

1,l,k = (γl,k
1 + sn − 1)Sn−1

1,l,k

11: Sn
2,l,k = Sn−1

2,l,k

12: if xn = 0 then
13: Sn

2,l,k = (γl,k
2 + n− sn − 1)Sn−1

2,l,k

14: Sn
1,l,k = Sn−1

1,l,k

15: Obtain p(xn|Hk) using (11) for k = {0, 1}
16: Obtain Bn

10 = p(xn|H1)
p(xn|H0)

17: if Bn
10 > B1,t then

18: Decide H1 and set stop = True
19: else if Bn

10 < B0,t then
20: Decide H0 and set stop = True
21: else
22: Set n = n+ 1
Output: Decison taken, n

With all this, we propose an Algorithm that makes use of the
procedure described above to sequentially update the marginal
distributions p(xn|Hk) in order to obtain a sequential test,
based on the Bayes factor B10. We provide as inputs to the
algorithm the γk prior values and the wl weights for each l
value, as well as the threshold values Bt,0 and Bt,1 that we
wish to establish as stopping rules. When a new sample xn

arrives, the algorithm updates the two marginal distributions
p(xn|H0) and p(xn|H1), obtains the Bayes factor at sample
n Bn

10 and compares it to the two thresholds. If B10 > B1,t,
the test stops and H1 is accepted. If B10 < B0,t, the test stops
and H0 is accepted. Otherwise, a new sample is obtained. The
whole procedure is summarized in Algorithm 1. Observe that
this algorithm is very efficient, for:

• We do not need to evaluate any gamma function.
• Only sums, products and divisions are involved in each

algorithm iteration.
• The updating is based in a constant number of operations

as each new sample xn arrives, thus, our algorithm has a

101 102
10−2

10−1

100

n

A
T

E

(a) Pfa = 0.1

101 102
10−2

10−1

100

n

A
T

E

(b) Pfa = 0.3

CR, α = 0.01 CR, α = 0.1

BF, s = 103, ϵ = 0.01 BF, s = 103, ϵ = 0.05

BF, s = 103, ϵ = 0.1 BF, s = 103, ϵ = 0.2

BF, s = 104, ϵ = 0.01 BF, s = 104, ϵ = 0.05

BF, s = 104, ϵ = 0.1 BF, s = 104, ϵ = 0.2

Fig. 1. Simulation result curves. Note that our proposed BF approach obtains
a lower averaged total error using fewer samples n than the CR, for all the s
and ϵ values tested. Note that in the BF approach, the tested values of ϵ have
a greater impact than the values of s on the test ATE. This is to be expected,
since ϵ controls the sensitivity of the test. For all the values tested, our BF
approach significantly outperforms the CR.

linear number of operations with L and constant with n.
All these reasons make Algorithm 1 very suitable for a

limited resources environment as decision fusion in a wireless
sensor network.

V. EMPIRICAL PERFORMANCE EVALUATION

We compare the BF Algorithm we propose with the opti-
mized Counting Rule, which, as we indicated, is commonly
used and hard to beat due to being the universally most
powerful test [8]. Since the CR performance is not directly
comparable to our method, we use an Averaged Total Error
(ATE) metric to compare them. We employ a set of 21
Bernoulli parameters θtest linearly spaced in the interval
[0, 0.5]. Then, we fix Pfa and we perform 100 hypothesis
tests for each θtest, using both CR and our BF method. After
each of these hypothesis tests, we obtain the ATE by adding
the number of erroneous decisions taken and dividing by the
2100 simulations performed. Note that this means that ATE
gives us an averaged measure of the decision error over the
θtest values. We simulate for Pfa ∈ {0.1, 0.3}. For the CR,
we use α ∈ {0.01, 0.1} and employ 20 logarithmically spaced
values for n in the interval [5, 500].
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For the BF approach, we use as decision thresholds B0,t =
3−1 and B1,t = 3, following [15]. We also need to choose the
prior parameters. For the simulations, we use L = 1 Beta prior
distribution for simplicity, and we define the Beta parameters
as a function of two values: the strength of the prior, defined
as s = γk

1 + γk
2 , which denote the confidence we have in the

prior, and ϵ = Pd − Pfa, which controls the sensitivity of the
BF test. Since the mean of the beta distribution is:

µ =
γ1

γ1 + γ2

we set µ = Pfa and obtain the Beta distribution parameters
for the set ⟨s, Pfa, ϵ⟩ as:

γ1,0
1 = s · Pfa

γ1,0
2 = s · (1− Pfa)

γ1,1
1 = s · (Pfa + ϵ)

γ1,1
2 = s · (1− Pfa − ϵ)

(16)

In our simulations, we use (16) to define the prior distri-
butions with s = {103, 104} and ϵ = {0.01, 0.05, 0.1, 0.2},
that is, we test for two different confidence value in the prior
and for different sensitivities for the BF test. The results are in
Figure 1, where we can observe that our proposed BF approach
performs significantly better than CR in both ATE and the
number of samples required to take a decision. This means
that using a sequential BF hypothesis test provides a lower
average error of decision taking a smaller number of samples,
and both are crucial in a sensor network.

