
sensors

Article

Wireless Networks under a Backoff Attack: A Game
Theoretical Perspective

Juan Parras * and Santiago Zazo

Information Processing and Telecommunications Center, Universidad Politécnica de Madrid,
ETSI Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain; santiago.zazo@upm.es
* Correspondence: j.parras@upm.es

Received: 30 November 2017; Accepted: 24 January 2018; Published: 30 January 2018

Abstract: We study a wireless sensor network using CSMA/CA in the MAC layer under a backoff
attack: some of the sensors of the network are malicious and deviate from the defined contention
mechanism. We use Bianchi’s network model to study the impact of the malicious sensors on the total
network throughput, showing that it causes the throughput to be unfairly distributed among sensors.
We model this conflict using game theory tools, where each sensor is a player. We obtain analytical
solutions and propose an algorithm, based on Regret Matching, to learn the equilibrium of the game
with an arbitrary number of players. Our approach is validated via simulations, showing that our
theoretical predictions adjust to reality.

Keywords: CSMA/CA; backoff attack; game theory; Nash equilibrium; correlated equilibrium;
regret matching

1. Introduction

The remarkable advances and proliferation in wireless networks in recent years have brought a
significant interest in the security and threats to these networks. Specially wireless sensor networks
can be the target of many different attacks due to the limited capabilities of the sensors, as some
recent surveys show (for instance, [1,2]). A very important kind of attack addressed to these networks
is the backoff attack. It affects to the Medium Access Control (MAC) layer when a CSMA/CA
(carrier-sense medium access with collision avoidance) scheme is used to regulate the access to the
medium. The backoff mechanism minimizes the risk of collision, i.e., that two or more stations transmit
simultaneously, by deferring transmissions during a certain random time period: the backoff window.
In a backoff attack, a sensor uses a lower backoff window than the rest of the sensors, thus obtaining a
higher throughput at expense of the other sensors [3].

Backoff attacks are a real threat to wireless sensor networks. Firstly, because network adapters
are highly programmable [4], thus allowing sensors to modify their backoff parameters. In addition,
secondly, because many MAC layer protocols proposed for wireless sensor networks make use of
CSMA as medium access mechanism, for instance, SMAC [5], WiseMAC [6], TMAC [7] and DSMAC [8].
Two surveys on MAC layer protocols [9,10] show that CSMA is the most common access mechanism
in contention based MAC protocols.

Some studies that treat backoff attacks, such as [11,12], focus only in the defense mechanism.
However, any attack is a conflict between the attacker agents and the defense mechanism. In order
to better model this conflict, we will make use of game theory tools: a branch of mathematics used
to model conflict. This approach is pretty popular: [13] is a survey on game theory approaches to
multiple access situations in wireless networks and [14] is another survey focused on CSMA methods.

Two works which study backoff attacks in wireless networks are [4,15]. We differ from these
works in the following points and contributions:

Sensors 2018, 18, 404; doi:10.3390/s18020404 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18020404
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 404 2 of 19

• We assume that the defense mechanism lies in a sensor, to which other sensors communicate.
We model the conflict individually between each communicating sensor—which can behave
normally or attack —and the defending sensor. This is the case of networks with a star
topology, in which a central sensor receives the packets of the rest of the network. This topology
appears, for instance, in hierarchical routing protocols [16]: in these protocols, the sensors are
clustered in order to be energy efficient (one recent example is [17]), each cluster following a
star topology. Yet our approach could be adapted to other network topologies (e.g., to a mesh);
however, we focus in star topology in this work for simplicity. By differentiating between
attacking sensors and the defense sensor, we use a heterogeneous network model: the attacking
sensors are greedy and want the maximum individual throughput they can obtain, whereas the
defending sensor tries to divide fairly the total throughput among the sensors that communicate
with it. This makes our model different from [4,15]: each sensor may have different interests,
which is a more complex and realistic situation.

• We use Bianchi’s model to estimate the total network throughput and use this metric as game
payoff: we try to enforce a fair use of the network total throughput. By modeling the total
throughput, we contribute to provide a deeper insight on how different parameters influence the
fairness of the network. Namely, we will show that fairness is related to the backoff parameters
and the number of greedy sensors.

• We solve our game both analytically and empirically, proposing a simple algorithm to obtain the
game solution, based on regret-matching (RM) algorithm [18]. Our contribution here is twofold:
on one side, we provide a theoretical framework to the backoff attack problem, and solve it
analytically. On the other side, we provide a simple algorithm that learns the solution to the
game, which is very simple to implement, even in sensors with low computational capabilities.
This makes our model both well theoretically founded and also, practical to implement in
real-life situations.

Finally, note that we refer to the sensors as stations if we study the network from the MAC protocol
perspective or as players or agents if we are studying the network from the game theoretic perspective.

The rest of the work goes as follows. In Section 2, we explain the CSMA/CA mechanism as
used in the IEEE 802.11 standard [19]. We study this case because there is no standard for MAC
layer protocols in wireless sensor networks and the 802.11 defines a very well known CSMA/CA
implementation. The results we obtain can be applied to other MAC access mechanisms based on
CSMA/CA. Then, in Section 3 we will use Bianchi model to obtain the theoretical throughput of
the network and show how greedy stations do have a strong impact on the network throughput.
In Section 4, we model the CSMA/CA problem using game theory tools, and solve it in Section 5.
After, in Section 6, we will simulate the solutions proposed and analyze the results. Finally, in Section 7
we will draw some conclusions.

2. CSMA/CA in IEEE 802.11

The IEEE 802.11 standard [19] defines the MAC and physical (PHY) layer specifications for a
wireless local area network (WLAN). Each device connected using this standard is known as station
(STA). The access to the shared medium can be regulated using the Distributed Coordination Function
(DCF), which uses CSMA/CA to access the medium.

The basic mechanism used by the DCF in IEEE 802.11 standard is CSMA/CA to control the
medium access and a positive acknowledgment frame (ACK): if no ACK is received, there is a
retransmission. CSMA/CA operates using two procedures: a carrier sense (CS) which determines
whether the channel is busy (i.e., other station is transmitting) or idle (i.e., no other station is
transmitting); and a backoff procedure which determines when a station should start transmitting.

A station willing to transmit invokes the CS mechanism to determine whether the channel is idle
or not. If it is busy, the station defers the transmission until the channel is idle without interruption for
a fixed period of time. After, the station starts a counter, called backoff, for an additional deferral time

Sensors 2018, 18, 404 3 of 19

before transmitting: the station transmits when its backoff counter reaches 0. This procedure minimizes
collisions among multiple stations that have been deferring to the same event. The backoff follows
a uniform random variable in the interval [0, CW − 1], where CW stands for contention window.
If a collision is detected when a station transmits, its CW is duplicated (binary exponential backoff)
and the backoff procedure starts over. When the station has transmitted the packet, it waits for an
ACK; if none is received in a certain time (ACK timeout), the station starts the transmission procedure
again. This mechanism is known as Basic Access (BA), and is based on a two-way handshaking.

The standard also defines an alternative procedure, based on a four-way handshaking,
called request-to-send/clear-to-send (RTS/CTS). In this case, the transmitter station sends a RTS frame
to the receiver, using the BA mechanism described above. The RTS frame is used to reserve the medium:
when the receiver station receives a RTS, proceeds to reserve the channel for some time, sending a
CTS frame to indicate that the channel reservation was successful. When the transmitting receives
the CTS frame, starts transmitting its packet; when it finishes, if the transmission was successful,
the receiving STA sends a positive ACK. While the channel is reserved, the rest of stations remain
silent. The RTS/CTS procedure helps easing the hidden node problem [20,21] and provides a higher
throughput than the BA mechanism when the MAC payload is large [22].

