
sensors

Article

Model Free Localization with Deep Neural
Architectures by Means of an Underwater WSN

Juan Parras 1,* , Santiago Zazo 1, Iván A. Pérez-Álvarez 2 and José Luis Sanz González 1

1 Information Processing and Telecommunications Center, Universidad Politécnica de Madrid,
ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain

2 Institute for Technological Development and Innovation in Communications (IDeTIC), Universidad de Las
Palmas de Gran Canaria, 35017 Las Palmas, Spain

* Correspondence: j.parras@upm.es

Received: 11 July 2019; Accepted: 10 August 2019; Published: 13 August 2019
����������
�������

Abstract: In recent years, there has been a significant effort towards developing localization systems
in the underwater medium, with current methods relying on anchor nodes, explicitly modeling
the underwater channel or cooperation from the target. Lately, there has also been some work
on using the approximation capabilities of Deep Neural Networks in order to address this problem.
In this work, we study how the localization precision of using Deep Neural Networks is affected
by the variability of the channel, the noise level at the receiver, the number of neurons of the neural
network and the utilization of the power or the covariance of the received acoustic signals. Our study
shows that using deep neural networks is a valid approach when the channel variability is low,
which opens the door to further research in such localization methods for the underwater environment.

Keywords: deep learning; underwater localization; acoustic

1. Introduction

In the last few years, there has been substantial development of wireless sensor networks
(WSN). A class of WSN that has received a lot of attention lately are Acoustic Underwater WSN
(AUWSN). This class of WSN is used for a variety of tasks, ranging from monitoring applications,
disaster management and recovery and assisted navigation, to military related applications, as a recent
survey has shown [1]. Several of these applications require a localization mechanism, which is used
for different purposes, such as data tagging, node tracking, target detection or to improve the performance
of communication protocols [2]. Thus, it is no surprise that a lot of attention and research have addressed
the localization problem in underwater environments.

In the reviews [2–5], the authors propose several classifications for current localization methods
in AUWSN. These methods rely on acoustic signals, as they have a considerably lower attenuation
in the underwater channel than electromagnetic signals. The localization techniques can be based
on time of arrival, angle of arrival or received power [2]. Since the underwater channel presents
a time-varying path loss and a strong multipath effect, the received power measurements present a large
variance, and hence are usually not used for localization [3], an exception being [6], where a hybrid
method using power measurements and time of arrival is used. Still, the majority of current localization
techniques rely on time of arrival [2] and usually make use of anchor nodes or active messaging.

Anchor nodes are sensors that know their localization a priori and use that information for target
localization purposes. Even though anchor nodes are common [7], they introduce a deployment cost.
One solution to this problem is the use of self-localization algorithms [8]. Another solution is the use
of an anchor-less localization mechanism that relies on fingerprinting [9], but this method needs
to model the environment. Active messaging means that the sensors, as well as the target to locate,

Sensors 2019, 19, 3530; doi:10.3390/s19163530 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7028-3179
https://orcid.org/0000-0001-5990-8409
http://www.mdpi.com/1424-8220/19/16/3530?type=check_update&version=1
http://dx.doi.org/10.3390/s19163530
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3530 2 of 16

communicate among them in order to obtain the localization, which means having an increase in battery
consumption and having a cooperative target.

However, recent advances in deep learning are using the powerful modeling capabilities of Deep
Neural Networks (DNNs) in order to use acoustic signal measurements in order to locate, as it is done
in other communication channels [10,11]. For instance, the authors in [12,13] make use of a DNN
in order to locate using the covariance matrix of the received sound pressure levels. Such approaches
need a training stage but present a significant set of advantages: we may not need synchronization
among sensors nor active messaging schemes, we may not need the sensor localization and there
is no need to have an exhaustive a priori knowledge of the environment parameters, which means that
a DNN approach could be considered model-free as it learns the mapping between the acoustic data
and the localization of the source.

In this work, we give a step forward towards studying the feasibility of using model-free
localization methods in underwater channels based on DNN. As we have indicated, most localization
methods rely on time of arrival measurements, but recently methods based on DNN have been used
to locate using the received signal. In this work, we provide the following contributions:

• We study the localization accuracy of a simple DNN using the underwater acoustic channel
characterization proposed in [14], which models a time-varying shallow water acoustic channel,
which takes into account several propagation effects such as multipath or frequency-dependent
path loss. It is a realistic channel model, which allows us to test the accuracy of the DNN approach
under different propagation conditions.

• We make use of a recurrent neural networks architecture to locate, studying the results obtained
for different sizes of the neural network in order to evaluate how this influences the localization
precision. As recurrent neural networks have memory, they not only learn to locate, but also
to track the target, as [15] shows.

• We compare the localization accuracy using both power measurements and the covariance
matrix, for several channel parameters, DNN architectures and Signal to Noise Ratio (SNR)
values. To the best of our knowledge, ours is the first work in which the DNN approach is put
to the test under all these conditions, which allows us to draw conclusions on both the precision
and the convenience of using DNN for underwater localization. Currently, covariance measurements
are used for underwater location, but we show that, under certain conditions, power measurements
can be enough for underwater localization. This opens the door to new localization methods that
use received signal power as input.

In short, our work provides a study on the utilization of DNNs as a localization method
in underwater channels. The rest of the paper goes as follows: in Section 2, we introduce models
and concepts that are used throughout the paper. Later, Section 3 thoroughly details the problem
that we address. Then, in Section 4, we present our results and analyze them. Finally, we draw some
conclusions in Section 5.

2. Background

In his section, we introduce both the channel model that we use in our work and a short
introduction to feedforward neural networks.

2.1. Channel Model

The task of modeling the underwater acoustic channel is not easy. There are many models
proposed, such as [16–19]. In each of these works, the channel random variations are adjusted
differently, which gives rise to different channel models. Very remarkably, the authors from [14]
propose using a statistical characterization of the underwater acoustic channels that classifies
the channel variations into small and large scale variations, depending on whether the magnitude
of the random displacement is large or small compared to the wavelength. We make use of this model

Sensors 2019, 19, 3530 3 of 16

because it is computationally efficient and, at the same time, it takes into account different channel
effects, such as scattering, multipath propagation and Doppler shifting.

