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ABSTRACT

This work proposes a denoising algorithm for musical in-
struments based on the use of an excitation-filter instru-
ment model. Firstly, frequency patterns for the musical
instrument are learned. These patterns are trained in ad-
vance from the RWC database and classified into harmonic
and transient components. The harmonic patterns of the
target instrument are modelled with an excitation-filter ap-
proach. Frequency patterns from the beginning of different
notes (onsets) are also learned. Secondly, frequency pat-
terns from noise are trained. Two different types of global
degradations from vinyl audio (hum and hiss), apart from
localized degradations from crackle noise, are used in this
work. Two different types of global degradations from
vinyl audio (hum and hiss), apart from localized degra-
dations from click, crackle and scratch noise, are used in
this work. Two databases (click+crackle+scratch+hiss and
click+crackle+scratch+hiss+hum) are collected in order to
obtain different subsets for training and testing. Finally, an
NMF approach is applied to separate instrument signal and
noise from noisy performances. The proposed approach is
compared with some commercial algorithms when denois-
ing a vinyl degraded guitar database. The separation mea-
sures indicate that the proposed approach obtains compet-
itive results.

1. INTRODUCTION

The improvement of the quality for the audio material de-
graded by non-stationary noise in old recordings has been
a widely investigated problem over the last years [1–4].
Nowadays, audio restoration is an attractive research field
from a commercial viewpoint (e.g. albums or movies audio
remastering) but it is still an unsolved problem because the
quality of restored audio is quite dependent of algorithm
parameters. Hence, it is necessary the judgment of sub-
jects trained in audio to evaluate the quality of the audio
processed.

Audio restoration is the process of removing any degra-
dation to the audio material, which occurs as a result of the
recording process, in order to preserve the quality of the
original one. In general, any degradation can be classified
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into localized or global. A localized degradation, which
affects only certain samples of the audio, can be described
as impulsive noise such as click, crackle or scratch. It is
usually caused by dust, dirt, scratches or breakages on the
surface of the recording medium. A global degradation,
which affects all samples of the audio, can be described
as background noise. The main global degradations are
known as hum and hiss noise. While hum noise models a
50−60Hz low frequency harmonic signal (caused by elec-
trical noise), hiss noise models broadband noise (caused by
ambient noise from the recording environment) [5].

Recent techniques, based on Non-negative Matrix Fac-
torization (NMF) [6], has been successfully applied to a
wide range of music analysis tasks [7–10]. Specifically,
NMF is able to decompose a magnitude spectrogram as a
product of two nonnegative matrices,X ≈ B · G. Each
column of the basis matrixB represents a spectral pattern
from an active sound source. Each row of the gains ma-
trix G represents the time-varying activations of a spectral
pattern factorized in the basis matrix. In this paper, we
propose a supervised NMF approach to restore the target
audio by means of the removal or attenuation of any degra-
dation in vinyl audio. This approach trains a set of spectral
patterns that represent the target audio and the most com-
mon noise active in these recordings. The training audio of
the target source is composed by samples of isolated notes
from a spanish guitar instrument [11]. The spectral pat-
terns from the guitar is trained both from the harmonic and
onset components. The harmonic patterns are learned us-
ing a excitation-filter instrument model [10]. In the same
way, the training audio of the noise is the concatenation of
a wide set of public samples recorded from the most com-
mon types of vinyl noise [12–17]. Part of this material is
not used in training to preserve the testing subset for vinyl
noises. Some experiments have been developed in order
to show the benefits of the use of instrument models and
the trained spectral patterns of vinyl noises. Results are
compared with some commercial approaches.

In this paper some proposals are shown. We propose the
use of spectral patterns for the harmonic component of the
instrument based on an excitation-filter model. The tran-
sient component of the instrument is taken into account
training a set of spectral patterns from note onsets. Also,
the vinyl noise spectral patterns are trained from some pub-
lic samples. A model for the degraded audio composed by
harmonic and transient components for the instrument and
vinyl noise is developed. Separation is performed using
an NMF algorithm to estimate the time-varying activations
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for spectral patterns from vinyl degraded signals. The in-
strument contribution of the mixed signal is obtained as a
result of the separation process.

