
© 2019. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

Learning attack mechanisms in Wireless Sensor Networks
using Markov Decision Processes

Juan Parras∗, Santiago Zazo

Information Processing and Telecommunications Center
Universidad Politécnica de Madrid
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Abstract

In this work, we identify two related problems that arise in many Wireless Sensor
Networks defense mechanisms: the problem of ad-hoc defense and the problem of
optimality. These problems open the door to attacks that could severely affect the per-
formance of defense mechanisms. In this work, we use Markov Decision Processes as
framework to model an attacker that is able to exploit these two problems. This allows
us to model a defense mechanism theoretically and to obtain the performance of an
attack against it, as well as to obtain the optimal attack against the defense mechanism
- i.e., the attack that harms the most the defense mechanism. We also make use of
Deep Reinforcement Learning tools, showing that they can be used by an intelligent
attacker to successfully exploit a possibly unknown defense mechanism, providing a
compromise between attack results and computational cost. We test our approach by
thoroughly studying a Cooperative Spectrum Sensing attack, which we use to illustrate
the framework proposed and to highlight their strengths and weaknesses.

Keywords: Markov Decision Process, Cooperative Spectrum Sensing, Dynamic
Programming, Q-learning, Deep learning

1. Introduction

Wireless sensor networks (WSN) is a field in which there has been a lot of research
in the last years (Yang, 2014), (Rawat et al., 2014), (Ndiaye et al., 2017). One of the key
challenges that WSN pose is related to security. On one side, the communication pro-
tocols and standards used in WSN include security solutions, but most of them are still
at a proof-of-concept level according to (Tomić and McCann, 2017). On the other side,
the existing defense mechanisms are addressed to concrete attacks in different setups,
such as cooperative spectrum sensing (CSS) (Fragkiadakis et al., 2013), the 802.15.4
MAC protocol (Sokullu et al., 2008) or mechanisms combining different layers (Wang
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et al., 2010), to cite some of them. Two related problems that arise with current defense
mechanisms present are the problem of ad-hoc defense and the problem of optimality:

• The problem of ad-hoc defense arises because defense mechanisms are designed
against concrete attacks and hence, changes in the attack may severely affect
the performance of the defense mechanism. Indeed, this is the usual procedure
followed in many works: a defense mechanism is shown to be vulnerable to
a concrete type of attack and an improved defense mechanism is proposed, as
in (Zhu and Seo, 2009), (Noon and Li, 2010) or (Benedetto et al., 2016). This
means that a possibly minor attack variation may severely affect the performance
of a certain defense mechanism.

• The problem of optimality arises because attack and defense mechanisms are
usually complex to model analytically. This means that most defense mecha-
nisms efficiency are empirically evaluated only and hence, we do not know if
a concrete defense (or attack) mechanism is optimal against a concrete attack
(or defense) mechanism, nor we know how far from optimal performance is that
mechanism. Note that this problem is closely related to the ad-hoc defense prob-
lem: since we do not know how which is the optimal attack against a certain
defense mechanism (i.e., the attack that harms the most the defense mechanism),
we do not know how the defense mechanism performs against a variation of the
attack.

In this work, we take the perspective of the attacker and show that these two prob-
lems can be used by intelligent attackers to exploit defense mechanisms. First, we pro-
pose using the framework of Markov Decision Processes (MDPs) to model the attack
mechanism in WSN. This allows dealing with the problem of optimality, since MDPs
can be optimally solved. But also, using MDPs allows exploiting the ad-hoc defense
problem, since an MDP can be learned by the attacker and hence, such an attacker can
learn to exploit a possibly unknown defense mechanism simply by interacting with it.
We define a procedure, based on MDP, that can be used as a framework to model the
attack and defense mechanism in WSN. To the best of our knowledge, it is the first time
that this approach is taken. We also illustrate it by means of analyzing thoroughly a
CSS example, in order to show the strengths and weaknesses of our proposed approach.

1.1. Prior work
With regards to the problem of ad-hoc defense, as we mentioned before, many

works on this topic start by showing how previous defense mechanisms are vulnerable
to a concrete attack method and then, propose a new defense mechanism that deals
with this concrete attack method. This approach is followed in (Zhu and Seo, 2009),
(Min et al., 2009), (Nguyen-Thanh and Koo, 2009), (Yu et al., 2009), (Noon and Li,
2010), (Wang et al., 2010), (Yan et al., 2012) and (Benedetto et al., 2016), to mention
only some works in the field of CSS. We will make use of learning to show how these
defense mechanisms can be vulnerable to a learning-based attacker.

The problem of optimality is also present in most of these works, which only val-
idate the proposed defense mechanisms via simulations. One exception is (Yan et al.,
2012), where the effects of the covert adaptive data injection attack is evaluated on
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a distributed consensus-based CSS network. The efficiency and efficacy of their pro-
posed defense mechanism is assessed both analytically and using simulations. How-
ever, we focus on a centralized data fusion scheme. Another exception is found in
(Kailkhura et al., 2014), where the performance of a centralized CSS scheme under an
Spectrum Sensing Data Falsification (SSDF) attack is evaluated. Yet, in their analysis
they do not make use of a CSS defense mechanism, which significantly simplifies their
analysis: our approach allows taking into account defense mechanisms.

MDPs are a very mature model used in discrete time optimal control problems.
They are used to model a situation in which an agent has to choose an action to interact
with a stationary environment which is in a certain state; when the agent executes the
action, the environment returns the agent a scalar reward and transitions randomly to
another state. They can be solved in two different ways. The first is using Dynamic
Programming based tools, as shown in (Bertsekas, 1995) or (Thrun et al., 2005). This
approach requires explicit knowledge of the transition function of the environment.
The second approach does not require explicit knowledge of the transition function
and consists in using Reinforcement Learning (RL) tools, as shown in (Sutton and
Barto, 1998). Under this paradigm, the agent interacts with the environment, learning
to choose actions in such a way that its total reward is maximized. Moreover, recent
advantages in the field of deep learning have brought new Deep RL algorithms, such as
Deep Q-Networks (DQN) (Mnih et al., 2015) or Deep Recurrent Q-Networks (DRQN)
(Hausknecht and Stone, 2015) to name two of them. Deep RL algorithms have signifi-
cantly outperformed previous RL methods, allowing to cope with high dimensionality
problems which previously could not be tackled.

These advances in Deep RL have found a wide variety of applications, from playing
Atari games (Mnih et al., 2015) to designing expert systems for financial trading (Jeong
and Kim, 2018) and tax evasion behavior (Goumagias et al., 2018). Note also that
expert systems have been used previously for security in WSN, as in (Sarigiannidis
et al., 2015) or (Wang et al., 2011), without making use of RL tools. There have been
several other approaches that have made use of RL tools applied to WSN security
problems, such as routing, data latency, path determination, duty cycle management,
QoS provisioning or resource management (Alsheikh et al., 2014), to detect spoofing
attacks (Xiao et al., 2015), for mobile offloading (Xiao et al., 2016), (Xiao et al., 2017),
to avoid jamming (Aref et al., 2017), (Han et al., 2017) and to model DoS attacks (Li
et al., 2017). However, none of these works assess the impact of using RL tools in an
attacker. Also, to the best of our knowledge, we present the first attacker architecture
based on Deep RL.