3. Network Throughput under Backoff Modification

3.1. Theoretical Network Throughput

The 802.11 standard does not provide a way to estimate the network throughput that is achieved.
The best-known model to estimate the throughput in a network is Bianchi’s model [22], which provides
expressions both for BA and RTS/CTS mechanisms. The main advantage of this model is that it
provides analytical expressions to determine the network throughput. It assumes saturation of the
network, that is, that each station always has a packet to transmit. This assumption could be relaxed
using more complex models (as [23]).

The CSMA/CA mechanism described in Section 2 assumes that all stations will respect the backoff
procedure. However, the stations can modify their backoff in such a way that they can obtain a higher
throughput, at expense of other stations [4,15]. In order to analyze these effects, we will use Bianchi’s
model [22] to estimate the total network throughput. The results will be used in the posterior sections
to study how to enforce network throughput fairness. This model relies on the computation of the
following system for each of the i stations of the network: τi =

2
1+Wi+piWi ∑

mi−1
j=0 (2pi)

j

pi = 1−∏j 6=i(1− τj)
(1)

where pi is the collision probability for station i (the probability that station i observes a collision while
transmitting a packet, which Bianchi’s model assumes to be constant) and τi is the probability that
station i transmits a packet. The system (1) assumes a binary exponential backoff, where the contention
window CW lies in the interval [W, CWmax], where m is the maximum backoff stage, defined as
CWmax = 2mW where W is the minimum size of the contention window.

Let us assume that we have a network with n stations, split into two different classes. There are
n1 stations characterized by using a binary exponential backoff as described by IEEE 802.11 standard,
and thus, following (1). Also, there are n2 = n− n1 stations using a uniformly distributed backoff in
the range [0, W2 − 1], whose expression [22] is:

τi =
2

1 + Wi
(2)

Sensors 2018, 18, 404 4 of 19

The probabilities τi and pi are the same for all the members of each class. Hence, (1) becomes:
τ1 = 2

1+W1+p1W1 ∑
m1−1
j=0 (2p1)

j

τ2 = 2
1+W2

p1 = 1− (1− τ1)
n1−1(1− τ2)

n2

p2 = 1− (1− τ1)
n1(1− τ2)

n2−1

(3)

where the subscript i denotes the class of a station. Now, we will obtain the total throughput of the
network [22,23]. The probability that there is at least one station transmitting is denoted as Ptr:

Ptr = 1−
n

∏
i=1

(1− τi) = 1− (1− τ1)
n1(1− τ2)

n2 (4)

and hence, 1− Ptr is the probability that no station is transmitting. The probability that there is exactly
one station of class i transmitting, Ps,i, is:{

Ps,1 = τ1(1− τ1)
n1−1(1− τ2)

n2

Ps,2 = τ2(1− τ1)
n1(1− τ2)

n2−1 (5)

and the probability that there are two or more stations transmitting simultaneously (i.e., the collision
probability), denoted by Pc, is obtained as the total probability minus the probabilities of having exactly
none or one station transmitting:

Pc = 1−∑
i

Ps − (1− Ptr) = Ptr − n1Ps,1 − n2Ps,2 (6)

Now, we obtain the expected duration of a slot time, Tslot. We define Ts as the time to count down
a backoff unit (i.e., the time that lies between two consecutive calls to the CS method when the channel
was sensed idle), Tt as the time duration of a successful transmission and Tc as the time duration
of a collision. We assume that the stations of both classes share the same duration of a successful
transmission and the same duration of a collision. Thus, Tslot is:

Tslot = (1− Ptr)Ts + (n1Ps,1 + n2Ps,2)Tt + PcTc (7)

We consider Tp the payload information time duration in a successful transmission and we assume
that all stations share the same Tp. We define Si, the throughput ratio for station i, as the fraction of
time used by station i to successfully transmit payload bits. Si is obtained as:

Si =
Ps,iTp

Tslot
=

Ps,iTp

(1− Ptr)Ts + (n1Ps,1 + n2Ps,2)Tt + PcTc
(8)

In (8), we could use units of time for the magnitudes Tp, Ts, Tt and Tc, or measure its length in
bits, as long as the units are the same for the four parameters. Finally, the total network throughput,
defined as the fraction of the time spent by all the stations transmitting successfully payload bits, is:

S =
N

∑
i=1

Si = n1S1 + n2S2 (9)

The parameters Ts, Tt and Tc are obtained from the 802.11 standard. Ts is the empty slot time.
In case of using BA mechanism, we have [22]:{

Tba
c = H + Tp + DIFS + δ

Tba
t = H + Tp + SIFS + δ + ACK + DIFS + δ

(10)

Sensors 2018, 18, 404 5 of 19

where H is the total header transmission time (adding PHY and MAC layers headers), DIFS and SIFS
are interframe spacing defined in the standard, ACK is the transmission time of an ACK and δ is the
propagation delay. We also consider that all payloads have the same size, whose transmission time is
Tp. In case of using RTS/CTS mechanism, we have [22]:{

Trts
c = RTS + DIFS + δ

Trts
t = RTS + SIFS + δ + CTS + SIFS + δ + Tba

t
(11)

Comparing (10) and (11), we see that BA mechanism uses less time for a successful transmission,
whereas the time spent in a collision depends on the payload size. Intuitively, in case of large payloads
and a high collision probability, RTS/CTS could achieve a higher throughput, since less time is spent
on retransmissions and that might compensate the longer time spent on transmitting. Indeed, this is
observed in [22].

3.2. Simulation 1: Network Throughput and Fairness

Now, we will make use of the expressions derived in the previous section to analyze the impact
of having n2 stations that follow a uniform backoff, and hence, do not respect the binary backoff
procedure. The values used for time durations are the same as in [22], extracted from 802.11 standard,
and can be seen in Table 1. Observe that we consider two different payload lengths, a short one,
Tp,s, and a long one, Tp,l . We consider that the stations of class 1 follow the IEEE 802.11 standard
binary backoff mechanism (normal stations), with W1 = CWmin,1 = 32, CWmax,1 = 1024 and hence,
m1 = 5. The stations of class 2 (malicious stations) will follow a uniformly distributed backoff in the
interval [0, W2 − 1].

With these values, we obtain the throughput for each station using (8) and (9) for these cases:

• Using the large payload: Tp = Tp,l . We test four cases: first, we consider that n2 = 0, that is,
all stations follow the binary exponential backoff and we vary the number of stations for
n ∈ [1, 20]. Then, we fix the number of stations to n = 5 and simulate for n2 ∈ {1, 2, 4}, that
is, for respectively 1, 2 and 4 malicious stations. We show the results for different values of W2,
namely, for W2 ∈ [1, W1]. The obtained results are in Figure 1.

• Using the short payload, Tp = Tp,s. We test the same four cases than we did for the large payload
case. The obtained results are in Figure 1.

Sensors 2018, 18, 404 6 of 19
Version January 8, 2018 submitted to Sensors 6 of 19

5 10 15 20
0

0.1

0.2

0.3

N

(a) n2 = 0

0 10 20 30
0

0.1

0.2

0.3

W2

(b) n = 5, n2 = 1

0 10 20 30
0

0.1

0.2

0.3

W2

(c) n = 5, n2 = 2

0 10 20 30
0

0.1

0.2

0.3

W2

(d) n = 5, n2 = 4

5 10 15 20
0

0.2

0.4

0.6

0.8

1

N

(e) n2 = 0

0 10 20 30
0

0.2

0.4

0.6

0.8

1

W2

(f) n = 5, n2 = 1

0 10 20 30
0

0.2

0.4

0.6

0.8

1

W2

(g) n = 5, n2 = 2

0 10 20 30
0

0.2

0.4

0.6

0.8

1

W2

(h) n = 5, n2 = 4

BA total throughput BA S1 throughput BA S2 throughput
RTS/CTS total throughput RTS/CTS S1 throughput RTS/CTS S2 throughput

Figure 2. Throughput (S) results for the simulations using Bianchi’s model with short payload, Tp,l ,
(a-d) and long payload, Tp,l , (e-h). In cases (a) and (e), there are no malicious stations; in cases (b-d)
and (f-h) there are malicious stations. S1 is the throughput of normal stations, S2 the throughput of
malicious stations.