The paper is structured as follows: Section 2 reviews the
state-of-the-art theory that is used in this paper; Section 3
shows the proposal of this work. The comparison of the
obtained results with those obtained by other state-of-the-
art methods are described at section 4 ; finally, we draw
some conclusions and discuss future work in Section 5.

2. BACKGROUND

2.1 Augmented NMF parameter estimation

Standard Non-negative Matrix Factorization (NMF), de-
veloped by Lee and Seung [6], is a technique for multivari-
ate data analysis where an input magnitude spectrogram,
represented by matrixX, is decomposed as a product of
two non-negative matricesB andG,

X ≈ BG (1)

whereB is the frequency basis andG represents the gains
or activations of the active sources along the time, being
X̂ = BG the approximation of the input matrix. The
magnitude spectrogramX, composed ofT frames andF
frequency bins, of a music signal consists of a set of time-
frequency unitsXf,t or x(f, t).

Constraining parameters to be non-negative has been ef-
ficient in learning the spectrogram factorization models. In
fact, this constraint has been widely used in SS [8,18].

In the case of magnitude spectra, the parameters are re-
stricted to be non-negative, then, a common way to com-
pute the factorization is to minimize the reconstruction er-
ror between the observed spectrogramx(f, t) and the mod-
elled onex̂(f, t). This reconstruction error can be repre-
sented by a cost function.

The most used cost functions are the Euclidean (EUC)
distance, the generalised Kullback-Leibner (KL) and the
Itakura-Saito (IS) divergences. In this work, the KL cost
function is used as is done in several systems [7,9,10].

An iterative algorithm based on multiplicative update rules
is proposed in [6] to obtain the model parameters that mini-
mize the cost function. Under these rules,DKL(x(f, t)|x̂(f, t))
is non-increasing at each iteration and it is ensured the non-
negativity of the bases and the gains. These multiplicative
update rules are obtained by applying diagonal rescaling
to the step size of the gradient descent algorithm, more de-
tails can be found at [6]. The multiplicative update rule for
each scalar parameterθl is given by expressing the partial
derivatives of the∇θl

DKL as the quotient of two positive
terms∇−

θl
DKL and∇+

θl
DKL:

θl ← θl

∇−
θl

DKL(x(f, t)|x̂(f, t))

∇+

θl
DKL(x(f, t)|x̂(f, t))

(2)

The main advantage of the multiplicative update rule in
eq. (2) is that non-negativity of the bases and the gains
is ensured, resulting in an augmented non-negative matrix
factorization (NMF) algorithm.

2.2 Multi-Excitation factorization Model (MEI)

The Multi-Excitation model proposed by Carabias et al.
[10] is an extension of the source-filter model presented
in [18]. This model achieves a good generalisation of the
harmonic basis functions for a wide range of harmonic in-
struments [10], making its use a good alternative to ob-
tain harmonic basis functions from a database of isolated
sounds of the target instrument.

The source-filter model has origins in speech processing
and sound synthesis. In speech processing, the excitation
models the sound produced by the vocals cords, whereas
the filter models the resonating effect of the vocal tract.
In sound synthesis, excitation-filter (or source-filter) syn-
thesis colors a spectrally rich excitation signal to get the
desired sound.

The model proposed in [10] extend the source-filter model
by defining the excitation as a weighted sum of instrument-
dependent excitation patterns. Under this model, the spec-
trum of a note is generated by the harmonic excitation of
the note multiplied by the filter transfer function of the in-
strument. Thus, the excitationen(f) is different for each
pitch and has harmonic nature. The pitch excitation is ob-
tained as the weighted sum of excitation basis functions
while the weights vary as the function of pitch.

Following this model, the pitch excitation can be obtained
as

en(f) =
M
∑

m=1

I
∑

i=1

wi,nvi,mG (f −mf0(n)) (3)

wherevi,m is thei-th excitation basis vector (composed
of M partials), andwi,n is the weight of thei-th excita-
tion basis vector for pitchn. The basis functionsbn(f) (or
Bf ,n) are computed following the source-filter paradigm
as

bn(f) = h(f)en(f) (4)

whereh(f) is the instrument-dependent instrument. Fi-
nally, the source-filter model with Multi-Excitation per In-
strument (MEI) for magnitude spectra of the whole signal
is the sum of instruments and pitches obtained as

x̂(f, t) =
∑

n

gn(t)h(f)

M
∑

m=1

I
∑

i=1

wi,nvi,mG (f −mf0(n))

(5)
wheren = 1, ..., N (N being the number of pitches),M

represents the number of harmonics andI the number of
considered excitations withI << N . Using a small num-
ber of excitation basesI reduces significantly the param-
eters of the model, which benefits the learning of parame-
ters. The free parameter of the model are: the time gains
gn(t) (or Gn,t), the instrument filterh(f), the basis exci-
tation vectorsvi,m and the excitation weigthswi,n.