1.2. Contributions

We summarize here the main contributions of our work:

• First, we propose a unified approach to assess the theoretical performance of a
defense mechanism against an attack, by making use of MDP tools. Solving the
MDP would provide the optimal attack against a concrete defense mechanism,
thus, our approach deals with the problem of optimality. Note that this also deals
with the problem of ad-hoc defense: we are able to evaluate how attack variations
can affect a defense mechanism. Also, knowing the performance of the optimal
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attacker, it is possible to have a worst case bound on the defense mechanism
performance. To the best of our knowledge, ours is the first approach with such
characteristics.

• Second, we illustrate the approach we propose by thoroughly studying a SSDF
attack on a centralized CSS scheme. As defense mechanism, we choose En-
hanced Weighted Sequential Zero/One Test (EWSZOT) (Zhu and Seo, 2009).
To the best of our knowledge, we develop the first theoretical model of EWS-
ZOT performance, that can be used to assess its performance theoretically under
different attacks. We remark that our approach could be extended to other de-
fense mechanism other than EWSZOT.

• Third, to the best of our knowledge, we are the first that apply Deep RL to an
attacker. Our approach allows comparing the results of the RL based attack with
the optimal attack. Also, using RL tools allows reaching a compromise between
the attack results and the computational cost for the attacker.

The rest of the paper is structured as follows: first, we give an introduction to
MDPs and explain how to solve them using Dynamic Programming tools, as well as
RL tools, where we introduce several RL algorithms. Then, in order to illustrate the
framework we propose, we study a CSS attack in a WSN, where EWSZOT is used as
defense mechanism. First, we theoretically model the MDP of EWSZOT and solve
it using Dynamic Programming tools. This allows evaluating the harm that current
proposed attacks can inflict to EWSZOT. We also propose a variant attack that is able
to significantly worsen the performance of EWSZOT, due to the problem of ad-hoc
defense. We also obtain the optimal attack against EWSZOT, thus, dealing with the
problem of optimality. Second, we use RL tools to model an attacker against EWSZOT,
highlighting the strengths and weaknesses of this approach. Finally, we assess our
approach, draw some conclusions and give several future lines of work.

2. MDP framework

2.1. MDP definition
MDPs are used to model and solve control problems in dynamical systems (Thrun

et al., 2005). In these problems, an agent repeatedly interacts with an environment
which is in a certain state. After each interaction, the agent receives a reward depending
on its action and the system moves to a new state. An MDP is defined as:

Definition 1. A Markov Decision Process is a 5-tuple ⟨S , A, P,R, γ⟩, where:

• S is a finite set of states s.

• A is a finite set of actions a.

• Pa(sn, sn+1) is the probability that action a in state sn and time n will lead to state
sn+1 in time n + 1.

• Ra(sn, sn+1) is the expected immediate reward received after transitioning from
state sn to state sn+1 due to action a.
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Figure 1: Reinforcement learning basic interaction scheme.

• γ ∈ [0, 1] is a discount factor.

A key feature of MDPs is the Markovian property: the probability to reach state s
in time n depends only on the previous state in time n − 1. In general, MDP can be of
finite or infinite horizon, depending on whether the final time N is finite of infinite.

A policy π is a mapping π : S → A that associates an action (or a probability
distribution over actions) to each state. We can evaluate the performance of a policy π
in order to obtain its total cumulative expected reward, i.e., the total expected reward
obtained by following policy π. We can also find the optimal policy π∗, which is the
policy which provides the highest possible cumulative reward. We consider an MDP
solved when we have the optimal policy and its cumulative reward. Finally, note that
we assume that the state s is fully observable for the agent and that there is only one
agent trying to improve its policy.

2.2. MDP solving via DP

Dynamic Programming (DP) algorithm (Bertsekas, 1995), owed to Bellman, can
be used to solve an MDP. The main idea in DP is optimizing backwards: we start with
the final states sN and recursively update a value function Vn that contains the optimal
reward for each stage n. Mathematically, for k = 1, ...,N:

VN−k(sn) = max
a∈A(s)

Ra(sn, sn+1) + γ
∑
sn+1

Pa(sn, sn+1)VN−k+1(sn+1)

 (1)

where sn is a state in stage n = N − k and sn+1 a state in stage n + 1 = N − k + 1. An
initial condition is required, which is VN(sN) for all states sN in stage N. This can be
thought of as a final reward: an additional reward if the system ends in a concrete state.

In a finite horizon problem (i.e., N < ∞), the optimal policy πn,∗ is non-stationary:
it depends on the stage n. This optimal policy πn,∗ is obtained also from (1) as:

πN−k,∗(sn) = arg max
a∈A(s)

Ra(sn, sn+1) + γ
∑
sn+1

Pa(sn, sn+1)VN−k+1(sn+1)

 (2)

2.3. MDP solving via RL

Reinforcement Learning (RL) is an area in the artificial intelligence field, which
aims to make an agent learning by interacting with an environment, as illustrated in
Figure 1. The agent is in state s ∈ S and chooses an action, denoted by a ∈ A, which
affects the environment. The environment provides the agent a numerical reward r
and a new state. The objective of the agent is to maximize the total numerical reward
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obtained on its interaction with the environment. Using the MDP notation introduced
before, RL approximates the optimal policy without knowing the transition probabili-
ties Pa(sn, sn+1). A very complete introduction to the field is given in (Sutton and Barto,
1998).

2.4. RL with Q-learning
Q-learning is one of the possible algorithms that can be used to implement RL

(Sutton and Barto, 1998). We again use the concept of value function Vπ(sn): it is a
mapping that returns the expected payoff obtained in state sn by using the policy π as:

Vπ(sn) = Ra∼π(sn, sn+1) + γ
∑
sn+1

Pa∼π(sn, sn+1)Vπ(sn+1) (3)

The state-action value function Qπ(sn, a) represents the expected payoff that the
agent would obtain if it is in state sn and the agent takes action a and follows policy π
afterwards as:

Qπ(sn, a) = Ra(sn, sn+1) + γ
∑
sn+1

Pa(sn, sn+1)Vπ(sn+1) (4)

and observe that both value functions are related as: Vπ(sn) = Qπ(sn, π(sn)) when policy
π is deterministic.

Q-learning algorithm starts by initializing the Q-function in all the S ×A space: we
initialize Q(sn, a) = 0,∀sn ∈ S ,∀a ∈ A. Then, the agent starts to repeatedly interact
with its environment: it observes its current state sn and takes action a following an
ϵ-greedy policy, in which the agent chooses to take the action that maximizes Q(sn, a)
with probability 1 − ϵ and with probability ϵ, it takes a random action. Observe that
the values of ϵ will regulate the exploration-exploitation trade-off: high values of ϵ will
cause that the agent explores the payoff that different actions give him, whereas low
values of ϵ will cause the agent to exploit the action that gives him the highest payoff.
This causes that the Q-function learned is particularized for this concrete policy: thus
we drop the subscript π from the Q-function. When the agent takes action a, the en-
vironment transitions to a new state sn+1 and it returns an immediate reward r to the
agent. This allows updating the Q-function value for state sn and action a as follows:

Q(sn, a) = Q(sn, a) + α
(
r + γmax

a′
Q(sn+1, a′) − Q(sn, a)

)
(5)

where α ∈ [0, 1] is a parameter that controls the learning rate: low values of α means
a low Q update, but high values of α introduce a high variance on Q values. This
algorithm converges in the limit to the actual Q-function under some mild convergence
conditions (Sutton and Barto, 1998). Q-learning algorithm is summarized in Algorithm
1 for the nr iterations of the algorithm using ϵ-greedy policy.