they have higher chances to win the contention procedure against normal stations. This causes159

that the throughput is not fairly distributed among stations. As W2 increases (i.e., the malicious160

stations behave more similarly to the normal ones) the throughputs difference becomes smaller.161

• If there is only one malicious station, this station consumes the major part of the network162

throughput for low W2, because it usually wins the contentions. This is independent of the163

mechanism used (BA or RTS/CTS) and the payload size. Yet when there are more than one164

malicious stations, the total throughput becomes 0 for W2 = 1, because there are some stations165

trying to access the network that will always collide. As the W2 value increases, we observe that166

the throughput for the malicious stations also increases, presenting a maximum value which167

depends on the total number of stations in the network and the W2 parameter. Also, as n2168

increases, the throughput a malicious station obtains decreases: it is better for a malicious station169

to be the only malicious station in the network.170

• RTS/CTS mechanism provides higher throughput when using larger payloads: in Figure 2 (e-h),171

RTS/CTS curves are always above BA curves. The opposite happens when using short payloads.172

Hence, if in a network using CSMA/CA there is one or more stations which can modify the binary173

exponential backoff procedure used by 802.11, the throughput that each station gets can be seriously174

affected. This happens using both BA or RTS/CTS mechanisms. The results obtained in this section175

show that network fairness is seriously affected by a backoff attack; the next sections will propose a176

solution to this situation using game theory tools.177

Figure 1. Throughput (S) results for the simulations using Bianchi’s model with short payload,
Tp,l , (a–d) and long payload, Tp,l , (e–h). In cases (a) and (e), there are no malicious stations; in cases
(b–d) and (f–h) there are malicious stations. S1 is the throughput of normal stations, S2 the throughput
of malicious stations.

3.3. Discussion

The results showed in Figure 1 show that:

• The throughput of normal stations decreases significantly for low values of W2. This is
independent of the number of malicious stations, the mechanism used (BA or RTS/CTS) and
the payload size. This happens because the malicious stations use lower backoffs and hence,
they have higher chances to win the contention procedure against normal stations. This causes
that the throughput is not fairly distributed among stations. As W2 increases (i.e., the malicious
stations behave more similarly to the normal ones) the throughputs difference becomes smaller.

• If there is only one malicious station, this station consumes the major part of the network
throughput for low W2, because it usually wins the contentions. This is independent of the
mechanism used (BA or RTS/CTS) and the payload size. Yet when there are more than one
malicious stations, the total throughput becomes 0 for W2 = 1, because there are some stations
trying to access the network that will always collide. As the W2 value increases, we observe that
the throughput for the malicious stations also increases, presenting a maximum value which
depends on the total number of stations in the network and the W2 parameter. Also, as n2

increases, the throughput a malicious station obtains decreases: it is better for a malicious station
to be the only malicious station in the network.

• RTS/CTS mechanism provides higher throughput when using larger payloads: in Figure 1e–h,
RTS/CTS curves are always above BA curves. The opposite happens when using short payloads.

Hence, if in a network using CSMA/CA there is one or more stations which can modify the binary
exponential backoff procedure used by 802.11, the throughput that each station gets can be seriously

Sensors 2018, 18, 404 7 of 19

affected. This happens using both BA or RTS/CTS mechanisms. The results obtained in this section
show that network fairness is seriously affected by a backoff attack; the next sections will propose a
solution to this situation using game theory tools.

Table 1. Values used for simulation 1.

Parameter Value Parameter Value

Tp,s 256 bits Tp,l 8184 bits
MAC header 272 bits PHY header 128 bits

ACK 112 bits + PHY header RTS 160 bits + PHY header
CTS 272 bits + PHY header Bit rate 1 Mbps

δ 1 µs Ts 50 µs
SIFS 28 µs DIFS 128 µs

4. Problem Modelling as a Static Game

4.1. Introduction to Static Games

We define a static game as follows [24]:

Definition 1 (Static game). A static game G is a triple 〈Np, A, u〉, where:

• Np is the number of players, numbered as 1, ..., Np.
• A is the set of actions available to all players. The pure actions available to player i are denoted by ai,

with ai ∈ Ai, being Ai the set of actions available to player i. A is defined as A ≡ ∏i Ai. A is assumed to
be a compact (i.e., bounded and closed) subset of RNp .

• u is a continuous function that gives the game payoffs:

u : ∏
i

Ai → RNp (12)

For our game, the players are the sensors and the actions are to attack or not to attack in case
of greedy sensors, and detect a malicious behavior or not for the sensor that is receiving the packets.
We will use discrete sets of actions (i.e., Ai are finite sets). Thus, the payoff functions will be discrete.
Each of this discrete actions will be denoted as pure actions. Also, if there are Np = 2 players,
the payoff functions for each player can be expressed using a matrix Ri. The matrices will have
dimension m × n, where m is the number of actions for player 1 and n the number of actions for
player 2. Hence, the element ra1,a2 of the matrix Ri corresponds to the payoff for player i when player 1
plays pure action a1 and player 2 pure action a2 [24].

A game is said to be a zero-sum game if the sum of the payoffs of all players equals zero, that is,
∑i ui(a) = 0, ∀a ∈ A. This means that the gains of some players are the loses of the others, and hence,
zero-sum games model situations of extreme competition among players. In a zero-sum game of two
players with a discrete set of actions, the payoff matrix satisfy that R1 = −R2 = R: player 1 maximizes
the payoffs from R whereas player 2 tries to minimize the same payoff matrix R. If the sum of the
payoffs is different from zero, then the game is called non-zero sum game. These games can model very
different situations, ranging from extreme competition (i.e, the zero-sum case) until fully cooperative
games (i.e., when all players have the same payoff function).

4.2. Problem Description

We use the network scheme in Figure 2 to model the CSMA/CA problem that arises when some
stations modify their backoff procedure. There will be n1 normal stations (NS), which always follow the
binary exponential backoff; and n2 malicious stations (MS), which can choose between using the binary

Sensors 2018, 18, 404 8 of 19

exponential backoff or the uniform backoff. We denote by n the number of stations, with n = n1 + n2.
All n stations are connected to a gateway, called server, which forwards their packets to a network.
The stations communicate with the server: we only consider the uplink in the problem. Observe that
this problem arises in a situation in which a star topology is used. For convenience, we will denote the
malicious stations as clients.

The players of the game will be the server on one side, and the clients on the other. Thus, there will
be Np = n2 + 1 players (where Np denotes the number of players). Each client tries to maximize the
throughput available to it, whereas the server tries to enforce that all stations in the network obtain a
fair throughput. By fair, we mean that no station is getting a higher throughput at expense of others.
Under the saturation condition imposed before, this means that all clients receive the same proportion
of the total throughput.

The clients will have two different actions: either they behave selfishly (s) by using the uniform
backoff or they do not behave selfishly (ns) by using the binary exponential backoff. The server will
also have two actions: it can detect (d) if the network throughput is begin fairly distributed or not
to detect (nd). If the server detects and catches a client behaving selfishly, it will drop its packet,
as a punishment. This means that the client has to send again the packet, and the higher throughput
advantage it had obtained by modifying its backoff vanishes. We must also take into account that
this detection procedure cannot be free of charge for the server: there must be a cost associated to the
detection procedure in terms of computational resources. Two of the possible schemes that could be
used to detect this selfish behavior are [12], which is based in Kolmogorov-Smirnov (K-S) statistics,
and [11], which is based on a modified Cramer-von Mises (C-M) test [25]. To simplify the modellinfg,
we will assume that the server is able to perfectly detect when a station behaves selfishly.Version January 8, 2018 submitted to Sensors 8 of 19

NS1

...

NSn1

MS1

...