In this model, the attenuation of the channel is expressed as:

A(d, f) = A0 · dk · a(f)d, (1)

where A0 is a constant scaling factor, f is the frequency, d is the distance, k is the spreading factor
and a(f) is the absorption coefficient, computed using Thorp’s empirical formula [20].

In an underwater channel, there will be multiple paths between the transmitter
and the receiver—for instance, there will be reflections with the water surface. Moreover, due to waves
and tides, the lengths of these paths will vary, which means that each path will have a different path
delay and attenuation, as Equation (1) depends on the path length. In order to include these and other
effects into account when modeling the underwater channel, the authors in [14] propose approximating
the channel transfer function as follows:

H(f , t) = H0(f)∑
p

hpγp(f , t)e−j2π f δp , (2)

where we have that:

• The paths are indexed by p, where H0 denotes the reference path transfer function. The effect
of each propagation path is considered as a low-pass filter, which takes into account both
the attenuation expressed in Equation (1) and the reflections encountered along the propagation
path.

• hp and δp are, respectively, the channel gain and delay for each path. They are obtained taking
into account variations in the path length—for instance, due to tides.

• The coefficient γp(f , t) includes other propagation effects, namely, scattering, correlation
and Doppler shifting.

Note that Equation (2) depends both on the frequency and the time, hence the channel model
used is not time-invariant. Even though it does not model some effects, such as surface curvature
or the effect of breaking waves, it achieves a good compromise between being a realistic channel model
and a computationally efficient one [21]. For these reasons, we use this channel model in our work.

2.2. Neural Networks

It has been known for many years that neural networks are universal approximators for functions,
capable of approximating any measurable function to any degree of accuracy [22]. However, the lack
of sufficient computational power for training these neural networks caused them not to be too
successful. This radically changed as the computational power available to researchers grew:
deep neural networks composed of many layers could be trained and many applications for DNNs
appeared [23]. Today, DNNs are used successfully for many complex tasks, such as object classification
in images [24], human-like performance in Atari games [25] or indoor localization [26], to mention
a few. The increasingly high computational power available even makes it feasible to use DNN
for WSN deployments [11].

A feedforward neural network is a directed architecture as seen in Figure 1, in which each
of the neurons outputs a nonlinear combination of its inputs as follows:

z = F
(
∑ w · x + b

)
, (3)

where z is the neuron output, x its input, w is a vector of weights, b is a scalar bias and F is the activation
function, which usually is nonlinear. Note that each neuron receives as input a vector and outputs
a single, deterministic value.

Sensors 2019, 19, 3530 4 of 16

x1

x2

z1

z2

Figure 1. Example of feedforward neural network. Each circle represents a neuron, which combines
in a nonlinear way its inputs following Equation (3). The inputs are x1 and x2, and the outputs are z1

and z2. There is a single hidden layer, which has three neurons. Note how each of the outputs z is a
nonlinear combination of the inputs x1 and x2.

Training a neural network means obtaining the set of weights and biases that approximates
a certain function. This is usually done from data: we provide the neural networks with a dataset
of inputs and outputs, and the weights and biases are iteratively updated in order to minimize a loss
between the neural network output and the desired output given by the dataset. This update is usually
done by means of the backpropagation algorithm [27], which is an application of the chain rule
to obtain the gradients and then apply a first order optimization method, such as Adam [28], in order
to update the weights and biases of the neural network.

Feedforward neural networks can be modified to include feedback from the past, giving way
to Recurrent Neural Networks (RNNs). RNNs are very suited for processing a stream of data, as they
are able to remember past information. The memory is achieved by updating as new data arrives,
a state, which is then concatenated to the neural network input. Hence, the output now is not only
a function of the neural network input data, but also a function of the state, which contains information
about the past.

One of the most popular architectures to implement an RNN is the Long-Short Term Memory
(LSTM) architecture [29], which we use in our work. In an LSTM, there is a cell state ct that is updated
using the data input xt and the output of the LSTM, denoted by yt. The subscript t is used to denote
the time index. An LSTM is formed by four different neural networks, with weights wi and biases bi,
i ∈ {1, 2, 3, 4}—see Equation (3). These four neural networks are used to update yt and ct as follows:

• First, ct is updated with the following expression:

ct = Sigm (w1 · [xt, yt−1] + b1) · ct−1 + Sigm (w2 · [xt, yt−1] + b2) · Tanh (w3 · [xt, yt−1] + b3) , (4)

where Sigm denotes the sigmoid function, Tanh the hyperbolic tangent function and [a, b]
the concatenation of the vectors a and b. Note that the cell state ct is updated using the previous cell
state ct−1, the previous LSTM output yt−1 and the current input xt. The first term in Equation (4)
is called the forget term: the sigmoid function outputs a nonlinear combination of the current
input and previous output in the range [0, 1]. By multiplying this term element-wise with the
previous cell state, we are determining which elements from the previous cell state are forgotten.

The second term in Equation (4) intuitively controls what new information we are adding to the
cell state. Note that the hyperbolic tangent term could be considered the new information that
the LSTM wants to add to the cell state, whereas the sigmoid term controls again how much
of that information will be added to the cell state. Thus, the cell state update consists of two

Sensors 2019, 19, 3530 5 of 16

main terms: the first controls how much information from the previous state cell is remembered,
and the second how much information from the current input and previous output we are adding
to the state cell to remember in the next timesteps.

• Second, we obtain the output to the LSTM using the following expression:

yt = Sigm (w4 · [xt, yt−1] + b4) · Tanh (ct) , (5)

where the input depends on the current input and cell state, and the previous output. Note that
the cell state is updated using Equation (4) prior to obtaining the LSTM output using Equation (5).
In addition, note that Equation (5) shows that the output is a filtered version of the current
cell state.

It is important to note that, in each timestep, the weights and biases of the four neural networks
that compose the LSTM architecture are the same. The training of RNNs is different from feedforward
neural networks, as now the time needs to be taken into account as well, and a modified algorithm
known as backpropagation through time is used [30]. This algorithm computes the gradient
for the weights and biases, not only taking into account the current timestep, but also the previous
ones, unrolling the LSTM in a similar way as shown in Figure 2. Thus, sequences of input data are
used for training an LSTM.

x1

y1

c1

x2

y2

c2

x3

y3

LSTM LSTM LSTM

c0

y0

Figure 2. Illustration of the procedure of an LSTM for three timesteps. The output yt is updated in each
timestep using Equation (5) and the cell state ct is updated using Equation (4). The LSTM block is
composed of four neural networks, which are the same for all timesteps. Note that, in the first timestep,
it is necessary to provide an initial c0 and y0 in order to obtain c1 and y1.