2.5. RL with neural networks
2.5.1. DQN

A drawback of Q-learning comes when the S × A space is large: the memory
required to store the Q-function can be prohibitively big. This can be overcome by
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Algorithm 1 Q-learning algorithm
Input: S ,A, nr

1: Initialize Q(sn, a) = 0,∀a ∈ A,∀sn ∈ S
2: for nr repetitions do
3: Initialize n = 0
4: Set initial state s0

5: while State sn is not final do
6: Obtain action a using ϵ-greedy policy
7: Take action a and obtain sn+1 and r
8: Update Q(sn, a) using (5)
9: Set n = n + 1

10: Use sn+1 for the next iteration
11: for sn ∈ S do
12: π̂(sn)∗ = arg maxa Q(sn, a)
Output: π̂(sn)∗

using an approximation of the Q-function. A powerful function approximator used is
based in Deep Q-Networks (DQN) (Mnih et al., 2013) (Mnih et al., 2015).

DQN approach is based on Q-learning, thus it is similar to Algorithm 1. But under
DQN, the Q-function is replaced by a deep neural network, whose input is the current
state sn and its output is the approximated Q-value function Q(sn, a). Also, DQN uses
experience replay to learn. Under this paradigm, in each time, the experience of the
agent en = (sn, an, rn, sn+1) is stored in a data set E. The set E is updated as new
actions are taken by the agents and the data contained in E is used to update the neural
network multiple times. Experience replay allows a greater data efficiency, allows
avoiding the correlation between consecutive samples and it helps avoiding oscillations
or divergence in the network (Mnih et al., 2013).

Another feature of DQN consists in using target networks: at the beginning of a
training epoch, the neural network is cloned and the copy is called target network. The
target network is used to update the neural network during that epoch: the Q-value
function values for future rewards are obtained from the target network. Because target
networks are updated only once per epoch, that gives better convergence results (Mnih
et al., 2015).

2.5.2. DRQN
After DNQ came out, there were several variations on this concept. A very inter-

esting one is based on Deep Recurrent Q-Networks (Hausknecht and Stone, 2015). It
consists in using DQN algorithm with a recurrent neural network to approximate the
value function. A recurrent neural network (RNN) is a network specially designed to
process sequential data (Goodfellow et al., 2016). An RNN feedbacks its output in
time n to a variable called hidden state, which then is used to process the output at time
n + 1. Thus, RNNs are able to store information about the past inputs on this hidden
state, which can be thought of as a feedback loop.

The main problem with RNNs is that these networks are hard to train. There has
been a significant effort addressed to alleviate this (Sutskever, 2013). Nowadays, the
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main architecture used to implement a RNN is the LSTM (long-short term memory),
owed to Hochreiter (Hochreiter and Schmidhuber, 1997). Other structures, such as
GRU, have been proposed recently, yet their advantages over LSTM are not clear (Greff
et al., 2017). The original DRQN article, indeed, used LSTM (Hausknecht and Stone,
2015). However, RNNs are specially designed to deal with sequences and thus, they
are a good option for control problems. Indeed, they could even manage Partially
Observable MDP (Hausknecht and Stone, 2015).

3. Problem description

3.1. Problem setup

In order to illustrate the advantages of the MDP framework, we thoroughly study
a SSDF attack in a CSS WSN. Note that there are two main sources of error in a CSS
scheme: the probability of error of the sensing mechanism and the the presence of
malicious sensors. Under a spectrum sensing data falsification (SSDF) or byzantine
attack, there are ASs in the network which provide a false report to the FC (Fragki-
adakis et al., 2013). Several defense mechanisms have been proposed to deal with
SSDF attacks, depending on whether the sensor sends only their decision to the FC
(hard fusion) or it also includes additional information about the certainty of the de-
cision of the sensor (soft fusion). Some defense mechanisms for the hard fusion case
are Weighted Sequential Probability Ratio Test (WSPRT) and EWSZOT (Zhu and Seo,
2009) and for the soft fusion case, Enhanced WSPRT (EWSPRT) (Zhu and Seo, 2009)
and a statistical test based on the energy level distribution (Wang et al., 2010). Many
challenges remain open in this field, as (Zhang et al., 2015) shows.

We consider that we have a WSN with M sensors: Mg is the number of good sensors
and Ma the number of ASs (where M = Mg + Ma). The network uses EWSZOT as
defense mechanism. Each report from the sensors to the FC is denoted by the binary
variable um, where u = 1 means that the channel is busy, u = 0 means that the channel
is idle and m indexes the sensors (m ∈ {1, 2, ...,M}). We do not consider the details of
the sensing mechanism used by the sensors (see (Zhang et al., 2015) for some possible
schemes). Each of the sensors can make a wrong sensing decision with probability Pc.
We consider Pc to be constant and independent among the sensors. Thus, in this case,
each um follows a Bernoulli distribution of parameter Pc if u = 0 and 1 − Pc if u = 1.
We base our theoretical model in Pc because it simplifies our analysis significantly and
it is flexible enough to take into account different phenomena: related to the channel
as the shadowing and fading in the sensors or related to the sensing procedure chosen.
The optimality criterion we use is the total probability of error pe,t in the FC, that is, the
probability that the FC decides that the channel is busy when it is idle and vice-versa.
Thus, the ASs will try to maximize pe,t. Since EWSZOT is a defense scheme based
on reputations, the ASs need to attack and also keep a sufficiently high reputation. In
other words, maximizing pe,t will require the ASs to camouflage.

We choose EWSZOT because it has a higher performance than other schemes based
on sequential tests (such as WSPRT and EWSPRT, (Zhu and Seo, 2009)). It is simple
to implement, fast in deciding (Zhu and Seo, 2009) and energy efficient (Cichoń et al.,
2016). It is one of the most advanced centralized data fusion schemes against SSDF
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attacks (see (Fragkiadakis et al., 2013), (Zhang et al., 2015), (Li et al., 2014) or (Liu
et al., 2011)).

3.2. EWSZOT description

EWSZOT data fusion scheme is a hard fusion scheme based on reputations. We call
stage to a hypothesis test (HT). A HT consists in the FC asking reports to certain sen-
sors and taking a decision based on these reports. In each stage n, the reputation of the
sensor m, rn

m, is updated based on whether the report of sensor m was consistent or not
with the decision taken un

d (we use superscripts to denote the stage). Mathematically:

rn
m =

{
rn−1

m + 1 if un
m = un

d
rn−1

m − 1 if un
m , un

d
(6)

In stage n = 1, all reputations are initialized to 0. The decision rule used by EWS-
ZOT HT is: 

un
d = 1 if Wn ≥ q

un
d = 0 if Wn ≤ −q

un
d = 1 if −q < Wn < q and m = Mm

take another round if −q < Wn < q and m < Mm

(7)

where q and Mm are predefined thresholds. Observe that the first three conditions from
(7) are the final conditions: they finish the HT and lead to a decision. Also, Wn is the
HT statistic, following:

Wn =
∑
i=1

(−1)un
i +1wn

i (8)

where wn
i are weights that will be defined later.

EWSZOT HT is similar to a sequential test. The decision rule in stage n consists
in asking sensor i to give a report: if its report is un

i = 0, then Wn is decreased wn
i units,

and if its report is un
i = 1, then Wn is increased wn

i units. This process is repeated until:

1. Wn surpasses a threshold q. In this case, the decision is immediately taken using
the first two lines of (7).

2. Mm sensors have been called and Wn has not surpassed the threshold q. This
means that the test result is uncertain and we follow a conservative decision rule:
to decide that the channel is occupied. This decision benefits PUs. This test
truncation is added in (Zhu and Seo, 2009) in order to avoid deadlocks.