MSn2

Server Network

Figure 3. Network scheme for the case that there are n1 normal stations (NS) and n2 malicious stations
(MS). NS respect 802.11 binary exponential backoff, whereas MS can choose to use it or to use a uniform
backoff.

Observe that this problem arises in a situation in which a star topology is used. For convenience, we209

will denote the malicious stations as clients.210

The players of the game will be the server on one side, and the clients on the other. Thus, there211

will be Np = n2 + 1 players (where Np denotes the number of players). Each client tries to maximize212

the throughput available to it, whereas the server tries to enforce that all stations in the network obtain213

a fair throughput. By fair, we mean that no station is getting a higher throughput at expense of others.214

Under the saturation condition imposed before, this means that all clients receive the same proportion215

of the total throughput.216

The clients will have two different actions: either they behave selfishly (s) by using the uniform217

backoff or they do not behave selfishly (ns) by using the binary exponential backoff. The server will218

also have two actions: it can detect (d) if the network throughput is begin fairly distributed or not219

to detect (nd). If the server detects and catches a client behaving selfishly, it will drop its packet, as220

a punishment. This means that the client has to send again the packet, and the higher throughput221

advantage it had obtained by modifying its backoff vanishes. We must also take into account that222

this detection procedure cannot be free of charge for the server: there must be a cost associated to the223

detection procedure in terms of computational resources. Two of the possible schemes that could be224

used to detect this selfish behavior are [15], which is based in Kolmogorov-Smirnov (K-S) statistics,225

and [14], which is based on a modified Cramer-von Mises (C-M) test [25]. To simplify the modellinfg,226

we will assume that the server is able to perfectly detect when a station behaves selfishly.227

4.3. Two Player Case: Np = 2228

Now, we center in the case when n2 = 1, that is, there are only two players in the game: the229

server and one client. We proceed to describe the payoffs for each player. We denote by Sns
1 the230

throughput that the client can obtain by playing ns. In that case, the n1 normal stations will obtain231

each a throughput Sns
n1

= Sns
1 = Sns, that is, all stations obtain the same amount of throughput (cases (a)232

and (e) in Figure 2). If the client plays s, it obtains a throughput S1
c if the server plays nd. This causes233

the normal stations to have a lower throughput, Ss
n1

< Ss
1, as observed in Figure 2.234

We define −kd (with kd > 0) as the cost of detecting malicious behavior for the server. We model235

the cost function for client and server as a linear function of the throughput, with ks and k j as a constant236

Figure 2. Network scheme for the case that there are n1 normal stations (NS) and n2 malicious stations
(MS). NS respect 802.11 binary exponential backoff, whereas MS can choose to use it or to use a
uniform backoff.

4.3. Two Player Case: Np = 2

Now, we center in the case when n2 = 1, that is, there are only two players in the game: the server
and one client. We proceed to describe the payoffs for each player. We denote by Sns

1 the throughput that
the client can obtain by playing ns. In that case, the n1 normal stations will obtain each a throughput
Sns

n1
= Sns

1 = Sns, that is, all stations obtain the same amount of throughput (cases (a,e) in Figure 1).
If the client plays s, it obtains a throughput S1

c if the server plays nd. This causes the normal stations to
have a lower throughput, Ss

n1
< Ss

1, as observed in Figure 1.
We define −kd (with kd > 0) as the cost of detecting malicious behavior for the server. We model

the cost function for client and server as a linear function of the throughput, with ks and k j as a constant

Sensors 2018, 18, 404 9 of 19

for the server and the client respectively. Finally, we will assume that both players are maximizers,
hence, they try to maximize the payoff function, that we define as follows:

• If they play (nd, s) (the first action corresponds to the server, the second to the client), the client
is modifying its backoff and hence, the throughputs in the network. The server does not detect
this modification, and hence, does not punish the client. Thus, the client obtains a throughput
increment, which provides it a gain of k1(Ss

1 − Sns). The server has a cost proportional the
throughput loss that the normal stations suffer: ksn1(Ss

n1
− Sns).

• If they play (d, s), the client modifies its backoff, but it is caught by the server, who drops its
packet. This causes the client a loss of k1(0− Sns) = −k1Sns. The server has a gain proportional
to the throughput that the normal stations would have lost minus the cost of the detection:
ksn1(Sns − Ss

n1
)− kd.

• If they play (d, ns), the client does not modify its backoff and hence, does not affect the throughput.
Hence, it has no gain nor lose. However, the server detects and hence, it incurs in the cost of
detection, expressed as −kd.

• If they play (nd, ns), the client again has no gain nor lose. The server does not detect and hence,
it incurs in no cost since the client is behaving properly: it also has no gain nor lose.

All of these payoffs do not vary along the game, provided that there is no modification of the
game conditions (e.g., the number of players). Since Np = 2, we can pose the game as a bimatrix,
non-zero sum, static game, whose game payoffs as a function of the player actions are in Table 2.

Table 2. Payoffs values for the game posed, when n2 = 1. The payoff vectors are of the form
u = (u1, u2), where u1 is the payoff of the server and u2 is the payoff of the client.

s ns

nd
(

ksn1(Ss
n1
− Sns), k1(Ss

1 − Sns)
) (

0, 0
)

d
(

ksn1(Sns − Ss
n1
)− kd,−k1Sns

) (
− kd, 0

)

In order to simplify, we will substitute the payoff values in Table 2 for the following constants,
where R1 is the payoff matrix for player 1 and R2 for player 2:

R1 =

(
−αm 0

αc −α f

)
R2 =

(
βs 0
−βc 0

)
(13)

Observe that all parameters in (13) are strictly positive, that is, αc, αm, α f , βs, βc ∈ (0,+∞).
This arises because:

• k1, kc, kd, n1 and all the throughput values (Ss
n1

, Ss
1, Sns) are all strictly positive parameters.

• The throughput of the client must be higher if it behaves selfishly than if it does not. If that
were not the case, this would mean that the client achieves higher throughput by following the
exponential binary backoff - and from Figure 1, we see that this is not the case if there is only one
client (n2 = 1). This means that Ss

1 > Sns.
• The throughput of the normal stations must decrease when the client behaves selfishly with

respect to their throughput when the client follows the binary exponential backoff. As we observe
in Figure 1, that is indeed the case if there are malicious stations (i.e., n2 ≥ 1). This means that
Sns > Ss

n1
.

• It must happen that ksn1(Sns − Ss
n1
) > kd (observe that the previous point showed that the

left hand side is positive). This simply means that the cost of detecting is lower than the gain
of detecting a deviation from the client. If that did not happen, it would be counterintuitive:
the server incurs in a loss when it successfully detects a deviation from the client.

Sensors 2018, 18, 404 10 of 19

Observe that our model includes the case in which there is no selfishness in the client as a
particular case. If the server knows that the client will always play ns (i.e., like a normal station),
then the server will always play nd and hence, both players receive a payoff of 0.

4.4. Extension to Np > 2

The payoff functions derived in the previous section for the case that there are only two players
can be extended to the general case when there are more than two players. In this case, again, there is
one server which can choose between two pure actions (d, nd) and there will n2 > 1 clients, each client
being able to choose between two pure actions (s, ns). In the general case, the payoff function of each
player will be a multidimensional array of dimensions na1 × na2 × ...× naNp , where nai denotes the
number of pure actions available to player i ∈ {1, Np}. Observe that when Np = 2, each player payoff
function is a matrix.

We define a vector of pure actions as ap = (ap,1, ap,2, ..., ap,Np). Observe that the payoff
multidimensional array contains a payoff value for each possible vector ap. In order to obtain the
payoff function of each player, for each ap, we will define ns

2 as the number of clients that play pure
action s and nns

2 = n2 − ns
2 as the number of clients that play pure action ns. The payoff each player

receives will be coupled with the actions of the rest of the players: in general, it will be a function
fi(ap), where i denotes a concrete player. There will be a payoff function for each ap.