3. Problem Setup

In this work, we test a DNN architecture that can be used for localization in an underwater
acoustic channel, for non-cooperative targets and without the need of using anchor nodes. We now
proceed to detail the different elements that are part of our problem setup.

3.1. Target Signal Model

First, we consider that the target that we want to locate is an underwater vehicle, and model
the signal that vehicle produces as the following sinusoid:

x(t) = cos(2π fmt), (6)

where x(t) is the acoustic signal generated by the vehicle and fm models the effect of the propeller
blade. This simple signal model appears in underwater localization methods, such as [31], and in [32];
it is empirically shown that the propeller blades spectrum presents peaks around multiples of the blade
rates. We do not study more complex signal models in this work, such as cavitation [33], in order
to focus on the study of the influence of the channel characteristics on the localization accuracy.

Sensors 2019, 19, 3530 6 of 16

3.2. Received Signal Model

We consider an underwater sensor network composed of S sensors, where s = 1, 2, ..., S indexes
the sensor. As indicated in Section 2.1, we choose to use the channel model from [14] because
it is an accurate and computationally efficient acoustic channel model [21,34]. Note that the channel
modeled in [14] is not time invariant, thus we make use of two different time-scales: τ represents
a small time-scale, in the order of milliseconds, whereas t represents the large time-scale, on the order
of seconds. Recall that, in a time variant convolution, the channel impulse response depends on t,
and that the signal ys(t) in each underwater acoustic sensor s can be obtained as the convolution in τ

of the channel impulse response in the corresponding t for the sensor s, hs(t, τ), plus a term of additive
white Gaussian noise at the receiver, n(t). Mathematically:

ys(t) = x(t) ∗ hs(t, τ) + n(t), (7)

where ∗ denotes the convolution operator. We remark that x(t) is defined in Equation (6).
For obtaining hs(t, τ), we use the model from [14]. For each different t, we generate a new channel

realization: note that this means that the statistical effects of the channel will vary with t, as, for each t,
we will have a different channel realization. The model in [14] is defined using a large set of parameters that
are found in Table 1. Note that we choose many parameters to be dependent on a θ value, where θ ∈ [0, 1]
controls the variability of the channel, i.e., the channel presents the highest variability when θ = 1
and the opposite when θ = 0. When θ = 1, the parameters’ values are the default ones in [35].

Table 1. Channel parameters used, following the channel model from [14]. Note that there are values
that depend on the θ parameter chosen: higher θ values provide a channel with more variability.
Thus, we use θ to model acoustic channels with different variability while using a single parameter
for simplicity.

Parameter Value

Spreading factor k 1.7
Speed of sound in water (m/s) 1500

Speed of sound in bottom (m/s) 1200
Minimum relative path strength 50

Frequency band (kHz) [10, 20]
Frequency resolution (Hz) 25

Coherence time small scale TSS (s) 6
Variance of small scale surface variations σ2

s (m2) 1.125θ
Variance of small scale bottom variations σ2

b (m2) 0.5625θ
3-dB width of psd of intrapath, Bδp (Hz) 0.0005

Number of intrapaths 20θ
Mean of intrapaths amplitudes 0.025θ

Variance of intrapaths amplitudes 0.000001θ
Range of surface height (m) [−θ, θ]
Range of target height (m) [−θ, θ]
Range of sensor height (m) [−θ, θ]

Range of channel distance height (m) [−10θ, 10θ]
Large scale standard deviation of surface height θ
Large scale standard deviation of target height θ
Large scale standard deviation of sensor height θ

Large scale standard deviation of channel distance θ
Large scale auto regressive process parameter 0.9

3.3. Covariance Matrix Feature Extraction

In previous works [12,13], the authors have made use of a DNN to locate targets using values
from the covariance matrix in order to feed a deep neural network. In order to obtain the covariance

Sensors 2019, 19, 3530 7 of 16

matrix C, we first use the received signal ys(t) sampled during a certain time T to obtain the FFT vector
for each sensor, Ys. Note that T is the time interval considered for all signal processing tasks in this work.
We then obtain Y, which is an S-component vector, in which each entry corresponds to the normalized
FFT value in the frequency bin with maximum energy for each sensor s. In other words:

Y(s) = Ys

(
arg max |Ys|2

)
. (8)

The covariance matrix is obtained using the following expression:

C = Y ·YH , (9)

where H is the conjugate transpose operator. Note that Ys and Y are complex vectors, and C is a complex
Hermitian matrix—that is, a square matrix that is equal to its own conjugate transpose.

The covariance feature vector is obtained from the C matrix as follows. First, we take advantage
of the fact that C is Hermitian in order to reduce the dimensionality of the feature vector: we only need
to take the upper (or the lower) triangle values of the matrix. In our case, we take the upper triangle
values and concatenate them, hence we have a vector c with (S− 1)S/2 components, instead of S2

components of the original C matrix.
However, each component of the vector c is complex, and the neural network needs real numbers

as input. Thus, we concatenate the real and imaginary parts of c in order to obtain the covariance
feature vector, which has a dimensionality of S(S + 1) components. Note that, if we did not take
into account the fact that C is a Hermitian matrix, the feature vector would have 2S2 components.
The whole procedure can be observed in Figure 3.

Finally, note that C includes information about the received signal power and phase, and hence
the feature vector includes both of them.

Sample y1(t) Y1 = FFT(y1(t)) max |Y1|2

Sample ys(t) Ys = FFT(ys(t)) max |Ys|2

... Y C = Y ·YH

c = UpperTriangle(C)Output: Concatenate(Real(c), Imag(c))

Figure 3. Block diagram illustrating the steps needed to obtain the covariance feature vector.