The framework presented in [6] can be used for MEI. For
the sake of compact representation we present here the pa-
rameter update for the MEI model of (5). Multiplicative
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updates which minimize the divergence for each parame-
ter of the MEI model are computed by substituting each
parameter in eq. (2). More details can be obtained in [10].

3. DESCRIPTION

3.1 Signal factorization

Our proposal attempts to overcome the denoising problem
learning in advance the harmonic and transient basis func-
tions from the musical instrument and the spectral patterns
from the vinyl noise. For that purpose, an objective func-
tion is defined to factorize a mixture spectrogramXf,t into
three separated spectrograms,XH (harmonic part of the
musical instrument),XT (transient part of the musical in-
strument) andXN (vinyl noise part). We assume that each
of them represents the specific spectral features demon-
strated by the instrument and noise. In this manner, our
factorization model is defined (see eq.6),

X̂ = X̂H+X̂T +X̂N = BHGH+BTGT +BNGN (6)

where all matrices are non-negative matrices.
In order to estimate basis functions or activation gains

matrices, the iterative algorithm proposed in [6] can be ap-
plied. Using this algorithm, the update rule for the basis
functions can be expressed as

B = B⊙

[

(X̂)−1 ⊙X
]

H
′

1H′
(7)

where′ represents the transpose matrix operator,⊙ the
element-wise multiplication of matrices,1 is a all one el-
ements matrix withF rows andT columns (or1f,t), X

is the original spectrogram,̂X is the modeled spectrogram
andX̂

−1 is the inverse matrix regarding the modeled spec-
trogram. Eq. (7) can be used for each component of the
proposed signal factorisation (BH , BT , BN ).

The update rule for the activations gains can be written as

G = G⊙
B

′
[

(X̂)−1 ⊙X
]

B′1
(8)

Both expressions are valid for each of the components
represented in eq. (6).

In our approach, all basis functions (BH , BT , BN ) are
trained in advance from databases of guitar sounds or vinyl
recorded noise.

3.2 Basis functions training

3.2.1 Instrument modeling for harmonic components

The model revised at section2.2 requires to estimate the
basis functionsbn(f) for each noten defined in eq. (6)
asthe harmonic basis functionsBH . The basisbn(f) are
learned in advance by using the RWC database [11] as
a training database of solo instruments playing isolated
notes. Let the ground-truth transcription of the training
data be represented byrn(t) as a binary time/frequency
matrix. The frequency dimension represents the MIDI scale
and time dimensiont represents frames.rn(t) is known in

advance for the training database, then it is used to ini-
tialize the gains for the training stage such that only the
gain value associated with the active pitchn at framet and
played by instrument is set to unity, the rest of the gains are
set to zero. Gains initialised to zero remain at zero because
of the multiplicative update rules, and therefore the frame
is represented only with the correct pitch.

The training procedure is summarised in Algorithm1.

Algorithm 1 Training Harmonic Spectral Patterns
1 Computex(t, f) from a solo performance of the target in-

strument in the training database.
2 Initialise gainsgn(t) with the ground truth transcription

rn(t) and the rest of parametersh(f), vi,m andwi,n with
random positive values.

3 Update source-filterh(f).
4 Update excitation basis vectorsvi,m.
5 Update the weights of the excitation basis vectorswi,n.
6 Update gainsgn(t).
7 Repeat steps 3-6 until the algorithm converges (or the maxi-

mum number of iterations is reached).
8 Compute basis functionsbn(f) for the musical instrument

from eq. (3) and (4) .

Basis functionbn(f) are computed by this training al-
gorithm resulting in a basis function for the complete pitch
rangen played by the instrument. The instrument-dependent
basis functionsbn(f) (or BH ) are known and held fixed
during the factorization process, and therefore, the factor-
ization of new signals of the same instrument can be re-
duced to estimate the gainsgn(t).

