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ABSTRACT into localized or global. A localized degradation, which
_ o _ ~ affects only certain samples of the audio, can be described
This work proposes a denoising algorithm for musical in- a5 impulsive noise such as click, crackle or scratch. It is
struments based on the use of an excitation-filter instru- usua”y caused by dust, dirt, scratches or breakages on the
ment model. Firstly, frequency patterns for the musical syrface of the recording medium. A global degradation,
instrument are learned. These patterns are trained in adwhich affects all samples of the audio, can be described
vance from the RWC database and Classified intO harmoniCaS background noise. The main g|0ba| degradations are
and transient components. The harmonic patterns of thexknown as hum and hiss noise. While hum noise models a
target instrument are modelled with an excitation-filter ap- 50_0H 2 low frequency harmonic signal (caused by elec-
proach. Frequency patterns from the beginning of different trical noise), hiss noise models broadband noise (caused by

notes (onsets) are also learned. Secondly, frequency patambient noise from the recording environment) [5].
terns from noise are trained. Two different types of global

degradations from vinyl audio (hum and hiss), apart from
localized degradations from crackle noise, are used in this
work. Two different types of global degradations from

Recent techniques, based on Non-negative Matrix Fac-
torization (NMF) [6], has been successfully applied to a
wide range of music analysis tasks [7—10]. Specifically,

vinyl audio (hum and hiss), apart from localized degra- NMF is able to decompose a magnitude spectrogram as a

dations from click, crackle and scratch noise, are used in product of two nonnegative matriceX, ~ B - G. Each

this work. Two databases (click+crackle+scratch+hiss and]?Olumn of the basis (rjnatrlB represer?ts a sp;eﬁtral pattern
click+crackle+scratch+hiss+hum) are collected in order to rom an active soun source. _Eac fow o the gains ma-
obtain different subsets for training and testing. Finally, an trix G represgnts the tlme-var.ylng ac_tlvatlons. of a spectral
NMF approach is applied to separate instrument signal angPattern factorlzed_ln(;he basis matm;. In this paEer, we
noise from noisy performances. The proposed approach igP'OPOSE a supervise NMF approach to r_estore the target
compared with some commercial algorithms when denois- audm by means Of_ the rgmoval or attengatlon of any degra-
ing a vinyl degraded guitar database. The separation meaplanon in vinyl audio. This approach trains a set of spectral

sures indicate that the proposed approach obtains competpattem? that r_epr_esent the targe_t audio and Fh_e most com-
itive results. mon noise active in these recordings. The training audio of

the target source is composed by samples of isolated notes
from a spanish guitar instrument [11]. The spectral pat-
1. INTRODUCTION terns from the guitar is trained both from the harmonic and
The improvement of the quality for the audio material de- Onset components. The harmonic patterns are learned us-
graded by non-stationary noise in old recordings has beening a excitation-filter instrument model [10]. In the same
a widely investigated problem over the last years [1-4]. Way, the training audio of the noise is the concatenation of
Nowadays, audio restoration is an attractive research fielda wide set of public samples recorded from the most com-
from a commercial viewpoint (e.g. albums or movies audio Mon types of vinyl noise [12-17]. Part of this material is
remastering) but it is still an unsolved problem because thenot used in training to preserve the testing subset for vinyl
quality of restored audio is quite dependent of algorithm Nnoises. Some experiments have been developed in order
parameters. Hence, it is necessary the judgment of subi0 show the benefits of the use of instrument models and

jects trained in audio to evaluate the quality of the audio the trained spectral patterns of vinyl noises. Results are
processed. compared with some commercial approaches.

Audio restoration is the process of removing any degra- |n this paper some proposals are shown. We propose the
dation to the audio material, which occurs as a result of the ;e of spectral patterns for the harmonic component of the
recording process, in order to preserve the quality of the jhstrument based on an excitation-filter model. The tran-
original one. In general, any degradation can be classifiedsjent component of the instrument is taken into account

training a set of spectral patterns from note onsets. Also,
Copyright: ©2013 J. Parras-Moral, F. J. Cafiadas-Quesada, P. Vera-Candeas, the vinyl noise spectral patterns are trained from some pub-
N. Ruiz-Reyes et al. This is an open-access article distributed under the termsliC samples. A model for the degraded audio composed by

of the Creative Commons Attribution 3.0 Unported Licensehich permits unre- harmonic and transient components for the instrument and
stricted use, distribution, and reproduction in any medium, provided the original  Vinyl noise is developed. Separation is performed using
author and source are credited. an NMF algorithm to estimate the time-varying activations
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for spectral patterns from vinyl degraded signals. The in- 2.2 Multi-Excitation factorization Model (MEI)
strument contribution of the mixed signal is obtained as a
result of the separation process.