3.4. Power Feature Extraction

In this work, we make use of the power as another possible localization feature. In this case,
we consider that the input to our localization DNN is an S-component vector, in which the component
for each sensor s is Es,t, the received signal energy during T, that is:

Es,t =
∫ t+T

t
|ys(u)|2du. (10)

In other words, we choose as an input feature for our localization DNN the signal energy that
each sensor s is measuring. Note that, in this case, the feature vector has a size S, which is significantly
lower than in the covariance features. In addition, note that the covariance includes phase information,
while the power approach does not. In addition, note that the main diagonal of the matrix C includes
energy information as well.

Sensors 2019, 19, 3530 8 of 16

3.5. Localization Neural Network

In order to locate, we use a neural network with one single hidden layer that can be observed
in Figure 4. The first layer has one neuron for each component of the feature vector, that is, S neurons
if power features are used, and S(S + 1) if covariance features are used. This first layer is an LSTM
cell, which, as we indicated previously, is specially suited to analyze a sequence of data. The second
layer is a feedforward layer with N neurons: we will test different values of N in order to study how
the number of neurons of the hidden layer affects the localization precision. We denote the actual
position of the vehicle by z, which in this work is a three-dimensional, vector with the Cartesian
coordinates of the vehicle. Hence, the last layer of the network has three components and it is denoted
by z̃, an estimation of the localization of the vehicle target. Observe that our method is valid to estimate
the localization of surface and underwater targets. In addition, note that the activation functions
chosen for the first two layers are the hyperbolic tangent function, but the final layer has a linear
activation. This is due to the fact that the hyperbolic tangent function gives values in the range [−1, 1],
while the position vector z takes values outside that range.

Input: Feature vector

Layer 1: S / S(S + 1) neurons, LSTM, Tanh activation

Layer 2: N neurons, Tanh activation

Layer 3: 3 neurons, Linear activation

Output: z̃

Figure 4. The localization DNN architecture used, where Tanh stands for hyperbolic tangent function.
The number of neurons of the first layer depends on the dimensionality of the feature vector used:
S neurons if power features are used, and S(S + 1) if covariance features are used.

In order to train the neural network, we first generate a set of trajectories z. For each point in these
trajectories and for each sensor s, we use our channel model to generate the channel impulse response
H(f , t), using Equation (2), and this impulse response is used to obtain ys(t), the signal received
at each sensor using Equation (7). Then, we extract the features from the received signal, which
depend on whether we are using the covariance of the received signal—Equation (9)—or the power
received—Equation (10). Since our localization DNN has an LSTM, the input dataset is formed by
sequences of consecutive features, in order to allow the LSTM train its memory capabilities. The output
dataset is composed by the z localization information, that is, the actual localization of the target. Thus,
we have a sequence of features at the input, and the output is an estimation of the position of the target.
We train the DNN by minimizing the mean squared error between z, the actual target localization,
and z̃, the localization estimation given by the DNN. By training in this way, we minimize the error
between the predicted localization, z̃, and the actual localization z. A block diagram of this process can
be seen in Figure 5.

Finally, we comment on another advantage of using a recurrent neural network to locate as we
do. It is known that such neural networks are able to track moving targets in an unsupervised
way [15]. Hence, the inclusion of an LSTM layer in our localization DNN means that the predicted
target localization, z̃, will be a filtered version that takes into account past information, in a similar
way to other well known tracking procedures, such as Kalman filters. Thus, using LSTM provides
an additional advantage, which is that our localization DNN is also tracking using past information,
as [15] shows.

Sensors 2019, 19, 3530 9 of 16

Trajectories z data

Obtain ys(t)

Obtain features sequences

Input dataset

Output dataset

Train DNN

Figure 5. The localization procedure overview. From a set of trajectories, we obtain the signal received
in each sensor s, ys(t), which is then used to extract power or covariance features, and these features are
grouped in sequences to form the input data to our localization DNN. The output data are the trajectory
Cartesian coordinates z. By training the DNN in this way, we minimize the error between the predicted
localization by the localization DNN, z̃, and the actual localization z.

4. Results

Now, we proceed to test the performance of our proposed DNN. We first describe the test
conditions, and then present and analyze the results obtained, using covariance features as a baseline
to compare the performance of power features.

4.1. Simulations Setup

We use the setup described in Section 3 in order to train the proposed localization DNN.
First, we work with discrete time signals, using as sample frequency fs = 10 kHz. We generate
x[n] following Equation (6) with fm = 250 Hz using 1024 samples.

Next, we place S = 10 sensors in an ellipse whose semi-major axis measures 1000 m and the semi-minor
axis measures 500 m: we consider these sensors to be static. In addition, we generate 100 trajectories,
with 50 points in each of them: each trajectory follows a two-dimensional spiral with randomly picked
phase, radius and angular velocity in the water surface. We consider that the time spacing between the
trajectory points is 6 s. With regard to the depth of sensors and target, we consider that the sensors lie at 1 m
height of the sea bottom, whereas the target moves at a height of 50 m, which corresponds to the sea surface.
The Cartesian coordinates of the target is the vector z = (x, y, 50), where:

x[n] = x0 + n · R · cos
(

ω
n
50

+ φ
)

,

y[n] = y0 + n · R · sin
(

ω
n
50

+ φ
)

,
(11)

where x and y are in m, x0 and y0 are uniformly chosen in the range [0, 1000] m, R is uniformly
chosen in the range [100, 1100] m and ω and φ are uniformly chosen in the range [0, 2π]. We use
these trajectories for they describe realistic target trajectories. See Figure 6 to see some examples
of the trajectories obtained. Note that this model allows a very convenient parameterization,
which faces our localization DNN to a complex set of curved trajectories around the sensors.

After that, we obtain the channel impulse response from each point of each trajectory to each
sensor s using the procedure described in [14] with the parameters from Table 1 for 11 equispaced θ

values in θ ∈ [0, 1]. Since the channel is time variant, we obtain a different channel impulse response
for each trajectory point. The signal x[n] is filtered using the corresponding channel impulse response
in order to obtain ys[n] as in Equation (7). We also add to ys[n] an additive white Gaussian noise,
whose energy depends on the Signal-to-Noise Ratio (SNR) that we fix beforehand using three different
values: SNR = {0, 10, 20} dB. For each point z in each trajectory, we generate 100 different ys[n] values
for two reasons: to have a larger dataset, which helps with training the DNN, and to help the DNN
deal with the effect of the Gaussian noise that we add at the receiver.