Finally, the reputation of each sensor has an impact on the HT through the weights
wn

i , defined as:

wn
m =

{
0 if rn

m < −g
rn

m+g
avg(rn

m)+g if rn
m ≥ −g (9)

where avg(rn
m) is the average reputation of all sensors and g is a small positive value.

The purpose of the weights scheme (9) is that sensors with better reputation have a
higher influence on the HT. The use of g allows good sensors to have a slightly negative
reputation, caused by their sensing error Pc.
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Algorithm 2 EWSZOT algorithm implementation
Input: Mm, q, g

1: Initialize r1
m = 0,∀m

2: for Stages n = 1, 2, ... do
3: Obtain weights using (9)
4: Select the Mm sensors with highest reputations
5: for Sensors selected do
6: Ask report from sensor
7: Update Wn using (8)
8: if Wn ≥ q or Wn ≤ −q or Mm sensors have been called then
9: Take decision um

d using (7)
10: Exit loop
11: Update reputations using (6)

Reputations also determine the order in which sensors are asked to give their re-
ports. EWSZOT calls up to Mm sensors in descending order of reputations. Thus,
we ensure using the sensors with best reputations to take the decision. The whole
procedure is summarized in Algorithm 2, where an implementation of EWSZOT is
presented.

3.3. Attacks against EWSZOT

We use three different attack strategies:

• Dummy strategies. These strategies consists in always doing a predefined action.
Even though they are basic attacks, they are widely used. In (Zhu and Seo, 2009),
it is shown that EWSZOT is successful against three possible attacks: report the
channel always busy, always idle or always give a false report. To the best of our
knowledge, these are the current attacks against EWSZOT. Note that the problem
of optimality arises here: no study about the optimality of these attacks is found
in (Zhu and Seo, 2009).

• Optimal strategies. These strategies are the result of modeling the defense mech-
anism and optimizing. In our framework, it means that the strategy is obtained
by optimizing an MDP. They are theoretically optimal, but also may be complex
to obtain. Note that these strategies may exploit the problem of ad-hoc defense:
as we will see, minor changes in the attack may lead to a dramatic performance
drop in EWSZOT defense mechanism.

• RL strategies. These strategies are obtained using RL tools, and present an in-
teresting trade-off: they are not as complex to obtain as optimal strategies and
provide quasi-optimal results. To the best of our knowledge, this is the first work
in which these strategies are compared to the theoretically optimal strategies.

We further illustrate the problem of ad-hoc defense by noting that EWSZOT does
not take into account the possibility of an attack addressed to the communication mech-
anism between the sensors and the FC. We define two different attack situations: a

10

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eswa.2019.01.023


© 2019. This accepted manuscript version is made available under the
CC-BY-NC-ND 4.0 license. Published version here.

rn,mn
j HT n ...

rn+1
1 ,m

n+1
1, j

rn+1
k ,m

n+1
k, j

HT n+1
1

...

HT n+1
k

...

Figure 2: EWSZOT algorithm modelling illustration. Each HT receives as input a reputation vector and
a number of jammed sensors and produces a certain number k of updated reputation vectors and jammed
sensors. These vectors are used as inputs to new tests in next stages. Each HT has as many k outputs as
leaves. Each HT procedure is found using Algorithm 4.

standard SSDF attack (SA), consisting in sending false reports to the FC. Note that SA
is the always false attack proposed in (Zhu and Seo, 2009), which will serve as baseline
to compare our results with.

The second attack situation we consider is a novel, combined attack (CA), consist-
ing on a SSDF attack and also, a jamming attack addressed to the communications link.
When the FC asks for reports to the sensors, these reports may not arrive on time or
arrive corrupted, due to channel problems, such as shadowing or fading. But the ASs
could also jam the communication link to cause the same effect on the reports sent by
good sensors. A survey on different jamming techniques can be found in (Mpitziopou-
los et al., 2009). For instance, if a narrowband communication scheme is used, an AS
can transmit noise in order to cause a high interference that makes the communication
between the sensor and the FC impossible. Or if a CSMA/CA access scheme is used, an
AS can jam the communication between a sensor and the FC by simply sending bursts
of noise in the backoff periods (Sampath et al., 2007). In order to keep our scheme as
simple and broad as possible, we will consider that the group of ASs can jam up to
M j good sensors. When the FC does not obtain a report from sensor m, considers that
um = 1, to be consistent with the test truncation used in EWSZOT HT. . Observe that
in our current framework, we consider for simplicity that all corrupted reports come
from jamming, but jamming causes actually only part of them.

4. Modeling EWSZOT using an MDP

4.1. States definition
We use as state the tuple formed by the reputation vectors of good and attacking

sensors, rg and ra respectively; and the number of sensors already jammed in case of
CA, m j. Thus, in stage n, the state is the tuple sn = ⟨rn

g, r
n
a,m

n
j⟩. The initial state s0 will

be always a vector in which all reputations are set to 0 because that is the initialization
value of EWSZOT and m0

j = 0 because there is no sensor jammed yet.

4.2. Actions definition
The definition of the action space A is subtle. The possible actions of the ASs in

case of CA depend on the state due to the jamming. If we have in state sn that the ASs
have already jammed mn

j sensors, where mn
j ≤ M j, they can only jam up to M j − mn

j
sensors more. Thus, observe that the action set depends on the state. Note also that if
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Figure 3: Illustration of EWSZOT HT tree. Each node contains the sequence of reports. For simplicity, we
plot part of the tree when Mm = 3. Leaves are the thicker nodes. Observe that the leaves may happen when
any of the final conditions from (7) is satisfied.

several sensors have the same reputation, the ASs do not know in advance which sensor
will be called by the FC. In order to overcome these problems, we define two vector
of actions, ag and aa. The first is a vector of length Mm which contains the actions for
the case that good sensors are called. Each entry of this vector can have two values:
1 if there is jamming and 0 if there is no jamming. Observe that

∑
ag ≤ M j − mn

j ,
that is, there is a limit on the maximum number of good sensors that could be jammed.
We limit the length of this vector to Mm since this is the maximum number of sensors
called by the FC: in the extreme case that all sensors called are good, only actions from
this vector are used.

The second vector, aa, is a vector of length min{Mm,Ma}which contains the actions
for the case that attacking sensors are called. Each entry of this vector can have two
values: 1 if the sensor gives a false report (attack) and 0 if the sensor gives a true report.
Note that the limit in length responds to the case in which Ma < Mm, that is, there are
less ASs than sensors that can be called in each stage. The action space A is formed by
all possible combination of action vectors a = ⟨agaa⟩ ∈ A. The dimensionality of A is
upper bounded by 22Mm = 4Mm , which is the maximum number of actions available to
the ASs.

In case of SA, there is no possibility of jamming. Thus a = aa, and hence, the
dimensionality of A is upper bounded by 2Mm . Note that in SA, the set of actions does
not depend on the state.

4.3. Transition probabilities definition

Given a state sn and an action a, now we turn to compute Pa(sn, sn+1), that is, the
probability of transitioning from state sn to state sn+1 due to action a. This requires to
model the HT from the EWSZOT mechanism (see Figure 2).