3.2.2 Learning transient basis functions

The transient spectral patterns from a musical instrument
does not follow a harmonic behaviour. Here, our approach
is to learn a representative set of transient basis functions
from the note onsets of a training database. Again, the ba-
sisBT are learned in advance by using the RWC database
[11]. In order to initialize the gains for the training stage,
lets definero(t) as a binary time/frequency vector that rep-
resents the frames in which a note onset is active. To obtain
this vector the database of solo instruments playing iso-
lated notes is annotated supposing that the transient com-
ponents are activeTO frames from the beginning of each
note. In our experiments, a value ofTO = 5 frames is
used.

The training procedure is summarised in Algorithm2, the
number of transient basis functions is defined asO.

Algorithm 2 Training Transient Spectral Patterns
1 Computex(t, f) from a solo performance of the target in-

strument in the training database.
2 Initialise all gainsGT with random positive values for those

frames in which a note onset is active usingro(t).
3 Initialise transient basis functionsBT with random positive

values.
4 Update basis functionsBT .
5 Update gainsGT .
6 Repeat steps 4-5 until the algorithm converges (or the maxi-

mum number of iterations is reached).

As in the harmonic case, transient basis functionsBT are
known and held fixed during the factorization process.
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3.2.3 Training basis functions from recorded vinyl noise

The vinyl noise used to train vinyl noise basis functions
BN was obtained from the concatenation of a wide set
of public samples recorded from the most common types
of vinyl noise [16] [17] [18] [19] [20] [21]. From this
concatenation noise signal, two third of the total one was
considered for training and the remainder for evaluation.
Two groups of different degradations from vinyl noise are
trained:

• clicks+crackles+scratches+hiss.

• clicks+crackles+scratches+hiss+hum.

The training procedure is summarised in Algorithm3, the
number of transient basis functions is defined asR.

Algorithm 3 Training vinyl Noise Spectral Patterns
1 ComputeX from the training subset of the noise database.
2 Initialise all gainsGN with random positive values.
3 Initialise noise basis functionsBN with random positive val-

ues.
4 Update basis functionsBN .
5 Update gainsGN .
6 Repeat steps 4-5 until the algorithm converges (or the maxi-

mum number of iterations is reached).

Again, the two groups of noise basis functionsBN are
known and held fixed during the factorization process.

3.3 Denoising application

In order to synthesize the denoised instrument signal, the
magnitude instrumental spectrogram̂XH + X̂T are esti-
mated as the product of the factorizationBHGH+BTGT .
To assure a conservative reconstruction process, an instru-
mental maskMJ has been generated by means of Wiener
filtering (the mask values are defined from0 to 1).

Firstly, the magnitude spectrograms for the harmonicX̂H

and transient̂XT components of the instrument are esti-
mated using the factorization scheme proposed in eq. (6).
In algorithmic approximation, the estimation of the instru-
mental spectrogram is detailed in Algorithm4.

Algorithm 4 Estimation of instrumental components
1 Compute the magnitude spectrogramX of the degraded sig-

nal.
2 InitialiseGH , GT andGN with random nonnegative values.

3 InitialiseBH , BT andBN from the training algorithms.
4 UpdateGH .
5 UpdateGT .
6 UpdateGN .
7 Repeat steps 4-6 until the algorithm converges (or the maxi-

mum number of iterations is reached).
8 Compute the estimated instrumental spectrogram asX̂H +

X̂T .

The instrumental mask is therefore defined as

MJ =
X̂H + X̂T

X̂H + X̂T + X̂N

(9)

The phase information related to the instrumental signal
is computed by multiplying the maskMJ with the com-
plex spectrogram related to the degraded signalxJ (t) +
xN (t). The inverse transform is then applied to obtain an
estimation of the instrumental signalx̂J (t).

4. EVALUATION

4.1 Material

Two test databases D1 and D2 of vinyl degraded guitar
sounds were used to evaluate the performance of the pro-
posal. Each database is composed of five degraded files.
Each file [19–21] (see Table1), 30-seconds duration, is
created from a real-world Spanish guitar excerpt (with CD
quality) degraded by typical noise in vinyl recordings. In
the first database D1, degradations include clicks, crack-
les, scratches and hiss noise. In the second database D2,
degradations include clicks, crackles, scratches, hiss and
hum noise.