In order to obtain the features, we use 40 ms of the received signal. The covariance features are
obtained using Equation (9), and the power features are obtained using Equation (10) in logarithmic

Sensors 2019, 19, 3530 10 of 16

units. We remark that we use only 40 ms of the signal ys[n] to obtain the energy. Since our localization
approach relies on the signal energy, it is important to obtain the energy from a number of samples
that is high enough as to guarantee an accurate estimate of the signal energy, but, at the same time,
it should not be too large in order to ease the computational load and cause the signal to be locally
time invariant. For our case, we found that 40 ms were enough for our purposes.

The features obtained are the input to the localization DNN. We normalize the input data,
so that it approximately has a zero mean and a unit variance, as normalization has been observed
to improve significantly the performance of DNNs [36].

We are now ready to start training the localization DNN. We divide each trajectory into sequences
of 10 consecutive positions: these sequences will form our input dataset. In addition, 90% of the dataset
is used to train the DNN, and the other 10% is used for validation, i.e., samples that the DNN
has never seen. We train the localization DNN during 1000 epochs, using the batch of data
generated, trying to minimize the mean squared error between z and the prediction of z, z̃ that
the localization DNN provides. As optimization algorithm, we use Adam [28] with a learning rate
of 0.001. This training procedure is repeated using a different number of neurons in the hidden layer,
N ∈ {8, 16, 32, 64, 128}.

4.2. Results Obtained

We analyze the results in Figures 6–8. First, in Figure 7, we can observe the training and validation
losses for the case that N = 64. The results obtained show that the localization DNN learns very well for
θ = 0, but overfits a bit when θ = 0.5 and a lot when θ = 1, for all SNR values. Thus, we can conclude
that θ, the parameter that controls the channel variability, is the main responsible for the localization
accuracy. In the best case, the localization DNN learns in an accurate way, but, as the variability
increases, the learning DNN reaches a precision bound and then it starts overfitting. Hence, for high θ

values, the training should stop early in order to avoid the DNN to overfit, that is, stop training when
the validation error stops decreasing. In addition, note that the effect of the SNR on the localization
precision is negligible compared to the θ effect: higher SNR produces a better localization, but clearly θ

dominates the localization precision.

−1000 0 1000

−1000

0

θ = 0.

−1000 0 1000

−500

0

500

1000

θ = 0.4.

Figure 6. Example trajectories, for SNR = 0 dB and N = 64. The black points represent the sensor
positions. Blue is the actual value of z, and, in red, we observe the localization DNN prediction,
z̃, using power features, and, in green, using covariance features. The axis are in m.

Sensors 2019, 19, 3530 11 of 16

Version August 6, 2019 submitted to Sensors 11 of 16

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 20.

Covariance Training Covariance Validation
Power Training Power validation

Figure 6. Mean Squared Error (MSE) during training, when N = 64. We can observe that, for low θ

and high SNR, the localization DNN converges to a low localization error. However, as θ increases, i.e.,
the channel becomes more variable, and SNR diminishes, i.e., the received noise signal increases, the
localization precision significantly worsens. Also, as θ increases and SNR diminishes, there appears
overfitting: the validation values remain constant while the training values decrease, which means that
there is a certain localization precision bound that our localization DNN is not able to improve.

Version August 6, 2019 submitted to Sensors 11 of 16

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 20.

Covariance Training Covariance Validation
Power Training Power validation

Figure 6. Mean Squared Error (MSE) during training, when N = 64. We can observe that, for low θ

and high SNR, the localization DNN converges to a low localization error. However, as θ increases, i.e.,
the channel becomes more variable, and SNR diminishes, i.e., the received noise signal increases, the
localization precision significantly worsens. Also, as θ increases and SNR diminishes, there appears
overfitting: the validation values remain constant while the training values decrease, which means that
there is a certain localization precision bound that our localization DNN is not able to improve.

Version August 6, 2019 submitted to Sensors 11 of 16

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 0.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 10.

0 500 1,000
0

2

4

·105

Epoch

M
SE

θ = 0, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 0.5, SNR = 20.

0 500 1,000
0

2

4

·105

Epoch

θ = 1, SNR = 20.

Covariance Training Covariance Validation
Power Training Power validation

Figure 6. Mean Squared Error (MSE) during training, when N = 64. We can observe that, for low θ

and high SNR, the localization DNN converges to a low localization error. However, as θ increases, i.e.,
the channel becomes more variable, and SNR diminishes, i.e., the received noise signal increases, the
localization precision significantly worsens. Also, as θ increases and SNR diminishes, there appears
overfitting: the validation values remain constant while the training values decrease, which means that
there is a certain localization precision bound that our localization DNN is not able to improve.

Figure 7. Mean Squared Error (MSE) during training, when N = 64. We can observe that, for low θ

and high SNR, the localization DNN converges to a low localization error. However, as θ increases,
i.e., the channel becomes more variable, and SNR diminishes, i.e., the received noise signal increases,
the localization precision significantly worsens. In addition, as θ increases and SNR diminishes,
there appears overfitting: the validation values remain constant while the training values decrease,
which means that there is a certain localization precision bound that our localization DNN is not able
to improve.

Version August 6, 2019 submitted to Sensors 12 of 16

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 0.

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 10.

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 20.

N = 8 and power
N = 8 and covariance

N = 16 and power
N = 16 and covariance

N = 32 and power
N = 32 and covariance

N = 64 and power
N = 64 and covariance

N = 128 and power
N = 128 and covariance

Figure 7. Validation Mean Absolute Error (MAE), in m, for different θ, SNR and N. We use the MAE
because its meaning is more intuitive than MSE as the mean error in the distance between z and z̃. Note
that as θ increases, the MAE increases as well, specially from θ = 0.4 onwards. We can also observe
that for N = {8, 16} the localization DNN is not learning to locate accurately, which does for higher
N, that is, for more neurons in the hidden layer. However, note that the increase in accuracy between
N = 64 and N = 128 is minimal. Finally, observe that the results are similar for all SNR values and
that for low θ, using power or covariance features does not matter, but it does for higher θ values.

should not be worse than power. It is remarkable, however, than power features includes enough311

information for locating accurately when the channel variability is low.312

Finally, Figure 8 shows, for N = 64 and θ = 0 and 0.4, two examples of validation trajectories313

and the prediction given by the localization DNN. It is possible to observe that, if the variability of the314

channel is not too large, i.e., θ is low, the localization DNN provides a good localization mechanism.315

Note that θ will depend on the concrete setting where we intend to deploy our locating sensor network,316

and thus, locating using power or covariance and a DNN could be a good option. As we have indicated,317

using a localization DNN provides several other advantages.318

One of them has to do with whether the sensors need to know their positions. It is possible to319

differentiate between two cases. If the sensors are deployed first, and then used to collect real data from320

sample trajectories done with a moving target, the sensors need not know their exact positions, as the321

localization DNN will implicitly learn everything it needs for localization during training. However,322

a different possible approach would be to train the localization DNN using simulations, as we have323

done, and then deploy the sensor network. In this case, the sensors need to be positioned in the same324

geometry that was used for training, as the localization DNN has implicitly learned to locate using325

Figure 8. Cont.