The payoff function for the server will depends on ap as follows. If the server plays d, the payoff
function of the server will be ksn1(Sns − Ss

n1
)− kd. Remark that Sns is obtained considering that there

are n = n1 + n2 stations. Also, there will be different possible values of ns
2, thus Ss

n1
will depend on the

number of clients playing s. Finally, observe that if all clients played ns, ns
2 = 0 and hence, Sns = Ss

n1
;

thus, the payoff of the server in this case is −kd.
If the server plays nd, the payoff value for each ap is ksn1(Ss

n1
− Sns) . It is the same as when the

server played d, but now there is no cost kd and the sign is reversed.
The payoff for client j, j ∈ {1, ..., n2} if it plays ns will be 0. If client j plays s and the server

plays d, the payoff for client j will be −k jSns. If client j plays s and the server plays nd, the payoff for
client j will be k j(Ss

j − Sns). Observe that Ss
j will depend on ns

2.
We follow this procedure for each ap value in order to obtain the payoff values. Observe that if

n2 = 1, all the expressions in this section reduce to the ones given in the previous section.

5. Game Theory Analysis of the CSMA/CA Problem When Np = 2

In this section, we solve analytically the CSMA/CA static game, for the case in which Np = 2,
that is, for the two player case. We also provide an algorithm to solve the game for Np ≥ 2, that is,
for an arbitrary number of players.

5.1. Nash Equilibrium Concept

The CSMA/CA game posed when Np = 2 is a non-zero sum, two player game. A very popular
equilibrium concept for these games is the Nash equilibrium (NE) concept: it defines a situation in
which no player can obtain a better payoff by deviating unilaterally. Non-zero sum games might have
more than one NE (Chapter 3, [24] and finding all of them might be hard (see [26–28]). However, it is
well known that every non-zero sum game has, at least, one NE in mixed strategies (Theorem 3.2, [24]).
In a mixed equilibrium, each player has access to a randomizing device which outputs which pure
action the player should play, with a given probability. This probability is the mixed NE.

If there are two players, each of them with two actions to choose, we can define the payoff
matrices as:

R1 =

(
r1

11 r1
12

r1
21 r1

22

)
R2 =

(
r2

11 r2
12

r2
21 r2

22

)
(14)

Sensors 2018, 18, 404 11 of 19

and we can obtain a mixed NE as it is shown in (Chapter 3, [24]). We define y as the probability that
player 1 chooses her action 1, and 1− y the probability that she chooses action 2 (for player 2, we define
in an equivalent form z and 1− z). The equilibrium conditions are the following:

(y∗v)
T R1z∗v ≥ yT

v R1z∗v (y∗v)
T R2z∗v ≥ (y∗v)

T R2zv (15)

where yv = (y, 1− y), zv = (z, 1− z) and yT
v denotes the transposed of vector yv. In (15) we assume

that both players are maximizers: otherwise, the inequality is reversed. One mixed NE for (15) can be
obtained as (pp. 85–87, [24]):

y∗ =
r2

22 − r2
21

r2
11 + r2

22 − r2
21 − r2

12
z∗ =

r1
22 − r1

12
r1

11 + r1
22 − r1

21 − r1
12

(16)

where y∗ ∈ [0, 1] and z∗ ∈ [0, 1] is the mixed NE.

5.2. Nash Equilibrium Solution to the CSMA/CA Game

The CSMA/CA game can be solved using the mixed NE concept. Using (16), the game presents
the following NE, where the payoff matrices used are (13):

y∗ =
βc

βc + βs
z∗ =

α f

α f + αm + αc
(17)

This means that the server plays d with probability 1− y∗ and nd with probability y∗. The client
plays s with probability z∗ and ns with probability 1− z∗. We define the expected payoff that each
player obtains if they play mixed strategies with probability (y, 1− y) for the server and (z, 1− z) for
the client as:

u1(y, z) =(y, 1− y)R1(z, 1− z)T = −zy(αm + αc + α f) + z(αc + α f) + α f (y− 1)

u2(y, z) =(y, 1− y)R2(z, 1− z)T = zy(βs + βc)− zβc
(18)

Thus, the payoff that each player receives by playing their mixed NE strategy, from (17) and (18) is:

u1 = −
α f αm

αm + αc + α f
u2 = 0 (19)

The values in (19) show that the equilibrium payoff for the client is 0, regardless of the game
parameters. The equilibrium payoff for the server will depend on the values that the α parameters
take. This means that the client can always guarantee a throughput as good as if he behaved normally.
The server will have always a loss, derived from the cost of detecting (kd, collected by the parameter α f).

5.3. Correlated Equilibrium Concept

Another important equilibrium concept is the correlated equilibrium (CE) concept, owed to
Aumann [29], which generalizes NE concept. It assumes that there is a correlating device that produces
a signal sent to both players: the players use this signal to coordinate. Each signal of the correlating
device corresponds to a pure action for each player. The CE is defined so that it has no advantage to
any player deviating from the prescription of the correlating device.

A CE for Np = 2 players is defined as a distribution probability φ(a) over the set of joint pure
actions of the players A = A1 × A2, where a = (a1, a2) is a vector of pure actions such that a ∈ A.
The equilibrium condition that must be satisfied for every player i ∈ {1, 2} is [29,30]:

∑
a−i∈A−i

φ(a−i|ai)ui(ai, a−i) ≥ ∑
a−i∈A−i

φ(a−i|ai)ui(a′i, a−i) ∀a′i ∈ Ai, ai 6= a′i (20)

Sensors 2018, 18, 404 12 of 19

where A−i is the set of pure actions of the other player: A−i = A2 for i = 1 and A−i = A1 for i = 2.
The concept of CE is a generalization of NE concept: every NE will be a CE (but the converse is

not true). Yet CE are less expensive to compute (see [31,32]). Also CE will, in general, provide different
solutions to a game.

5.4. Correlated Equilibrium Solution to the CSMA/CA Game

The CSMA/CA game can be solved using the CE concept. The equilibrium condition (20) becomes:

∑
a2={s,ns}

φ(a2|d)u1(d, a2) ≥ ∑
a2={s,ns}

φ(a2|d)u1(nd, a2)

∑
a2={s,ns}

φ(a2|nd)u1(nd, a2) ≥ ∑
a2={s,ns}

φ(a2|nd)u1(d, a2)

∑
a1={d,nd}

φ(a1|s)u2(s, a1) ≥ ∑
a1={d,nd}

φ(a1|s)u2(ns, a1)

∑
a1={d,nd}

φ(a1|ns)u2(ns, a1) ≥ ∑
a1={d,nd}

φ(a1|ns)u2(s, a1)

(21)

Replacing the payoffs from (13), (21) becomes:

αcφ(s|d)− α f φ(ns|d) ≥ −αmφ(s|d) + 0φ(ns|d)
−αmφ(s|nd) + 0φ(ns|nd) ≥ αcφ(s|nd)− α f φ(ns|nd)

−βcφ(d|s) + βsφ(nd|s) ≥ 0φ(d|s) + 0φ(nd|s)
0φ(d|ns) + 0φ(nd|ns) ≥ −βcφ(d|ns) + βsφ(nd|ns)

(22)

We know that the following is satisfied:

φ(a|b) = φ(a ∩ b)
φ(b)

φ(a ∩ b) = φ(b ∩ a) (23)

We simplify (22) using (23). We use the following shorthand notation: φ11 = φ(nd ∩ s),
φ12 = φ(nd ∩ ns), φ21 = φ(d ∩ s) and φ22 = φ(d ∩ ns). Observe that this is the joint distribution
probability, considering that the first subscript refers to the pure action of the server, and the second,
to the pure action of the client. We also consider that pure action 1 for the server is nd, and pure action
2, d; for the client, s will be its pure action 1 and ns its pure action 2. Using all this, (22) becomes:

−αmφ11 + 0φ12 ≥ αcφ11 − α f φ12

αcφ21 − α f φ22 ≥ −αmφ21 + 0φ22

βsφ11 − βcφ21 ≥ 0φ11 + 0φ21

0φ12 + 0φ22 ≥ βsφ12 − βcφ22

(24)

where we assumed that φ(nd) > 0, φ(d) > 0, φ(s) > 0 and φ(ns) > 0. By taking into account that
all α and β parameters are greater than 0 (that is, α, β ∈ (0,+∞)), and also restraining φ to be a valid
distribution, we obtain the following simplified equilibrium conditions from (24):

φ11φ22 = φ12φ21

βs

βc
=

φ22

φ12
αc + αm

α f
=

φ22

φ21

φ11 + φ12 + φ21 + φ22 = 1

φij ≥ 0, i = {1, 2}, j = {1, 2}
α, β ∈ (0,+∞)

(25)

Sensors 2018, 18, 404 13 of 19

The system in (25) has only one solution:

φ11 =
α f

αc + αm + αc

βc

βc + βs
φ12 =

αc + αm

αc + αm + αc

βc

βc + βs

φ21 =
α f

αc + αm + αc

βs

βc + βs
φ22 =

αc + αm

αc + αm + αc

βs

βc + βs

(26)

Thus, there is only one CE which corresponds to the mixed NE we already found in (17):
observe that φ11 = y∗z∗, φ12 = y∗(1 − z∗), φ21 = (1 − y∗)z∗ and φ22 = (1 − y∗)(1 − z∗).
This happens with all games following the payoff matrices from (13). The payoff for each player
if they follow the CE is:

u1 = −αmφ11 + αcφ21 − α f φ22 u2 = βsφ11 − βcφ21 (27)

The payoffs obtained using CE (replacing (26) in (27)) are the same that were obtained using
mixed NE, in (19). This is obvious: both are the same equilibrium.

5.5. Learning Algorithms: Regret Matching

There are algorithms for learning static equilibria. One of the simplest and best known is Regret
Matching (RM) algorithm, proposed by Hart and Mas-Colell [18,33]. It is a simple, adaptive strategy
that guarantees that the joint distribution of play converges to the set of correlated equilibria of the
underlying game if each player plays a regret matching strategy [33]. The main idea of RM is to play a
static game repeatedly and update a regret measure for each player depending on the outcome the
players obtain each time they play the game. This algorithm requires that each player knows only her
payoff and the actions of the other players (i.e., a player does not need to know the payoff functions of
the other players). Each time the game is played, the regret Wi(a′i) is obtained as:

Wi(a′i) = ui(a′i, a−i)− ui(ai, a−i), ∀a′i ∈ Ai (28)

where ai is the pure action played by player i, a−i denotes the pure actions played by all the other
players, a′i is used to denote all pure actions available to player i and Ai is the set of pure actions for
player i. If Wi(a′i) > 0, RM will assign positive probability to play a′i in the future, because the player
would have gained in the past if she had played a′i. On the other hand, if Wi(a′i) ≤ 0, the player will
assign probability 0 to play a′i. At the beginning of the game, all regrets are initialized to 0, and they
are updated with each repetition of the static game following:

Wt+1
i (a′i) = Wt

i (a′i) + Wi(a′i), ∀a′i ∈ Ai (29)

where Wt
i (a′i) is the regret at the beginning of the previous iteration t and Wi(a′i) is obtained using (28).

Observe that subscripts denote players, and superscripts denote time.
At the beginning of the static game t, each player chooses a pure action randomly following a

distribution pi(ai), where pi(ai) is the probability that player i uses pure action ai. pi(ai) is obtained at
the beginning of each static game as follows:

• If Wi(ai) ≤ 0, ∀ai ∈ Ai, then choose a pure action randomly following the uniform
distribution pi(ai):

pi(ai) =
1
|Ai|

(30)

where |Ai| stands for the number of pure actions available to player i.

Sensors 2018, 18, 404 14 of 19

• If there are regrets strictly higher than zero, then choose a pure action randomly following this
distribution pi(ai):

pi(ai) =

{
Wt

i (ai)
W if Wk

i (ai) > 0
0 if Wt

i (ai) ≤ 0
(31)

where
W = ∑

ai∈Ai |Wt
i (ai)>0

Wt
i (ai) (32)

that is, W is the sum of all positive regrets in game t. Observe that W is computed in each iteration,
as the vector Wt

i is updated in each iteration. This definition of W guarantees that pi(ai) in (31) is
an actual distribution: it sums 1 and has nonnegative components.

Algorithm 1 Regret matching for each player.

1: Initialize Wi = (0, 0, ..., 0), the dimension of Wi is |Ai|
2: Fix T, the number of iterations
3: for t ∈ {1, 2, ..., T} do

4: if max{Wt
i } ≤ 0 then

5: Assign at
i following (30)

6: else

7: Assign at
i following (31) and (32)

8: end if
9: Obtain payoff ut

i(at
1, at

2) for i ∈ {1, 2}
10: Update regrets using (29) and (28)
11: end for
12: return Strategies using (33)

We use RM to obtain the solution for the CSMA/CA game. A possible implementation for each
player is found in Algorithm 1. If the static game is played T times, we obtain the equilibrium strategies
ŷ for player 1 and ẑ for player 2 as:

ŷ =
∑T

t=1 at
1

T
, ẑ =

∑T
t=1 at

2
T

(33)

where at
i denotes the pure action taken by player i in time t. We know RM converges to the set of

correlated equilibria [18], which in our game is only one point (see (26)). This correlated equilibrium
is also the only Nash equilibrium of the game (see (17)). Hence, in the CSMA/CA game with two
players, RM will converge to the Nash equilibrium.

6. Simulations for the CSMA/CA Game

We perform some simulations in order to observe and compare the theoretical developments done
in previous sections. We define network using the model in Figure 2. We set the number of stations to
n = 5, we use BA mechanism and Tp,l (long payload) in order to estimate the network throughput
using Bianchi’s model. The parameters of normal stations, denoted by subscript 1 will be W1 = 32,
CWmax,1 = 1024, and hence, m1 = 5 (extracted from IEEE 802.11 standard). The malicious stations,
denoted with subscript 2, will use the uniform random mechanism modification described in Section 3,
with a window length W2 = 8. The rest of IEEE 802.11 parameters are in Table 1, taken from [22].
We solve equations (3) to (10), and obtain the throughput values for different number of malicious
stations: n2 ∈ {1, 2, 3, 4}.

We also need to define the parameters that are used to model the payoff functions. We use
ks = kc = 1, kd = 0.1. The payoff functions are obtained using Table 2 for the case of two players

Sensors 2018, 18, 404 15 of 19

and the procedure in Section 4.4 for the case Np > 2. For two players, Sns = 0.1617, Ss
n = 0.0700,

Ss
c = 0.5225, which gives rise to the payoff matrix in Table 3.

Table 3. Payoffs values for the game when n1 = 4 and n2 = 1. The first entry of the payoff vector is the
server payoff, the second is the client payoff.

s ns

nd
(
− 0.3668, 0.3608

) (
0, 0
)

d
(

0.2668,−0.1617
) (

− 0.1, 0
)

Simulation 2: Myopic Solutions

We can use (17) and Table 3 to obtain the theoretical solutions for the two player game. The mixed
equilibrium actions are yn = 0.3095 and zn = 0.1364, which yield a payoff of −0.05 for the server and
0 for the client. Recall that the CE, obtained using (26), yields the same equilibrium.