In our simulations, we also observed that the total error
using BF is distributed around θtest = Pfa, while the CR
strongly concentrates its error on θtest > Pfa in order
to satisfy the restriction P (H1|H0) ≤ α. That is, the CR
provides a bound in the type I error (α), but the type II error
depends on n and increases as n decreases: lower sample
sizes yield a higher type II error. Finally, we note that the
BF test performance could be improved by having a more
detailed knowledge about the prior distributions. Observe that
we used a simple prior for these simulations, and in real life
environments, in which a certain knowledge of the prior may
be present [22] [23], our proposed BF algorithm may perform
even better.

VI. CONCLUSIONS

In this work, we propose an algorithm to perform a Bayes
Factor test on a decision fusion problem for Bernoulli distri-
butions. We obtain closed form expressions of the probability
distributions, which allows us to obtain a sequential test
implementation of special interest in wireless sensor networks,
as such a test reduces the number of transmissions required
to the FC. Our algorithm is very efficient, and in terms of
performance, it provides a lower average error and requires
fewer samples to decide than the commonly used Counting
Rule. Thus, the proposed algorithm is specially suitable for
decision fusion in wireless sensor networks. Future work may
include extending our algorithm to the case in which each
sensor has a different false alarm and detection probabilities.

REFERENCES

[1] David A Shnidman, “Binary integration for swerling target fluctuations,”
IEEE Transactions on Aerospace and Electronic systems, vol. 34, no. 3,
pp. 1043–1053, 1998.

[2] Manuel F Fernandez and Tom Aridgides, “Measures for evaluating
sea mine identification processing performance and the enhancements
provided by fusing multisensor/multiprocess data via an m-out-of-
n voting scheme,” in Detection and Remediation Technologies for
Mines and Minelike Targets VIII. International Society for Optics and
Photonics, 2003, vol. 5089, pp. 425–437.

[3] Ruixin Niu and Pramod K Varshney, “Decision fusion in a wireless
sensor network with a random number of sensors,” in Acoustics,
Speech, and Signal Processing, 2005. Proceedings.(ICASSP’05). IEEE
International Conference on. IEEE, 2005, vol. 4, pp. iv–861.

[4] Ruixin Niu and Pramod K Varshney, “Performance analysis of dis-
tributed detection in a random sensor field,” IEEE Transactions on
Signal Processing, vol. 56, no. 1, pp. 339–349, 2008.

[5] Domenico Ciuonzo and P Salvo Rossi, “Decision fusion with unknown
sensor detection probability,” IEEE Signal Processing Letters, vol. 21,
no. 2, pp. 208–212, 2014.

[6] Mohammad Fayazur Rahaman and Mohammed Zafar Ali Khan, “Low-
complexity optimal hard decision fusion under the neyman–pearson
criterion,” IEEE Signal Processing Letters, vol. 25, no. 3, pp. 353–357,
2018.

[7] Steven M. Kay, Fundamentals of Statistical Signal Processing: Estima-
tion Theory, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[8] Domenico Ciuonzo, Antonio De Maio, and P Salvo Rossi, “A systematic
framework for composite hypothesis testing of independent bernoulli
trials,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1249–1253,
2015.

[9] Abraham Wald, “Statistical decision functions which minimize the
maximum risk,” Annals of Mathematics, pp. 265–280, 1945.

[10] Abraham Wald, Sequential analysis, Courier Corporation, 1973.
[11] Tze Leung Lai, “Sequential analysis: Some classical problems and new

challenges,” Statistica Sinica, vol. 11, no. 2, pp. 303–351, 2001.
[12] Tze Leung Lai, “Nearly optimal sequential tests of composite hypothe-

ses,” The Annals of Statistics, vol. 16, no. 2, pp. 856–886, 1988.
[13] Ruiliang Chen, J-M Park, and Kaigui Bian, “Robust distributed spectrum

sensing in cognitive radio networks,” in INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE. IEEE, 2008, pp.
1876–1884.

[14] Yeelin Shei and Yu T Su, “A sequential test based cooperative spectrum
sensing scheme for cognitive radios,” in Personal, Indoor and Mobile
Radio Communications, 2008. PIMRC 2008. IEEE 19th International
Symposium on. IEEE, 2008, pp. 1–5.

[15] Robert E Kass and Adrian E Raftery, “Bayes factors,” Journal of the
american statistical association, vol. 90, no. 430, pp. 773–795, 1995.

[16] Harold Jeffreys, “Some tests of significance, treated by the theory of
probability,” vol. 31, no. 2, pp. 203–222, 1935.

[17] H Jeffreys, Theory of Probability, Oxford University Press, 1961.
[18] Fayazur Rahaman Mohammad, Domenico Ciuonzo, and Zafar Ali Khan

Mohammed, “Mean-based blind hard decision fusion rules,” IEEE
Signal Processing Letters, vol. 25, no. 5, pp. 630–634, 2018.

[19] Domenico Ciuonzo and P Salvo Rossi, “Dechade: Detecting slight
changes with hard decisions in wireless sensor networks,” International
Journal of General Systems, vol. 47, no. 5, pp. 535–548, 2018.
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