Sensors 2019, 19, 3530 12 of 16

Version August 6, 2019 submitted to Sensors 12 of 16

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 0.

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 10.

0 0.2 0.4 0.6 0.8 1
0

200

400

θ

M
A

E

SNR = 20.

N = 8 and power
N = 8 and covariance

N = 16 and power
N = 16 and covariance

N = 32 and power
N = 32 and covariance

N = 64 and power
N = 64 and covariance

N = 128 and power
N = 128 and covariance

Figure 7. Validation Mean Absolute Error (MAE), in m, for different θ, SNR and N. We use the MAE
because its meaning is more intuitive than MSE as the mean error in the distance between z and z̃. Note
that as θ increases, the MAE increases as well, specially from θ = 0.4 onwards. We can also observe
that for N = {8, 16} the localization DNN is not learning to locate accurately, which does for higher
N, that is, for more neurons in the hidden layer. However, note that the increase in accuracy between
N = 64 and N = 128 is minimal. Finally, observe that the results are similar for all SNR values and
that for low θ, using power or covariance features does not matter, but it does for higher θ values.

should not be worse than power. It is remarkable, however, than power features includes enough311

information for locating accurately when the channel variability is low.312

Finally, Figure 8 shows, for N = 64 and θ = 0 and 0.4, two examples of validation trajectories313

and the prediction given by the localization DNN. It is possible to observe that, if the variability of the314

channel is not too large, i.e., θ is low, the localization DNN provides a good localization mechanism.315

Note that θ will depend on the concrete setting where we intend to deploy our locating sensor network,316

and thus, locating using power or covariance and a DNN could be a good option. As we have indicated,317

using a localization DNN provides several other advantages.318

One of them has to do with whether the sensors need to know their positions. It is possible to319

differentiate between two cases. If the sensors are deployed first, and then used to collect real data from320

sample trajectories done with a moving target, the sensors need not know their exact positions, as the321

localization DNN will implicitly learn everything it needs for localization during training. However,322

a different possible approach would be to train the localization DNN using simulations, as we have323

done, and then deploy the sensor network. In this case, the sensors need to be positioned in the same324

geometry that was used for training, as the localization DNN has implicitly learned to locate using325

Figure 8. Validation Mean Absolute Error (MAE), in m, for different θ, SNR and N. We use the MAE
because its meaning is more intuitive than MSE as the mean error in the distance between z and z̃.
Note that, as θ increases, the MAE increases as well, specially from θ = 0.4 onwards. We can also
observe that, for N = {8, 16}, the localization DNN is not learning to locate accurately, which does
for higher N, that is, for more neurons in the hidden layer. However, note that the increase in accuracy
between N = 64 and N = 128 is minimal. Finally, observe that the results are similar for all SNR values
and that, for low θ, using power or covariance features does not matter, but it does for higher θ values.

In Figure 8, we can observe the validation Mean Absolute Error (MAE) compared for all of our
experiments. We choose to represent the MAE because it gives a more intuitive insight into the meaning
of the error value: the MAE represents the mean distance in each coordinate between z and z̃, that is,
between the actual and the estimated localization of the target. Figure 8 allows us to study the effect
of each of the parameters under study and their effect on the localization precision:

• Regarding N, the number of neurons of the hidden layer, we note that having more neurons does
benefit our localization precision, as it decreases the MAE. Actually, for N = 8 and N = 16,
the localization DNN does not learn to locate, but it does for N ≥ 32. We remark that,
while adding more neurons does increase the localization precision, the marginal increase
in the MAE is low when we pass from 64 to 128 neurons. In addition, note that there
is a lower bound in the localization precision for all values, which is around 50 m in our setup,
due to the uncertainties in the localization that are derived from the channel propagation effects.

• Regarding θ, we reach the same conclusion as in Figure 7: as θ increases, the precision
localization decreases, as the MAE increases. Note that this affects N ≥ 32, all SNRs and
both power and covariance features. This is no surprise at all: as we showed in the Introduction,
the main obstacle to using power measures for locating purposes is precisely the complexities
of the underwater channel.

• Regarding the SNR, we note that it does not play a significant role in determining the localization
precision in our setup, as the plots are similar for all SNR cases.

• Regarding the features used, note that, for low θ values, covariance and power features
reach a similar localization precision, which is to be noted as the power feature is a single
scalar per sensor, while covariance is a vector. However, as θ increases, power features’
localization precision has a faster increase in the MAE, which means that covariance locates
better, although the localization results are not good for any of these features. These results are
to be expected: covariance features include more information than power features, and hence
their performance should not be worse than power. It is remarkable, however, that power features
include enough information for locating accurately when the channel variability is low.

Finally, Figure 6 shows, for N = 64 and θ = 0 and 0.4, two examples of validation trajectories
and the prediction given by the localization DNN. It is possible to observe that, if the variability of the

Sensors 2019, 19, 3530 13 of 16

channel is not too large, i.e., θ is low, the localization DNN provides a good localization mechanism.
Note that θ will depend on the concrete setting where we intend to deploy our locating sensor network,
and thus locating using power or covariance and a DNN could be a good option. As we have indicated,
using a localization DNN provides several other advantages.