The paper is structured as follows: Section 2 reviews the
state-of-the-art theory that is used in this paper; Section 3!
shows the proposal of this work. The comparison of the
obtained results with those obtained by other state-of-the-
art methods are described at section 4 ; finally, we draw
some conclusions and discuss future work in Section 5.

The Multi-Excitation model proposed by Carabias et al.
[10] is an extension of the source-filter model presented

n [18]. This model achieves a good generalisation of the
harmonic basis functions for a wide range of harmonic in-
struments [10], making its use a good alternative to ob-
tain harmonic basis functions from a database of isolated
sounds of the target instrument.

The source-filter model has origins in speech processing
and sound synthesis. In speech processing, the excitation
2. BACKGROUND models the sound produced by the vocals cords, whereas
the filter models the resonating effect of the vocal tract.
In sound synthesis, excitation-filter (or source-filter) syn-
Standard Non-negative Matrix Factorization (NMF), de- thesis colors a spectrally rich excitation signal to get the
veloped by Lee and Seung [6], is a technique for multivari- desired sound.
ate data analysis where an input magnitude spectrogram, The model proposed in [10] extend the source-filter model
represented by matriX, is decomposed as a product of by defining the excitation as a weighted sum of instrument-

2.1 Augmented NMF parameter estimation

two non-negative matricd3 andG, dependent excitation patterns. Under this model, the spec-
trum of a note is generated by the harmonic excitation of
X ~ BG (1) the note multiplied by the filter transfer function of the in-

strument. Thus, the excitatian,(f) is different for each
whereB is the frequency basis a@d represents the gains  pitch and has harmonic nature. The pitch excitation is ob-
or activations of the active sources along the time, beingtained as the weighted sum of excitation basis functions
X = BG the approximation of the input matrix. The while the weights vary as the function of pitch.
magnitude spectrograiX, composed of" frames and’ Following this model, the pitch excitation can be obtained
frequency bins, of a music signal consists of a set of time- g5
frequency unitsX ¢, or z(f, t).

Constraining parameters to be non-negative has been ef-
ficientin learning the spectrogram factorization models. In Z Wi nVimG (f —mfo(n))  (3)
fact, this constraint has been widely used in SS [8, 18]. m=1i=1

In the case of magnitude spectra, the parameters are re-
stricted to be non-negative, then, a common way to com-
pute the factorization is to minimize the reconstruction er-
ror between the observed spectrogea(yi, ¢) and the mod-
elled onez(f,¢). This reconstruction error can be repre-
sented by a cost function.

The most used cost functions are the Euclidean (EUC)
distance, the generalised Kullback-Leibner (KL) and the bu(f) = h(f)en(f) (4)
Itakura-Saito (IS) divergences. In this work, the KL cost
function is used as is done in several systems [7,9, 10].

An iterative algorithm based on multiplicative update rules
is proposed in [6] to obtain the model parameters that mini- .
mize the cost function. Under these rulés ;, (z(f, t)|2(f,t))
is non-increasing at each iteration and it is ensured the non-
negativity of the bases and the gains. These multiplicative M T
update rules are obtained by applying diagonal rescaling;(f, t) Zgn h(f) Z Zwmvz mG (f —mfo(n))
to the step size of the gradient descent algorithm, more de- me1 i—1
tails can be found at [6]. The multiplicative update rule for (5)
each scalar parametéris given by expressing the partial wheren = 1,..., N (IV being the number of pitches)/
derivatives of théVy, D, as the quotient of two positive  represents the number of harmonics dnithe number of

wherev, ., is thei-th excitation basis vector (composed

of M partials), andw; ,, is the weight of the-th excita-

tion basis vector for pitch. The basis functions, (f) (or

B¢ ) are computed following the source-filter paradigm
s

whereh(f) is the instrument-dependent instrument. Fi-
nally, the source-filter model with Multi-Excitation per In-
strument (MEI) for magnitude spectra of the whole signal
is the sum of instruments and pitches obtained as

termsV, Dk, andv(jl Dgr: considered excitations with << N. Using a small num-
ber of excitation bases reduces significantly the param-
Vo, D r(x(f,1)]2(f,1)) eters of the model, which benefits the learning of parame-
O — 61 Vi D (x(f,1)|2(f.1)) (2) ters. The free parameter of the model are: the time gains