Table 4. Empirical payoffs obtained using RM for each value of n2. The payoff vector u has the server
payoff first and then, the payoff of each client. Observe that payoffs do not significantly vary as the
number of players increase. This is consistent with Figure 4: the game tends to the two player situation,
even if there are more players.

n2 u

1 (−0.0493,−0.0015)
2 (−0.0504,−0.0011,−0.0012)
3 (−0.0502,−0.0011,−0.0011,−0.0013)
4 (−0.0499,−0.0008,−0.0008,−0.0004,−0.0003)

Version January 8, 2018 submitted to Sensors 16 of 19

0 0.1 0.2 0.3
0

20

40

Mixed action

(a) n2 = 1

0 0.1 0.2 0.3
0

20

40

Mixed action

(b) n2 = 2

0 0.1 0.2 0.3
0

20

40

Mixed action

(c) n2 = 3

0 0.2 0.4 0.6
0

20

40

Mixed action

(d) n2 = 4

Server Client 1 Client 2 Client 3 Client 4

Figure 4. Histogram of actions obtained using RM algorithm, for n = 5 stations and variable number
of malicious stations. Each histogram is computed using 5 bins. Cl stands for client. Observe that the
action of the server does not vary significantly, whereas the actions of the clients do. Also, observe how
as n2 increses, the clients histogram presents two peaks: the biggest close to 0 and a smaller peak at
another mixed action value. This hints that the game tends to the two player case when there are many
clients: all but one client tend to behave as normal stations.

more than one player behaving selfishly at once. As we saw in Figure 2, as the number of clients380

increased, the advantages of playing s for the clients decreased: the difference between the normal381

behavior throughput and the throughput obtained when using a different backoff shrank. Since the382

payoff of the clients is proportional to this difference, it is not enough gain for them to play ns: the loss383

when they play s and the server plays d do not compensate the gains when they play s and the server384

plays nd; hence, it is better for them playing ns.385

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

Iteration

M
ix

ed
ac

ti
on

Server Client 1 Client 2 Client 3 Client 4

Figure 5. Example the evolution of the mixed action for each player, using RM algorithm, where Cl
stands for client. In each simulation, all clients tend to play ns, except for one. This one randomly arises
at each simulation using RM algorithm. This means that the game tends to the two player situation.

7. Conclusions386

In this paper, we study a CSMA/CA wireless sensor network under a backoff attack: some of the387

sensors of the network are malicious and deviate from the defined contention mechanism. We first use388

Bianchi’s network model to theoretically study the network throughput and observe that the malicious389

Figure 3. Histogram of actions obtained using RM algorithm, for n = 5 stations and variable number
of malicious stations. Each histogram is computed using 5 bins. Cl stands for client. Observe that the
action of the server does not vary significantly, whereas the actions of the clients do. Also, observe how
as n2 increses, the clients histogram presents two peaks: the biggest close to 0 and a smaller peak at
another mixed action value. This hints that the game tends to the two player case when there are many
clients: all but one client tend to behave as normal stations.

Then, we simulate using RM algorithm for n2 ∈ {1, 2, 3, 4}. We set the number of iterations
T = 2000, and run the learning process 50 times. The empirical payoffs obtained are in Table 4, and in
Figure 3, the histogram of the mixed actions obtained is represented for all the n2 cases tested. We can

Sensors 2018, 18, 404 16 of 19

compare to the theoretical results expected in the two player case, by computing the difference between
the actions and payoff obtained using RM (Algorithm 1) and the theoretical values using (17) and (19).
The mean difference in mixed actions is −0.0224± 0.0183 (mean ± standard deviation) for the server
and 0.0056± 0.0087 for the client. The mean difference in payoffs is also small: 0.0007± 0.0024 for
the server and −0.0015± 0.0013 for the client. Thus, RM provides a very good approximation to the
expected game values.

It is of special interest noting that, for n2 ≥ 2, each of the clients distribution presents two peaks,
clearer as n2 grows; one of them is nearly 0. We observe that in each game realization all clients but
one tend to behave as normal stations (i.e., they tend to play ns), as can be observed also in Figure 4 for
n2 = 4: client 1 plays a mixed action around z = 0.5 and the rest of clients tend to play z = 0, that is,
they tend to always play ns. This means that the game tends to the two player case, even if there are
more than two players. This might be due to having payoffs such that they do not encourage having
more than one player behaving selfishly at once. As we saw in Figure 1, as the number of clients
increased, the advantages of playing s for the clients decreased: the difference between the normal
behavior throughput and the throughput obtained when using a different backoff shrank. Since the
payoff of the clients is proportional to this difference, it is not enough gain for them to play ns: the loss
when they play s and the server plays d do not compensate the gains when they play s and the server
plays nd; hence, it is better for them playing ns.

Version January 8, 2018 submitted to Sensors 16 of 19

0 0.1 0.2 0.3
0

20

40

Mixed action

(a) n2 = 1

0 0.1 0.2 0.3
0

20

40

Mixed action

(b) n2 = 2

0 0.1 0.2 0.3
0

20

40

Mixed action

(c) n2 = 3

0 0.2 0.4 0.6
0

20

40

Mixed action

(d) n2 = 4

Server Client 1 Client 2 Client 3 Client 4

Figure 4. Histogram of actions obtained using RM algorithm, for n = 5 stations and variable number
of malicious stations. Each histogram is computed using 5 bins. Cl stands for client. Observe that the
action of the server does not vary significantly, whereas the actions of the clients do. Also, observe how
as n2 increses, the clients histogram presents two peaks: the biggest close to 0 and a smaller peak at
another mixed action value. This hints that the game tends to the two player case when there are many
clients: all but one client tend to behave as normal stations.

more than one player behaving selfishly at once. As we saw in Figure 2, as the number of clients380

increased, the advantages of playing s for the clients decreased: the difference between the normal381

behavior throughput and the throughput obtained when using a different backoff shrank. Since the382

payoff of the clients is proportional to this difference, it is not enough gain for them to play ns: the loss383

when they play s and the server plays d do not compensate the gains when they play s and the server384

plays nd; hence, it is better for them playing ns.385

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

Iteration

M
ix

ed
ac

ti
on

Server Client 1 Client 2 Client 3 Client 4

Figure 5. Example the evolution of the mixed action for each player, using RM algorithm, where Cl
stands for client. In each simulation, all clients tend to play ns, except for one. This one randomly arises
at each simulation using RM algorithm. This means that the game tends to the two player situation.

7. Conclusions386

In this paper, we study a CSMA/CA wireless sensor network under a backoff attack: some of the387

sensors of the network are malicious and deviate from the defined contention mechanism. We first use388

Bianchi’s network model to theoretically study the network throughput and observe that the malicious389

Figure 4. Example of the evolution of the mixed action for each player, using RM algorithm, where Cl
stands for client. In each simulation, all clients tend to play ns, except for one. This one randomly arises
at each simulation using RM algorithm. This means that the game tends to the two player situation.

7. Conclusions

In this paper, we study a CSMA/CA wireless sensor network under a backoff attack: some of the
sensors of the network are malicious and deviate from the defined contention mechanism. We first use
Bianchi’s network model to theoretically study the network throughput and observe that the malicious
sensors have a gain on throughputs, at the expense of other sensors in the network. Even though
the total throughput in some situations stays the same, it is not fairly distributed among sensors.
This effect depends on the backoff parameters used by the malicious sensors, as well as on the number
of malicious sensors present in the network.

We then proceed to model the situation as a static game between the malicious sensors and a
network gateway (thus, using a star topology): the gateway (server) tries to enforce the malicious
sensors to behave following the contention mechanism, whereas the malicious sensors try to obtain a
higher throughput. We solve analytically the game for the case that there is only one malicious sensor

Sensors 2018, 18, 404 17 of 19

and propose an algorithm based on Regret-Matching to learn the equilibrium with any number of
players. Our approach is validated via simulations.

The framework we introduce in this paper can be further deepened in different ways.
The malicious sensors could vary their parameters (for instance, their contention window) in order
not to be easily detected by the defense system: this would mean that the action set of the client
grows up and also, the game complexity. Another line of research would be modeling the game using
dynamic game tools: in this case, the stations would choose their actions in order to maximize not
their immediate rewards, but taking into account future interactions: in a wireless network, it is rare
that the stations communicate only once.