We model the HT in stage n using a tree. Each node of the tree represents the
possible sequence seq of reports that the FC receives from the sensors. Hence, each
parent node will have four children nodes, because it can receive as report um = 0 from
a good sensor (0g) or from an AS (0a), um = 1 from a good sensor (1g) or from an AS
(1a). The maximum length of the sequence seq - and hence, the maximum depth of
the tree - will be Mm. Also, observe that a sequence seq that satisfies any of the final
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conditions from (7) becomes a leaf: it will have no children nodes. An illustration is in
Figure 3.

Each node of the tree will store the following data: the sequence of reports received
seq, the probability of the sequence ps, the updated number of sensors jammed mn+1

j

(mn+1
j ≤ M j) and the Wn value. We require as inputs rn

g, the reputations of the good
sensors; rn

a, the reputations of the ASs; the number of sensors already jammed mn
j ;

p1,g (p1,a), the probability that a good (attacking) sensor reports um = 1 (observe that
these values depend on Pc), the maximum number of sensors that can be jammed M j;
and the parameters g, Mm and q. Note that the first three parameters are the state:
sn = ⟨rn

g, r
n
a,m

n
j⟩.

We then obtain all the nodes and the data in each node as follows. First, we order
the sensors by reputations using rn

a and rn
g and obtain pg(r): the proportion of good

sensors among all sensors with reputation value r. Then, we proceed to build the tree.
We initialize the root node with seq = ∅, ps = 1, mn+1

j = mn
j and Wn = 0. Then, we

call sensors in descending order of reputations r. We build four children nodes for each
parent, each children with a sequence which is the concatenation of the sequence of the
parent node and each of the reports that can be obtained (1g, 1a, 0g or 0a).

Algorithm 3 ps updating procedure
Input: seq, a = ⟨ag, aa⟩, mn+1

j , report, Wn, p1,m, p1,g
1: Obtain na, number of attacking sensors already called, from seq
2: Obtain ng, number of good sensors already called, from seq
3: if report comes from a good sensor then
4: if report = 1g then
5: Update ps = ps p1,g pg(r)
6: else if report = 0g then
7: Update ps = ps(1 − p1,g)pg(r)
8: if The action indicates jamming: ag(ng) = 1 then
9: Set report = 1g

10: Update mn+1
j = mn+1

j + 1
11: else if report comes from an attacking sensor then
12: if The action indicates attack: aa(na) = 1 then
13: if report = 1a then
14: Update ps = ps p1,m(1 − pg(r))
15: else if report = 0a then
16: Update ps = ps(1 − p1,m)(1 − pg(r))
17: else if The action indicates no attack: aa(na) = 0 then
18: if report = 1a then
19: Update ps = ps p1,g(1 − pg(r))
20: else if report = 0a then
21: Update ps = ps(1 − p1,g)(1 − pg(r))
22: Update seq = {seq, report}
23: Update Wn = Wn + (−1)report+1wn

i (equation (8))
Output: ps, mn+1

j , seq, Wn
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The updating procedure of ps is detailed in Algorithm 3. We first need to obtain
na and ng, the number of good and attacking sensors already called. This is done
by simply looking at the seq vector, which stores the sequence of reports. Then, if
the report we have obtained comes from a good sensor, we update ps using p1,g and
pg,r, and then check the action for the ng + 1 good sensor: if it indicates jamming, we
change the report value to rep = 1g and update the number of sensors jammed, mn+1

j .
We first update ps in order to obtain the total probability of the sequence seq; if there is
jamming, the report is changed to 1 for the update of the HT statistic Wn. If the report
came from an AS, and the action for the na+ 1 attacking sensor indicates to attack, we
update ps using p1,m and 1 − pg,r. If the report came from an AS but the na + 1 action
from aa indicates not to attack, then we update this sensor using the error probabilities
of a good sensor (p1,g instead of p1,a). Finally, we update the HT statistic Wn using (8).

After a report has been received and ps and Wn have been updated using Algorithm
3, we check whether the node satisfies any of the final conditions from (7). If it does,
then the node becomes a leaf, otherwise, we set this node as father and repeat the
procedure.

Finally, we obtain the information from the leaves. First, we obtain the probability
that the test ends with result un

d simply by adding the ps of the leaves that satisfy each
of the decision conditions from (7). This leads us to obtain pt,1 (the probability that the
test ends because Wn ≥ q), pt,0 (the probability that the test ends because Wn ≤ −q),
pt,nd (the probability that the test ends because m = Mm) and mn+1

j , the updated number
of sensors jammed. Second, we update the reputations using (6). Observe that there
will be as many updated reputation vectors as leaves. Also observe that the probability
of each of these reputations vectors is precisely ps of the leaf. The whole procedure is
summarized in Algorithm 4. Note that Algorithm 4 models each iteration of the outer
for loop from Algorithm 2.

Each parent node can have up to four children nodes, one per each possible report
that can be received. Some nodes may have no children (i.e., the leaves) or less than
four (e.g., all the ASs have already been called and hence pg,r = 1). In the worst case,
which is that all parents have four children, there will be up to 4Mm possible sn+1 states
in case of SA. In case of CA, we must take into account that there are M j + 1 possible
values of mn+1

j , and hence, in the worst case, there will be up to 4Mm (M j + 1) possible
sn+1 states. We denote this value by k: k ≤ 4Mm (M j + 1) for CA and k ≤ 4Mm for SA.

Using Algorithm 4 to model the HT allows obtaining the exact values of Pa(sn, sn+1):
for each possible combination of action a and state sn, we can obtain the probability ps

of transitioning to state sn+1. Note that the Markovian property is satisfied: each HT
test output depends only on its input.

4.4. Reward definition

We can obtain the expected reward Ra(sn, sn+1) at the same time as we obtain
Pa(sn, sn+1) using the output of Algorithm 4 as:

Ra(sn, sn+1) =
{ 1

N
∑

sn+1∈S n+1 ps(pt,1 + pt,nd) if un = 0
1
N
∑

sn+1∈S n+1 ps pt,0 if un = 1
(10)
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Algorithm 4 EWSZOT HT modelling in stage n for the MDP
Input: sn = ⟨rn

g, r
n
a,m

n
j⟩, a = ⟨ag, aa⟩, p1,g, p1,a, Mm, M j, q, g

1: Obtain weights w using (9)
2: Select the Mm sensors with highest reputations
3: Initialize tree root: ps = 1, Wn = 0, mn+1

j = mn
j , seq = ∅

4: for Each node which is not a leaf do
5: for Each four possible reports rep: 0g, 1g, 0a, 1a do
6: Create children node
7: Obtain pg(r) for the reputation of the current sensor
8: Update seq, ps, mn+1

j and Wn using Algorithm 3
9: if Wn ≥ q or Wn ≤ −q or length of seq is Mm then

10: Take decision un
d using (7)

11: Make this node a leaf
12: Initialize pt,0 = pt,1 = pt,nd = 0
13: for Each leaf do
14: Update pt,0, pt,1 or pt,nd

15: Update rn+1
g and rn+1

a using (6)
Output: sn+1 = ⟨rn+1

g , r
n+1
a ,m

n+1
j ⟩, pt,0, pt,1, pt,nd, ps

where the reward is the expected error probability conditioned to being in state sn and
taking action a. For our problem, we consider that the total reward is:

r = pe,t =
∑
n∈N

Ra(sn, sn+1) (11)

where we considered that the discount factor γ = 1.
We consider that our problem is of finite horizon (i.e., N < ∞). This has two

important consequences. The first one is that the optimal policy will be non-stationary.
This means that the optimal policy in state sn may differ from the optimal policy in
the same state in a different time. However, the states in our setup are related to the
reputations and in our simulations, we observed that states appearing more than once
in the same simulation was rare. Thus, we will make use of stationary policies. This
is related to the second consequence: RL is used to learn stationary policies, thus, we
can use RL algorithms without further modifications.