One of them has to do with whether the sensors need to know their positions. It is possible
to differentiate between two cases. If the sensors are deployed first, and then used to collect real data
from sample trajectories done with a moving target, the sensors need not know their exact positions,
as the localization DNN will implicitly learn everything it needs for localization during training.
However, a different possible approach would be to train the localization DNN using simulations,
as we have done, and then deploy the sensor network. In this case, the sensors need to be positioned
in the same geometry that was used for training, as the localization DNN has implicitly learned
to locate using that concrete geometry. Note that both methods could be also combined in order
to pre-train the localization DNN weights and then fine-tune them with real data. Thus, depending
on which training procedure we choose, our method may need the sensors to know their position.

In addition, our method does not need the cooperation of the target: there is no messaging scheme
required to locate between the target and the sensor network, as it is the case with Time of Arrival
based methods. However, communication is needed among the sensors in order to locate. Note that
the data that are transmitted among sensors depend on the features that are used: if we are using power
features, the sensors only transmit a scalar. However, if the localization DNN is using covariance
features, then each sensor has to transmit the signal that each of them has received in order to extract
the covariance features. Hence, the communication requirements in the case of power features are
significantly smaller than in the case of using covariance features.

The final advantage is that our localization DNN does not need to explicitly model the underwater
channel either, as the DNN infers the relation between the energy and the positions during training.
However, if we want to train the localization DNN using simulations, we need to have access
to a channel simulator in order to obtain samples for training.

We also note that our approach presents some disadvantages that need to be taken into account.
The main one is that a training process is required in order to make the system operative, which means
deploying the sensors and recording data from some example trajectories to do the training or to have
access to a channel simulator. Our method also requires that sensors are fixed; otherwise, the training
phase should be repeated and it requires communication among the sensors. Note that, if the training
is performed with real data, with the WSN deployed, the training would also bring the advantage
of adaptability because the localization DNN will learn to locate implicitly using the concrete geometry
of the zone. This is an advantage that anchorless methods such as [9] also have, with the important
difference that we do not need to map the sea region since the localization DNN will infer that by itself
during the training phase, considerably reducing the computational load.

5. Conclusions

In this work, we have studied the performance of a DNN architecture for locating in an underwater
environment using acoustic signals emitted by a moving target. We have proposed a concrete
architecture that makes use of memory to locate the target, and we have used an underwater channel
model which represents the most dominant propagation effects, such as multipath propagation,
scattering or Doppler shifting. We compare the localization precision for different conditions of SNR
at the receiver, channel variability, number of neurons in the localization DNN and for two different
kinds of features, using the power and the covariance of the acoustic signals. We show that,
if the channel variability is low, it is possible to use a localization DNN with power or covariance
features to successfully locate a target. We remark that, under such conditions, power yields a similar
performance to covariance, being simpler to obtain and with a lower dimensionality, which significantly
helps the localization procedure as there will be fewer communications among sensors. Hence,

Sensors 2019, 19, 3530 14 of 16

our work shows power can be used successfully as a localization mechanism in the underwater
channel under certain conditions.

This work could be extended in several ways. One of them could be to go deeper into
the localization DNN architecture and study if some parameters that we have kept fixed affect
the localization performance. For instance, it would be interesting to check whether the number
of hidden layers or the sequence length used to feed the LSTM affect the localization precision.
Another possible extension consists of modifying the target signal, using more complex models,
and studying whether other feature extraction methods, such as cyclostationary information [37],
can be used for localization.

Author Contributions: Conceptualization, I.A.P.A. and J.L.S.G.; methodology, J.P, S.Z. and J.L.S.G.; software, J.P.
and J.L.S.G.; validation and investigation J.P. and S.Z.; resources, S.Z. and I.A.P.A.; Writing—Original draft
preparation, J.P.; Writing—Review and editing, S.Z.; visualization, J.P.; supervision, S.Z.; project administration,
I.A.P.A.; funding acquisition, I.A.P.A. and S.Z.

Funding: This research was funded by the Spanish Ministry of Science and Innovation under the grant
TEC2016-76038-C3-1-R (HERAKLES).

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan V GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
AUWSN Acoustic Underwater Wireless Sensor Network
DNN Deep Neural Network
SNR Signal-to-Noise Ratio
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
MSE Mean Squared Error
MAE Mean Absolute Error

References

1. Felemban, E.; Shaikh, F.K.; Qureshi, U.M.; Sheikh, A.A.; Qaisar, S.B. Underwater sensor network applications:
A comprehensive survey. Int. J. Distrib. Sens. Netw. 2015, 11, 896832. [CrossRef]

2. Erol-Kantarci, M.; Mouftah, H.T.; Oktug, S. A survey of architectures and localization techniques
for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 2011, 13, 487–502. [CrossRef]

3. Tan, H.P.; Diamant, R.; Seah, W.K.; Waldmeyer, M. A survey of techniques and challenges in underwater
localization. Ocean Eng. 2011, 38, 1663–1676. [CrossRef]

4. Han, G.; Jiang, J.; Shu, L.; Xu, Y.; Wang, F. Localization algorithms of underwater wireless sensor networks:
A survey. Sensors 2012, 12, 2026–2061. [CrossRef] [PubMed]

5. Chandrasekhar, V.; Seah, W.K.; Choo, Y.S.; Ee, H.V. Localization in underwater sensor networks:
Survey and challenges. In Proceedings of the 1st ACM International Workshop on Underwater Networks,
Los Angeles, CA, USA, 25 September 2006; pp. 33–40.

6. Diamant, R.; Tan, H.P.; Lampe, L. NLOS identification using a hybrid ToA-signal strength algorithm
for underwater acoustic localization. In Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE,
Seattle, WA, USA, 20–23 September 2010; pp. 1–7.

7. Zhou, Z.; Peng, Z.; Cui, J.H.; Shi, Z.; Bagtzoglou, A. Scalable localization with mobility prediction
for underwater sensor networks. IEEE Trans. Mob. Comput. 2011, 10, 335–348. [CrossRef]

8. Zazo, J.; Macua, S.V.; Zazo, S.; Pérez, M.; Pérez-Álvarez, I.; Jiménez, E.; Cardona, L.; Brito, J.H.; Quevedo, E.
Underwater electromagnetic sensor networks, part II: Localization and network simulations. Sensors 2016,
16, 2176. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2015/896832
http://dx.doi.org/10.1109/SURV.2011.020211.00035
http://dx.doi.org/10.1016/j.oceaneng.2011.07.017
http://dx.doi.org/10.3390/s120202026
http://www.ncbi.nlm.nih.gov/pubmed/22438752
http://dx.doi.org/10.1109/TMC.2010.158
http://dx.doi.org/10.3390/s16122176
http://www.ncbi.nlm.nih.gov/pubmed/27999309

Sensors 2019, 19, 3530 15 of 16

9. Dubrovinskaya, E.; Diamant, R.; Casari, P. Anchorless underwater acoustic localization. In Proceedings
of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany,
25–26 October 2017; pp. 1–6.