Finally, our approach shows that there is a trade-off between modeling complexity and
computational complexity. By making use of payoff matrices, we alleviate this trade-off: the game
theoretic solutions we provide are agnostic with regards to where these payoffs come from. That is,
we could use Bianchi’s model as we do to relate rewards with the throughput, or we could relate
rewards to other network parameters (as delay or any other measure of the quality of service) and
yet our game modeling would be valid: we should only replace the payoff matrix and solve the
game, with these new matrices. Hence, we believe that we introduce a framework simple enough to
accommodate different situations, but also complex enough as to model the conflict and the actions of
the different stations involved by using game theory tools.

Acknowledgments: This work was supported by a Ph.D. grant given to the first author by Universidad Politécnica
de Madrid, as well as by the Spanish Ministry of Science and Innovation under the grant TEC2016-76038-C3-1-R
(HERAKLES) and the COMONSENS Network of Excellence TEC2015-69648-REDC.

Author Contributions: J.P. and S.Z. conceived and designed the experiments; J.P. performed the experiments;
J.P. and S.Z. analyzed the data; S.Z. contributed analysis tools; J.P. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACK Acknowledgement frame
BA Basic Access mechanism
CE Correlated Equilibrium
CS Carrier Sense mechanism
CSMA/CA Carrier-Sense Medium Access with Collision Avoidance
CW Contention Window size
DCF Distributed Coordination Function
MAC Medium Access Control
MS Malicious (greedy) Station
NE Nash Equilibrium
NS Normal Station
RM Regret-Matching algorithm
RTS/CTS Request-to-Send/Clear-to-Send mechanism
STA Station
WLAN Wireless Local Area Network

References

1. Fragkiadakis, A.G.; Tragos, E.Z.; Askoxylakis, I.G. A survey on security threats and detection techniques in
cognitive radio networks. IEEE Commun. Surv. Tutor. 2013, 15, 428–445.

2. Zhang, L.; Ding, G.; Wu, Q.; Zou, Y.; Han, Z.; Wang, J. Byzantine attack and defense in cognitive radio
networks: A survey. IEEE Commun. Surv. Tutor. 2015, 17, 1342–1363.

3. Bayraktaroglu, E.; King, C.; Liu, X.; Noubir, G.; Rajaraman, R.; Thapa, B. Performance of IEEE 802.11 under
jamming. Mob. Netw. Appl. 2013, 18, 678–696.

Sensors 2018, 18, 404 18 of 19

4. Cagalj, M.; Ganeriwal, S.; Aad, I.; Hubaux, J.P. On selfish behavior in CSMA/CA networks. In Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA,
13–17 March 2005; Volume 4, pp. 2513–2524.

5. Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless
sensor networks. IEEE/ACM Trans. Netw. 2004, 12, 493–506.

6. Enz, C.C.; El-Hoiydi, A.; Decotignie, J.D.; Peiris, V. WiseNET: An ultralow-power wireless sensor network
solution. Computer 2004, 37, 62–70.

7. Van Dam, T.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks.
In Proceedings of the 1st international conference on Embedded networked sensor systems, Los Angeles,
California, USA, 5–7 November 2003; pp. 171–180.

8. Lin, P.; Qiao, C.; Wang, X. Medium access control with a dynamic duty cycle for sensor
networks. In Proceedings of the 2004 Wireless Communications and Networking Conference (WCNC),
Atlanta, GA, USA, 21–25 March 2004; Volume 3; pp. 1534–1539.

9. Demirkol, I.; Ersoy, C.; Alagoz, F. MAC protocols for wireless sensor networks: A survey. IEEE Commun. Mag.
2006, 44, 115–121.

10. Yadav, R.; Varma, S.; Malaviya, N. A survey of MAC protocols for wireless sensor networks. UbiCC J. 2009,
4, 827–833.

11. Wang, W.; Sun, Y.; Li, H.; Han, Z. Cross-layer attack and defense in cognitive radio networks.
In Proceedings of the 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, FL, USA,
6–10 December 2010; pp. 1–6.

12. Toledo, A.L.; Wang, X. Robust detection of selfish misbehavior in wireless networks.
IEEE J. Sel. Areas Commun. 2007, 25, 1124–1134.

13. Akkarajitsakul, K.; Hossain, E.; Niyato, D.; Kim, D.I. Game theoretic approaches for multiple access in
wireless networks: A survey. IEEE Commun. Surv. Tutor. 2011, 13, 372–395.

14. Ghazvini, M.; Movahedinia, N.; Jamshidi, K.; Moghim, N. Game theory applications in CSMA methods.
IEEE Commun. Surv. Tutor. 2013, 15, 1062–1087.

15. Konorski, J. A game-theoretic study of CSMA/CA under a backoff attack. IEEE/ACM Trans. Netw. 2006,
14, 1167–1178.

16. Goyal, D.; Tripathy, M.R. Routing protocols in wireless sensor networks: A survey. In Proceedings
of the 2nd International Conference on Advanced Computing & Communication Technologies (ACCT),
Rohtak, India, 7–8 January 2012; pp. 474–480.

17. Yang, L.; Lu, Y.; Xiong, L.; Tao, Y.; Zhong, Y. A Game Theoretic Approach for Balancing Energy Consumption
in Clustered Wireless Sensor Networks. Sensors 2017, 17, 2654.

18. Hart, S.; Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. Econometrica 2000,
68, 1127–1150.

19. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local
and Metropolitan Area Networks—Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3534.

20. Buehrer, R.M., Synthesis Lectures on Communications; Chapter Code division multiple access (CDMA);
Morgan & Claypool Publishers: San Rafael, CA, USA, 2006; Volume 1, pp. 1–192.

21. Rahman, A.; Gburzynski, P. Hidden problems with the hidden node problem. In Proceedings of the 23rd
Biennial Symposium on Communications, Kigston, ON, Canada, 30 May–1 June 2006; pp. 270–273.

22. Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun.
2000, 18, 535–547.

23. Malone, D.; Duffy, K.; Leith, D. Modeling the 802.11 distributed coordination function in nonsaturated
heterogeneous conditions. IEEE/ACM Trans. Netw. 2007, 15, 159–172.

24. Basar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory; SIAM: Philadelphia, PA, USA, 1999; Volume 23.
25. Anderson, T.W. On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 1962,

33, 1148–1159.
26. McKelvey, R.D.; McLennan, A. Computation of equilibria in finite games. Handb. Comput. Econ. 1996,

1, 87–142.
27. Von Stengel, B. Computing equilibria for two-person games. Handb. Game Theory Econ. Appl. 2002, 3, 1723–1759.

Sensors 2018, 18, 404 19 of 19

28. Avis, D.; Rosenberg, G.D.; Savani, R.; Von Stengel, B. Enumeration of Nash equilibria for two-player games.
Econ. Theory 2010, 42, 9–37.

29. Aumann, R.J. Subjectivity and correlation in randomized strategies. J. Math. Econ. 1974, 1, 67–96.
30. Fudenberg, D.; Tirole, J. Game Theory; MIT Press: Cambridge, MA, USA, 1991.
31. Gilboa, I.; Zemel, E. Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav.

1989, 1, 80–93.
32. Goldberg, P.W.; Papadimitriou, C.H. Reducibility among equilibrium problems. In Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006; pp. 61–70.
33. Hart, S.; Mas-Colell, A. Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics;

World Scientific: Singapore, 2013; Volume 4.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CSMA/CA in IEEE 802.11
	Network Throughput under Backoff Modification
	Theoretical Network Throughput
	Simulation 1: Network Throughput and Fairness
	Discussion

	Problem Modelling as a Static Game
	Introduction to Static Games
	Problem Description
	Two Player Case: Np=2
	Extension to Np>2

	Game Theory Analysis of the CSMA/CA Problem When Np=2
	Nash Equilibrium Concept
	Nash Equilibrium Solution to the CSMA/CA Game
	Correlated Equilibrium Concept
	Correlated Equilibrium Solution to the CSMA/CA Game
	Learning Algorithms: Regret Matching

	Simulations for the CSMA/CA Game
	Conclusions