4.5. EWSZOT model complexity

We now proceed to evaluate the complexity of the MDP model proposed. Let us
assume that we want to evaluate a policy, that is, obtaining Vπ(s0). For each HT, there
are k ≤ 4Mm (M j + 1) possible transitions to other states. An HT is performed for each
state sn as long as n ∈ [0,N − 1]. And we always start from the same s0. Thus, as
we can observe in Figure 2, to evaluate a policy we must obtain a tree containing all
possible states that can be transitioned from s0 by following policy π. The depth of this
tree is N + 1 and the maximum number of states that the tree can have is bounded, in
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case of CA, by:
N∑

n=0

kn =

N∑
n=0

(
4Mm (M j + 1)

)n
(12)

And in case of SA, the upper bound is:

N∑
n=0

kn =

N∑
n=0

4nMm (13)

Thus, the state space, though finite, can be very large. It is possible to speed up the
computation by:

• After HT in stage n, we drop out all states sn+1 such that ps = 0. That is, we
delete all states with a null probability.

• After HT in stage n, we do state aggregation: we merge together all states sn+1

that are the same and add their probabilities ps.

• After each stage n, we truncate the set of states sn+1 by preserving only the T
states sn+1 which have the highest probability ps. This truncation can reduce
significantly the computational cost by fixing a maximum number of states in
each stage, but introduces an error in the results. Larger values of T yield a
lower error and a higher computational cost.

The procedure to evaluate a concrete policy, with these three improvements, is
summed up in Algorithm 5. Observe that we need to know the actual u in order to
obtain the decision error values. The total decision error pe,t is pe,t = pt,1 + pt,nd

when u = 0 and pe,t = pt,0 when u = 1. Also, observe that Algorithm 5 models
theoretically the EWSZOT algorithm described by Algorithm 2. And finally, observe
that this algorithm allows obtaining the performance of EWSZOT when there is no
attack by simply setting M j = 0 and always using actions without attack as policy.

To obtain the optimal policy, we need to take into account that the number of actions
available in each state is bounded by 4Mm in case of CA. This means that we would have,
for each state sn, 4Mm possible actions that would cause to transition to a maximum of
k ≤ 4Mm (M j+1) possible sn+1 states. In this case, the dimensionality of the state-action
space is bounded, for CA, by:

N∑
n=0

(
4Mm k

)n
=

N∑
n=0

(
42Mm (M j + 1)

)n
(14)

And for SA, where the number of actions is bounded by 2Mm , the state-action space
is bounded by:

N∑
n=0

(
2Mm k

)n
=

N∑
n=0

(
2Mm 4Mm

)n
=

N∑
n=0

23nMm (15)

Observe that the dimensionality of the problem is a major problem when it comes
to evaluating or searching for an optimal policy. That will be a major limitation in the
following sections.
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Algorithm 5 EWSZOT algorithm modelling
Input: Mm, M j, q, g, M, Mg, Ma, Pc, u, N, T , π

1: Initialize r0
g = 1 and r0

a = 1 for all sensors and m0
j = 0

2: Initialize s0 = ⟨r0
g, r

0
a,m

0
j⟩

3: Initialize pt,0 = pt,1 = pt,nd = 0
4: Obtain p1,g and p1,a using Pc

5: for iterations n = 0 : N − 1 do
6: Initialize S n+1 = ∅
7: for Each tuple sn do
8: Simulate HT: use Algorithm 4) to update the set of S n+1 when policy π is

used.
9: Erase all sn+1 such that ps = 0

10: Merge all equal sn+1 (state aggregation)
11: if Dim(S n+1) > T then
12: Keep the T tuples sn+1 ∈ S n+1 with highest ps

13: Normalize the probabilities ps of the tuples sn+1 ∈ S n+1

14: Update pt,0, pt,1, pt,nd

Output: pt,0, pt,1, pt,nd

5. Using the MDP model to evaluate dummy strategies

5.1. Dummy strategies description: AFA and JFA

The MDP model we just described can be used to evaluate the performance of a
concrete policy. That is, it allows evaluating the performance of a certain attack. We
will evaluate the dummy strategies using the procedure described in Algorithm 5 to
obtain their theoretical performance. Recall that dummy strategies consist in always
doing a predefined action, which we use as baseline. In our problem, we propose the
two following dummy strategies:

• Always false attack (AFA): it is an SA in which the ASs always give false reports
to the FC. It is a current attack against EWSZOT as shown in (Zhu and Seo,
2009), together with always reporting the channel busy or idle. Note that these
two attacks can also be assessed using our approach.

• Jam and false attack (JFA): it is a CA consisting in attacking as long as it is pos-
sible: the ASs always give false reports to the FC and jam the communications
for the first M j good sensors called by the FC. We remark that this is a novel
attack, which exploits the problem of ad-hoc defense.

5.2. EWSZOT performance under AFA and JFA

We analyze EWSZOT under both AFA and JFA. We use Algorithm (5), with M =
10 sensors, T = 103, q = 2, Mm = 4 and g = 5.51 (as in (Zhu and Seo, 2009)).
We choose small values of q and Mm because the spectrum sensing procedure will
be repeated often and thus, it must be fast. Also, this allows the complexity of the
EWSZOT modeling not to grow excessively, as shown in Section 4.5. For this and the
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rest of simulations in this work, we make use of MatLAB ® and Python based scripts
to simulate our environment and the attack results.

We test the influence of Ma = 1 AS in the network when N = 5 for 51 equispaced
values of Pc ∈ [0, 0.5]. The theoretical results can be seen in Figure 4, where they
are compared to an empirical simulation of EWSZOT averaged 100 times (the empir-
ical simulation followed Algorithm 2) and also to the optimal strategies (explained in
the next section). Observe that our theoretical model from Algorithm 5 corresponds
to the actual values. Also, observe that JFA is much more harmful than AFA for the
same number of ASs: the ability to jam the communication link significantly degrades
the performance of EWSZOT. But this degradation only happens when u = 0; when
u = 1 the attack actually improves the decision error. This is due to the conservative
EWSZOT jammed report assignation: a corrupted report is considered to indicate that
the channel is busy. Thus, JFA seriously affects the CSS procedure when the chan-
nel is idle. In order to overcome the damage done by JFA, the FC could implement a
jamming countermeasure which will depend on the jamming technique used (several
methods are proposed in (Mpitziopoulos et al., 2009)). We remark the influence of
the problem of ad-hoc defense: by performing a minor change in the attacker capabil-
ities, namely, by having jamming capabilities, the attack can significantly degrade the
defense mechanism performance.

6. Using the MDP model to obtain optimal strategies

Now, we go a step further and proceed to obtain the optimal solutions to the MDP
model presented. We use the DP algorithm from (1) and (2) to obtain the maximum
error probability that the attackers can achieve and the optimal policy that they must
follow in order to achieve that optimal attack. We initialize VN(sN) = 0 for all states
sN . By doing that, V0(s0) = pe,t, that is, the value function in the initial state s0 is the
expected total error probability. The main drawback of DP algorithm for our problem
lies in the dimensionality of it, as shown in Section 4.5. We use small values in our
simulations in order to alleviate the computational cost.