10. Dai, H.; Ying, W.H.; Xu, J. Multi-layer neural network for received signal strength-based indoor localisation.
IET Commun. 2016, 10, 717–723. [CrossRef]

11. Payal, A.; Rai, C.S.; Reddy, B.R. Analysis of some feedforward artificial neural network training algorithms
for developing localization framework in wireless sensor networks. Wirel. Pers. Commun. 2015, 82, 2519–2536.
[CrossRef]

12. Niu, H.; Reeves, E.; Gerstoft, P. Source localization in an ocean waveguide using supervised machine
learning. J. Acoust. Soc. Am. 2017, 142, 1176–1188. [CrossRef] [PubMed]

13. Huang, Z.; Xu, J.; Gong, Z.; Wang, H.; Yan, Y. A Deep Neural Network Based Method of Source Localization
in a Shallow Water Environment. In Proceedings of the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3499–3503.

14. Qarabaqi, P.; Stojanovic, M. Statistical characterization and computationally efficient modeling of a class
of underwater acoustic communication channels. IEEE J. Ocean. Eng. 2013, 38, 701–717. [CrossRef]

15. Ondruska, P.; Posner, I. Deep tracking: Seeing beyond seeing using recurrent neural networks. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AR, USA, 2 February 2016.

16. Qarabaqi, P.; Stojanovic, M. Statistical modeling of a shallow water acoustic communication channel.
In Proceedings of the 2010—MILCOM 2010 Military Communications Conference, San Jose, CA, USA, 31
October–3 November 2009; pp. 1341–1350.

17. Socheleau, F.X.; Passerieux, J.M.; Laot, C. Characterisation of time-varying underwater acoustic
communication channel with application to channel capacity. In Proceedings of the Underwater Acoustic
Measurements, Nafplion, Greece, 21–26 June 2009.

18. Tomasi, B.; Casari, P.; Badia, L.; Zorzi, M. A study of incremental redundancy hybrid ARQ over Markov
channel models derived from experimental data. In Proceedings of the Fifth ACM International Workshop
on UnderWater Networks, Woods Hole, MA, USA, 30 September–1 October 2010; p. 4.

19. Yang, W.B.; Yang, T. High-frequency channel characterization for M-ary frequency-shift-keying underwater
acoustic communications. J. Acoust. Soc. Am. 2006, 120, 2615–2626. [CrossRef]

20. Brekhovskikh, L.; Lysanov, J.P.; Lysanov, Y.P. Fundamentals of Ocean Acoustics; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2003.

21. Etter, P.C. Underwater Acoustic Modeling and Simulation; CRC Press: Boca Raton, FL, USA, 2018.
22. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.

Neural Netw. 1989, 2, 359–366. [CrossRef]
23. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
24. Zhao, B.; Feng, J.; Wu, X.; Yan, S. A survey on deep learning-based fine-grained object classification

and semantic segmentation. Int. J. Autom. Comput. 2017, 14, 119–135. [CrossRef]
25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;

Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef] [PubMed]

26. Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep learning for indoor fingerprinting using channel
state information. In Proceedings of the Wireless Communications and Networking Conference (WCNC),
New Orleans, LA, USA, 9–12 March 2015; pp. 1666–1671.

27. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier:
Amsterdam, The Netherlands, 1992; pp. 65–93.

28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

30. Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560.
[CrossRef]

31. Ostrowski, Z.; Marszal, J.; Salamon, R. Underwater Navigation System Based on Doppler Shifts of a Continuous
Wave. In Proceedings of the 2018 Joint Conference-Acoustics, Ustka, Poland, 11–14 September 2018; pp. 1–6.

http://dx.doi.org/10.1049/iet-com.2015.0469
http://dx.doi.org/10.1007/s11277-015-2362-x
http://dx.doi.org/10.1121/1.5000165
http://www.ncbi.nlm.nih.gov/pubmed/28964107
http://dx.doi.org/10.1109/JOE.2013.2278787
http://dx.doi.org/10.1121/1.2346133
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/s11633-017-1053-3
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/5.58337

Sensors 2019, 19, 3530 16 of 16

32. Aktas, B.; Atlar, M.; Turkmen, S.; Shi, W.; Sampson, R.; Korkut, E.; Fitzsimmons, P. Propeller cavitation noise
investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials. Ocean Eng.
2016, 120, 122–135. [CrossRef]

33. Nielsen, R.O. Sonar Signal Processing; Artech House, Inc.: Norwood, MA, USA, 1991.
34. Luo, H.; Wu, K.; Ruby, R.; Hong, F.; Guo, Z.; Ni, L.M. Simulation and experimentation platforms

for underwater acoustic sensor networks: Advancements and challenges. ACM Comput. Surv. (CSUR) 2017,
50, 28. [CrossRef]

35. Acoustic Channel Modeling and Simulation. Available online: http://millitsa.coe.neu.edu/?q=projects
(accessed on 10 July 2019).

36. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France,
6–11 July 2015; Volume 37, pp. 448–456.

37. Antoni, J.; Hanson, D. Detection of surface ships from interception of cyclostationary signature with the cyclic
modulation coherence. IEEE J. Ocean. Eng. 2012, 37, 478–493. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.oceaneng.2015.12.040
http://dx.doi.org/10.1145/3040990
http://millitsa.coe.neu.edu/?q=projects
http://dx.doi.org/10.1109/JOE.2012.2195852
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Channel Model
	Neural Networks

	Problem Setup
	Target Signal Model
	Received Signal Model
	Covariance Matrix Feature Extraction
	Power Feature Extraction
	Localization Neural Network

	Results
	Simulations Setup
	Results Obtained

	Conclusions
	References