Identifier Name
F1 Danza de los vecinos
F2 Iberia
F3 Albaicin
F4 Fuente y Caydal
F5 Rumba improvisada

Table 1. Real-world CD quality Spanish guitar excerpts
used in experiments [19–21].

The degradation of the audio guitar excerpts was made
using the concatenation signal of a wide set of public sam-
ples recorded from the most common types of vinyl noise
[16] [17] [18] [19] [20] [21]. From this concatenation of
vinyl noise, two thirds of the total was considered for train-
ing and the remainder for evaluation. So, different noise
material was used for training and testing in order to vali-
date the results. Specifically, the training material has du-
rations of 228 seconds for clicks, crackles, scratches and
hiss noise and 89 seconds for clicks, crackles, scratches,
hiss and hum noise.

To evaluate different acoustic scenarios, the mixing pro-
cess between guitar excerpts and vinyl noise was produced
at 0, 5 and 10dB of signal-to-noise ratio (see Table2).

Name Database SNR (dB)
D1 0 D1 0
D1 5 D1 5
D1 10 D1 10
D2 0 D2 0
D2 5 D2 5
D2 10 D2 10

Table 2. Acoustic scenarios in the evaluation process.

4.2 Commercial audio restoration products

Three current and well-known commercial audio restora-
tion products have been used to evaluate the performance
of our proposal:

• Adobe Audition CS5.5 v4.0.
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• Izotope RX 2 (Declicker, Decrackle, Denoiser and
Hum removal).

• Waves V8 (X-Click, X-Crackle, X-Hum and Z-Noise).

Both Waves and Izotope plugins were used in Wavelab
6 audio editing and mastering suite from Steinberg [22].
Each audio restoration product has been manually tuned to
provide the best results according to noise reduction and
quality of the target audio.

4.3 Experimental setup

The proposed method has been evaluated by using the fol-
lowing parameters: frame size of64ms, hop size of32ms,
frequency sampling rate of44100Hz , 100 iterations for
NMF algorithm, number of transient basis functionsO =
10 and number of vinyl noise basis functionsR = {10, 100}
(see the following section). Sound source separation ap-
plications based on NMF algorithms usually adopt loga-
rithmic frequency discretization. For example, uniformly
spaced subbands on the Equivalent Rectangular Bandwidth
(ERB) scale are assumed in [23]. In our method, we use
the resolution of a quarter semitone by directly integrating
the bins of the STFT similary to [10].

4.4 Results

For an objective evaluation of the performance of the sep-
aration method we use the metrics implemented in [23].
These metrics are commonly accepted by the specialised
scientific community, and therefore facilitate a fair evalua-
tion of the method. The metrics for each separated signal
are theSource to Distortion Ratio(SDR), theSource to In-
terference Ratio(SIR), and theSource to Artifacts Ratio
(SAR).

In an NMF framework, the unknown parameters are ini-
tialized randomly. Therefore, the spectra resulting from
separation are different at each execution, giving different
metric results per execution. Thus, the proposed method
has been performed50 times per audio file to demonstrate
the statistical significance of the metrics. The95% con-
fidence interval for the metrics was always smaller than
1.1dB in the proposed method.

The SDR results for the denoised guitar signals when us-
ing the D1 and D2 databases at different SNRs are given in
Table3. The proposed methods are: P10 proposed method
with R = 10 noise basis functions, UP10 unrealistic pro-
posed method withR = 10 noise basis functions (the noise
is directly trained from the same noise added to the de-
graded signal which is an unrealistic situation), P100 pro-
posed method withR = 100 noise basis functions and
UP100 unrealistic proposed method withR = 100 noise
basis functions. The unrealistic approaches are used for es-
timating the loss produced in separation performance when
training the vinyl noise in an implementation different from
the real noise. The SDR value of the original input signal
is also presented. As can be seen, Waves software obtains
the best separation measures from the commercial restora-
tion products. In our approach, the use ofR = 10 bases
is better than usingR = 100, so we can conclude that the

spectral richness of the vinyl noise can be captured with
a reduced number of basis functions. Also, the proposed
methods achieve better performance for the D2 database
mainly because the hum noise is the most stable in fre-
quency. Finally, we can state that our approach is compet-
itive in relation to the commercial audio restoration soft-
ware.