First, we obtain the theoretical error curves under AFA and JFA using Algorithm 5
with a truncation value T = 103. We use these values as baseline to compare. Then,
we obtain the optimal attack strategies using the DP algorithm from (1) and (2). In
order to avoid the dimensionality problem, we use Mm = 4, q = 2 and g = 5.51
for the EWSZOT HT. We consider a CSS network with M = 10 sensors, of which
Ma = 1 (only one attacker sensor) and Mg = 9 (there are 9 good sensors). We test for
M j = {0, 1, 2} (SA and CA), using 51 equispaced values of Pc in the range Pc ∈ [0, 0.5]
and considering N = 5 stages, both when u = 0 and u = 1. Finally, we test and average
100 empirical implementations of the dummy and optimal strategies in order to validate
our approach, using Algorithm 2 to implement EWSZOT defense mechanism.

The results can be observed in Figure 4. Note that optimal strategies always yield
the highest error and also, observe that our model predicts correctly the empirical val-
ues. When u = 0, EWSZOT defense system is severely degraded by the optimal strat-
egy, specially when there is jamming. We also can check that AFA is close to be
optimal - it is indeed, for Pc ≥ 0.2 approximately, but when jamming is available, JFA
harm is surpassed by the optimal strategies. Note that the highest differences in the
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Figure 4: Performance of optimal and dummy attack strategies against EWSZOT in terms of pe,t as a function
of Pc.Observe that optimal strategies always yield the highest errors, as expected. Note that dummy strategies
are usually not optimal, specially for low Pc values.

attacks happen when there is a low Pc: in systems with a low probability of spectrum
sensing error, the optimal attacks can notably degrade the system performance. When
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u = 1, we observe that there is a small difference between strategies. Again, the optimal
yields the highest error, but the difference is small. When jamming is available, as we
noted in the previous section, JFA actually decreases the error committed by EWSZOT,
because of the conservative decision when a sensor is jammed.

Again, the ASs can significantly harm the system when u = 0. The attack effi-
ciency is significantly enhanced by having the possibility of jamming good sensors
(the effects can be dramatic, as in (c) case in Figure 4). We can observe in this case
both the problem of ad-hoc defense and the problem of optimality: since AFA is not
the optimal attack against EWSZOT, an intelligent choice of when to give false reports
and when to give true ones provides an attack that degrades the performance of EWS-
ZOT. And by adding jamming capabilities, the attackers are able to achieve an even
higher degradation on the defense mechanism. Yet the main drawback of the optimal
strategies is that they are very costly to compute as the CSS network grows. Observe
that we have limited to a case with a low dimensionality for our examples in order to
avoid this problem.

7. Using the MDP model to learn attack strategies

Now, we turn to explore the possibilities of learning attack strategies using our
MDP model. We make use of three different implementations of Q-learning: Q-
learning, DQN and DRQN.

Algorithm 6 Q-learning algorithm for the EWSZOT problem
Input: S ,A, Pc, Mm, M j, q, g, Ma, Mg, N, α0, αd, ϵ0, ϵd, nepochs

1: Initialize Q(sn, a) = 0,∀a ∈ A,∀sn ∈ S
2: Set α = α0
3: Set ϵ = ϵ0
4: for nepochs repetitions do
5: Initialize sn = s0

6: for n = 0 : N − 1 do
7: Obtain action a using ϵ-greedy policy
8: Take action a and obtain sn+1 and r = pe/N
9: Update Q(sn, a) using (5)

10: Set sn+1 as the new state
11: Update ϵ = ϵ · ϵd
12: Update α = α · αd

13: for sn ∈ S do
14: π̂(sn)∗ = arg maxa Q(sn, a)
Output: π̂(sn)∗

7.1. RL using Q-learning

To implement QL, we need to simulate the environment with which our agent will
interact: we do so by using Algorithm 2. Recall that we define the state as the tuple
sn = ⟨rn

g, r
n
a,m

n
j⟩ and the action as the tuple a = ⟨ag, aa⟩. The environment returns the
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next state sn+1 and the immediate reward obtained r, which is the total error probability
pe: it will be either pe = 1/N if EWSZOT decided wrongly or pe = 0 if there was no
error deciding.

We use variables α and ϵ: we initialize each of these values to α0 = 0.5 and ϵ0 = 1
respectively and then, after each iteration of the algorithm, we update then by using a
decay factor αd = ϵd = 0.9997 (i.e., α = α · αd and ϵ = ϵ · ϵd). This decay is used to
met the convergence conditions and to balance the exploration-exploitation trade-off:
the agent starts with a high ϵ and thus, it explores often. As the agent interacts with
the environment, the agent explores less and exploits more: eventually, we want to end
with an ϵ value close to 0. This causes that the Q(sn, a) values are close to the real ones
when using a greedy policy (i.e., ϵ-greedy policy when ϵ = 0). In other words, after
approximating the Q function, we can approximate the optimal (greedy) policy π∗ as:

π(sn)∗ ≈ π̂(sn)∗ = arg max
a

Q(sn, a) (16)

We repeat the learning procedure nepochs = 2 · 104 times. The whole procedure is
summarized in Algorithm 6.

7.2. RL using DQN and DRQN

For DQN, we use a three layers neural network whose structure can be seen in
Figure 5. Each of the three layers is fully connected to its neighbors. The first layer has
as input size the state size, 24 neurons and uses rectifier linear units for activation (that
is, they follow the function f (x) = max(0, x)). The second layer has also 24 neurons
and also uses rectifier linear units for activation. The final layer has 24 neurons, an
output size equal to the possible number of actions and it uses linear units for activation
(i.e., f (x) = x).

For DRQN, we use a two layers neural network whose structure can be seen in
Figure 5. The first layer is a LSTM (Hochreiter and Schmidhuber, 1997), whose output
space has a dimensionality of 32, which takes sequences of 4 time steps. The second
layer has 24 neurons, an output size equal to the possible number of actions and it uses
linear units for activation.

For both DQN and DRQN, we choose adam as optimizer (Kingma and Ba, 2014),
with parameters α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The loss function
we use is the mean squared error (MSE). The maximum number of experiences stored
(i.e., the dimension of E) is of 104 experiences. After a new experience en has been
obtained and added to the set E, we randomly pick a mini-batch of 128 experience
elements and train the neural network. We use an ϵ-greedy policy with variable ϵ:
ϵ0 = 1 and ϵd = 0.9995, with a minimum value ϵ = 0.01. We train the networks using
nepochs = 2 · 103 episodes.

7.3. Results of RL strategies

We simulate using the same CSS network as in the previous simulation (M = 10,
Ma = 1, Mg = 9, Mm = 4, q = 2 and g = 5.51). Again, we test for M j = {0, 1, 2}, using
51 equispaced values of Pc in the range Pc ∈ [0, 0.5], using N = 5 stages and using
u = 0 and u = 1. We compare the empirical curves obtained averaging 100 runs of the
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Input: sn

Layer 1: 24 units

ReLU

Layer 2: 24 units

ReLU

Layer 3: 24 units

LU

Output: Q(sn, a)

Input: sn

Layer 1: LSTM

Layer 2: 24 units

LU

Output: Q(sn, a)

Figure 5: DQN and DRQN structures chosen. For DQN (left), the three layers are fully connected and each
of them has 24 units. ReLU is the rectified nonlinearity activation function f (x) = max(0, x) and LU is
the linear activation function f (x) = x. For DRQN (right), the first layer is a LSTM with an output space
dimensionality of 32, and the second is a dense layer. The input is the state sn and the output is the estimation
of Q(sn, a).

trained policies obtained using Q-learning, DQN and DRQN. We compare these values
with the theoretical curves obtained for the optimal and dummy attacks obtained in the
previous simulation. The results can be observed in Figure 6. Note that Q-learning,
DQN and DRQN provide very good results, with error curves similar to the optimal
theoretical ones, with a low variance, for all cases. Being the results quite similar,
DQN and DRQN presents an advantage: they took less computation time to learn than
Q-learning, around one magnitude order below (and DQN learned slightly faster than
DRQN). This is mainly due to the use of experience replay: Q-learning trained using
10 times more epochs than DQN and DRQN. Another advantage of DQN and DRQN
is that they do not need memory to store the Q-function, although they require memory
to store the E set. Note , however, that E has a size limited that we choose before
training, but Q-value function entries number grows exponentially with the problem
parameters (see Section 4.5). Hence, DQN and DRQN are a more versatile solution
for high dimensionality problems, where Q-learning may not be practical due to the
memory cost.