gn(t) (0r Gn ), the instrument filtefu(f), the basis exci-
The main advantage of the multiplicative update rule in tation vectors); ,,, and the excitation weigths; ,,.
eq. @) is that non-negativity of the bases and the gains The framework presented in [6] can be used for MEI. For
is ensured, resulting in an augmented non-negative matrixthe sake of compact representation we present here the pa-
factorization (NMF) algorithm. rameter update for the MEI model 08)( Multiplicative
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updates which minimize the divergence for each parame-advance for the training database, then it is used to ini-

ter of the MEI model are computed by substituting each tialize the gains for the training stage such that only the

parameter in eq.2). More details can be obtained in [10]. gain value associated with the active pitcht framet and
played by instrument s set to unity, the rest of the gains are

3. DESCRIPTION set to zero. Gains initialised to zero remain at zero because
_ o of the multiplicative update rules, and therefore the frame
3.1 Signal factorization is represented only with the correct pitch.

Our proposal attempts to overcome the denoising problem The training procedure is summarised in Algorittim

learning in advance the harmonic and transient basis func- - — -
. oo Algorithm 1 Training Harmonic Spectral Patterns
tions from the musical instrument and the spectral patterns ,

1 Computez(t, f) from a solo performance of the target in-

from the vinyl noise. For that purpose, an objective func- strument in the training database.

tion is defined to factorize a mixture spectrograip; into 2 Initialise gainsg,(t) with the ground truth transcription
three separated spectrogramgy (harmonic part of the r(t) and the rest of parameteks f), vi », andw;,, with
musical instrument)X (transient part of the musical in- random positive values.

Update source-filtek(f).

Update excitation basis vectors., .

Update the weights of the excitation basis vectors,.

Update gaing. (t).

Repeat steps 3-6 until the algorithm converges (or the maxi-
mum number of iterations is reached).

8 Compute basis functions, (f) for the musical instrument

X = Xy+Xr+Xy = ByGp+BrGr+ByGy (6) from eq. (3 and @) .

strument) andX y (vinyl noise part). We assume that each
of them represents the specific spectral features demon-
strated by the instrument and noise. In this manner, our
factorization model is defined (see &),

~No o~ w

where all matrices are non-negative matrices. Basis functionb,, (f) are computed by this training al-

In order to estimate basis functions or activation gains gorithm resulting in a basis function for the complete pitch
matrices, the iterative algorithm proposed in [6] can be ap- rangen played by the instrument. The instrument-dependent
plied. Using this algorithm, the update rule for the basis basis functions,,(f) (or Bg) are known and held fixed

functions can be expressed as during the factorization process, and therefore, the factor-
- ization of new signals of the same instrument can be re-
B_Bo& (X))o X]H (7  duced to estimate the gaips(t).
1H' . . . .
) 3.2.2 Learning transient basis functions
where’ represents the transpose matrix operatothe . o
element-wise multiplication of matrices,is a all one el-  The transient spectral patterns from a musical instrument
ements matrix with” rows andZ’ columns (orl;,), X does not follow a harmonic behaviour. Here, our approach

is to learn a representative set of transient basis functions

andX ! is the inverse matrix regarding the modeled spec- ToM the note onsets of a training database. Again, the ba-
trogram. Eq. ) can be used for each component of the sisBr are learned in advance by using the RWC database
proposed signal factorisatiol(;, Bz, Bx). [11]. In order to initialize the gains for the training stage,

The update rule for the activations gains can be written as'€tS definero(?) as a binary time/frequency vector that rep-
resents the frames in which a note onset is active. To obtain

B/[(X)fl ® X} this vector the database of solo instruments playing iso-
- B1 ©) lated notes is annotated supposing that the transient com-

) ) ponents are activéy frames from the beginning of each
Both expressions are valid for each of the components, o |n our experiments, a value 85 — 5 frames is
represented in eq6).

used.
In our approach, all basis functionBf;, Br, By) are

X i , ) The training procedure is summarised in AlgoritBnthe
trained in advance from databases of guitar sounds or vinyl, \her of transient basis functions is definedas
recorded noise.

is the original spectrogranX. is the modeled spectrogram

G=Go

Algorithm 2 Training Transient Spectral Patterns

3.2 Basis functions training 1 Computez(t, f) from a solo performance of the target in-
strument in the training database.
Initialise all gainsGr with random positive values for those