Name Input Audition Izotope Waves P10 UP10 P100 UP100
D1 0 3.2 7.5 5.1 8.6 9.0 9.6 8.4 9.2
D1 5 8.3 11.8 11.2 11.7 12.4 12.9 11.4 12.2
D1 10 13.1 16.2 13.3 16.5 14.6 15.1 13.1 14.1
D2 0 4.7 -2.2 3.0 6.5 11.2 11.8 9.9 10.5
D2 5 9.7 -2.0 5.1 7.7 13.9 14.4 12.4 13.0
D2 10 14.6 -1.9 5.6 8.5 15.8 16.3 13.9 14.6

Table 3. Denoised guitar SDR results indB for D1 and D2
databases.

The SIR results for the denoised guitar signals when us-
ing the D1 and D2 databases at different SNRs are given
in Table4. These results inform about the amount of noise
present in the cleaned guitar. In all cases, the denoised
signals with the proposed methods have less interferences
from the vinyl noise.

Name Input Audition Izotope Waves P10 UP10 P100 UP100
D1 0 3.3 8.7 8.7 11.7 11.5 12.3 11.1 12.3
D1 5 8.5 13.3 15.2 14.2 16.3 17.0 16.1 17.0
D1 10 13.3 18.3 20.6 20.0 20.6 21.1 20.4 21.2
D2 0 9.7 9.7 12.2 20.8 21.4 21.5 20.5 21.2
D2 5 14.7 14.3 17.6 21.8 25.4 25.4 24.8 25.5
D2 10 19.7 19.0 22.6 28.1 29.2 29.4 28.8 29.5

Table 4. Denoised guitar SIR results indB for D1 and D2
databases.

The SIR results for the estimated vinyl noise component
when using the D1 and D2 databases at different SNRs
are given in Table5. Now, the amount of original guitar
eliminated from the denoised guitar is shown. On the con-
trary, in this case Audition and Waves approaches obtain
much better results than the proposed approach for the D1
database.

Name Audition Izotope Waves P10 UP10 P100 UP100
D1 0 18.1 1.7 17.2 10.6 11.4 8.3 10.1
D1 5 19.8 6.7 23.4 5.5 6.4 3.1 4.9
D1 10 16.8 1.8 18.6 0.6 1.7 -1.9 -0.1
D1 0 -11.6 -8.5 -1.8 3.2 3.7 0.6 2.4
D2 5 -16.0 -10.7 -7.0 -1.7 -1.1 -4.1 -2.4
D2 10 -20.2 -14.8 -11.9 -6.1 -5.5 -8.4 -6.7

Table 5. Estimated vinyl noise SIR results indB for D1 and D2
databases.

In order to give the reader the opportunity of listening
the material a webpage for the results has been created.
On this page, some audio examples (mixed, separated gui-
tar and separated noise) from database D1 and D2 can
be heard by the reader. The web page can be found at
http://dl.dropbox.com/u/22448214/SMC%202013/index.html

5. CONCLUSIONS AND FUTURE WORK

In this work, a denoising technique based on an excitation-
filter model for harmonic instruments is proposed. The
instrumental part of the degraded signal is divided into
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harmonic and transient components and trained from the
RWC database. The vinyl noise is trained from public
recordings. Basis functions are fixed from the training al-
gorithms and in the separation process the activation gains
for each component are estimated following an NMF frame-
work. The results show that the proposed approach are
competitive in comparison with some commercial audio
restoration softwares.

The main problem of the proposed approach is the simi-
larity of the transient basis functions for the instrument and
the spectral patterns of the localized degradations such as
click, crackle and scratch noise. In our opinion, this is-
sue causes the presence of instrument interferences in the
estimated noise and, consequently, the loss of instrument
signal in the denoised instrumental audio. This problem
also occurs when training the vinyl noise from the original
noise (UP10 and UP100 approaches).

For future work, an interesting idea to solve the inter-
ference problems can be the definition of sparseness and
smoothness constraints [18] in the basis functions and ac-
tivations gains of the signal factorization.
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