8. Comparison of attack strategies

We compare the strategies used using the following points, that are summarized in
Table 1:

• In terms of complexity to obtain the policy, dummy strategies are simple since
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Figure 6: Performance of optimal, simple and learned strategies against EWSZOT in terms of pe,t as a
function of Pc. We compare the results of the three RL algorithms with the optimal and dummy strategies
theoretical values. Observe that all RL algorithms learn strategy that is quasi-optimal.
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Dummy Optimal Q-learning DQN/DRQN

Policy obtaining Easy Very hard Hard Medium

Computation Low Very high High Medium

Implementation Very easy Easy Easy Medium

Attack results Poor Optimal Very good Very good

Table 1: Comparison of different strategies against EWSZOT.

they are fixed beforehand. The optimal approach on the other hand is hard: we
must know both the state space and the transitions, and that is costly. Q-learning
requires knowing all possible states: these might be hard to compute. Finally,
DQN and DRQN do not require knowing neither the states nor the transitions,
and thus, the difficulty in this case is lower than using Q-learning; yet tuning the
hyperparameters for training might be tricky for this approach.

• In terms of computational resources, dummy strategies have very small require-
ments both in computation and memory capacities. Optimal strategies need a
large amount of both. Q-learning is not as computationally expensive but still
needs a huge amount of memory. DQN and DRQN do not require as much com-
putational capacity as the optimal strategies, and their memory requirements are
lower and indeed, could be controlled by adjusting the size of E (although this
would influence the training process).

• In terms of policy implementation, dummy strategies are very easy to implement
due to being fixed. The optimal and Q-learning strategies can be implemented
as a search over a table that returns the prescribed action for a given state. DQN
and DRQN require implementing a neural network, which causes it to be a bit
harder.

• In terms of attack results (i.e., the total error probability), dummy strategies give
the worst results. The best possible result, by definition, correspond to the op-
timal strategies. And Q-learning, DQN and DRQN provide quasi-optimal solu-
tions, similar to the optimal ones.

By comparing all strategies, we see that dummy and optimal strategies do pose a strong
trade-off between attack results and complexity. But this trade-off can be alleviated by
using RL strategies, specially DQN and DRQN. Using neural networks provides a
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good compromise between complexity and attack results: the algorithm is not too hard
to implement, it is not excessively expensive computationally and finally, its results are
quasi-optimal.

Note that our results show that current WSN defense mechanisms can be vulner-
able to an intelligent attacker, specially to one based on Deep RL tools. As we just
showed, such an attacker can obtain good attack results - i.e., can degrade the defense
mechanism performance - even if it does not know the concrete defense mechanism
used. The computational cost for that attacker may be under the computational capac-
ities of current hardware. We believe, hence, that further research is needed in order to
obtain defense mechanisms that are able to tackle with these intelligent attackers.

9. Conclusions

In this paper, we have proposed using MDPs as a tool to model and study attacks in
WSN. We have shown that current defense mechanism present two related problems,
namely, the problem of ad-hoc defense and the problem of optimality. An attacker
making use of our MDP approach could successfully exploit these problems and de-
grade a defense mechanism, as our study of EWSZOT shows. The main strengths of
our approach are:

• It is possible to obtain the theoretical results of different attack policies if the
MDP is modeled, and even obtaining the optimal attack policies. Note that this
means that different attacks can be compared in terms of their effects in a straight-
forward way. It also addresses the optimality problem: we can obtain the optimal
attack and hence, have a bound on the defense mechanism performance.

• The use of RL tools allows us to obtain quasi-optimal attack results if the MDP
cannot be modeled due to being unknown or if it is highly complex. We have
shown that Deep RL tools are of special interest here due to the balance between
results achieved and their complexity. We remark that RL tools exploit the prob-
lem of ad-hoc defense: minor changes in the attack mechanism (such as giving
false reports selectively in case of EWSZOT) may cause a significant degradation
in the defense mechanism.

Our approach also has some weaknesses:

• Modeling an MDP may be very hard: the state-action space could be prohibitively
large or the transition function could be very complex to obtain. Hence, optimal
solutions could be computationally very complex to obtain. Also, note that min-
imal changes in the MDP may significantly change the MDP definition and tran-
sition function. Note that this is a strength for RL methods: they can be adapted
easily to such changes.

• Q-learning suffers also when the action-space is large.

• In our work, we have focused in the single agent case (i.e., only one AS), and we
have also focused on discrete actions. Thus, our results only apply when these
conditions hold.
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• We have also assumed that the ASs can observe the state of the system (the
reputations in case of EWSZOT). This assumption need not hold in real-life
systems, where only a noisy observation of the state could be available.

• Deep RL methods results can be sensitive to hyperparameter tuning and also, to
the reward scheme. That is, different reward schemes may cause the agent to
learn different attacks. In our example, the reward definition was straightforward
- i.e., the total error probability -, but we assumed that the ASs knew the channel
state, which need not happen in real-life systems.

Finally, we believe that our framework could be extended in order to address some
of these weaknesses. We identify the following possible future work lines:

• It could be possible to extend our work to work without an explicit knowledge of
the state. In this case, it would be needed to solve a Partially Observable MDP
(POMDP), which are significantly harder to solve analytically (Thrun et al.,
2005). However, Deep RL tools could be very helpful to manage POMDPs,
specially DRQN, as shown in (Hausknecht and Stone, 2015).

• Another possible extension could be addressed to manage a continuous action
space, specially when an approximation based on discretization would signifi-
cantly enlarge the action space. Note that in many attacks, it could make more
sense using continuous actions, for instance, to model probabilities. In this sense,
there are Deep RL algorithms other than DQN and DRQN that can cope with
continuous action spaces, such as Trust Region Policy Optimization (Schulman
et al., 2015).

• It would be interesting also extending the work towards having more than one
ASs. It would be of special interest exploring the effects that communication
among ASs may have on the defense mechanism degradation, as well as the
possible improvements with regards to having a single AS.

• Finally, we think that the most important extension has to do with defense mech-
anisms that are able to cope with intelligent attackers. In this case, it would be
necessary to use tools from dynamic game theory (Littman, 1994), in which we
have several agents, each one solving an MDP that is coupled to the other agents.
There are significant challenges related to this setup, as (Hernandez-Leal et al.,
2017) shows. However, it is imperative to develop defense mechanisms that are
able to cope with such intelligent attackers: as we have shown, many current
WSN defense mechanisms suffer from the problems of the ad-hoc defense and
optimality, which an intelligent attacker may exploit.
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