The model revised at sectich2 requires to estimate the frames in which a note onset is active using). y
3 Initialise transient basis functio8+ with random positive

basis functionsh,,(f) for each noten defined in eq. ) values.

asthe harmonic basis functioBy. The basid, (f) are 4 Update basis functiorB .

learned in advance by using the RWC database [11] as 5 Update gain&r.

a training database of solo instruments playing isolated 6 Repeat steps 4-5 until the algorithm converges (or the maxi-
notes. Let the ground-truth transcription of the training __ ™um number of iterations is reached).

data be represented by, (¢) as a binary time/frequency

matrix. The frequency dimension represents the MIDI scale As in the harmonic case, transient basis functiBasare
and time dimensionrepresents frames,, (¢) is known in known and held fixed during the factorization process.

3.2.1 Instrument modeling for harmonic components 5
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3.2.3 Training basis functions from recorded vinyl noise ~ The phase information related to the instrumental signal
The vinvl noi d 1o train vinvl noise basis functi is computed by multiplying the maskI ; with the com-
e vinyl noise used to train vinyl noise basis functions plex spectrogram related to the degraded signdt) +

oBfA;) LY;/E(S: 2:;?;)?:3 rfégg; dtgg ffggcﬁggnn?g:[]c%fmamv:r??y;i xn(t). The inverse transform is then applied to obtain an
. . . timati f the inst tal signaj(t).
of vinyl noise [16] [17] [18] [19] [20] [21]. From this estimation of the instrumental signaj (¢)

concatenation noise signal, two third of the total one was
considered for training and the remainder for evaluation. 4. EVALUATION
Two groups of different degradations from vinyl noise are 4 1 Mmaterial

trained:
Two test databases D1 and D2 of vinyl degraded guitar

e clicks+crackles+scratches+hiss. sounds were used to evaluate the performance of the pro-
posal. Each database is composed of five degraded files.
e clicks+crackles+scratches+hiss+hum. Each file [19-21] (see Tablg), 30-seconds duration, is
created from a real-world Spanish guitar excerpt (with CD
quality) degraded by typical noise in vinyl recordings. In
the first database D1, degradations include clicks, crack-
les, scratches and hiss noise. In the second database D2,
degradations include clicks, crackles, scratches, hiss and

The training procedure is summarised in AlgoritBnthe
number of transient basis functions is definedras

Algorithm 3 Training vinyl Noise Spectral Patterns
1 ComputeX from the training subset of the noise database.

2 Initialise all gainsG y with random positive values. hum noise.
3 Initialise noise basis functiorB8 ; with random positive val-

ues Idegtllfler s l(\jlarlne

; . . anza de I0Ss vecinog

4 Update basis functiorB y. F2 Iberia
5 Update gainGG . F3 Albaicin

R 4-5 until the algorithm conver r the maxi- F4 Fuente y Caydal
6 Repeat steps 4-5 until the algorithm converges (or the ma Fe Rumba Improvisada

mum number of iterations is reached).

Table 1. Real-world CD quality Spanish guitar excerpts

Again, the two groups of noise basis functidBs, are i X
used in experiments [19-21].

known and held fixed during the factorization process.

The degradation of the audio guitar excerpts was made
using the concatenation signal of a wide set of public sam-
In order to synthesize the denoised instrument signal, theples recorded from the most common types of vinyl noise
magnitude instrumental spectrograXy,; + X are esti-  [16] [17] [18] [19] [20] [21]. From this concatenation of
mated as the product of the factorizatBpy Gy +Br G . vinyl noise, two thirds of the total was considered for train-
To assure a conservative reconstruction process, an instruing and the remainder for evaluation. So, different noise
mental maskVI; has been generated by means of Wiener material was used for training and testing in order to vali-
filtering (the mask values are defined frono 1). date the results. Specifically, the training material has du-

Firstly, the magnitude spectrograms for the harmobig rations of 228 seconds for clicks, crackles, scratches and
and transieniX components of the instrument are esti- hiss noise and 89 seconds for clicks, crackles, scratches,
mated using the factorization scheme proposed in €q. (6 hiss and hum noise.

In algorithmic approximation, the estimation of the instru-  To evaluate different acoustic scenarios, the mixing pro-
mental spectrogram is detailed in Algorithin cess between guitar excerpts and vinyl noise was produced
at 0, 5 and 1@ B of signal-to-noise ratio (see Tali¥.

3.3 Denoising application

Algorithm 4 Edimation of instrumental components

1 Compute the magnitude spectrograéof the degraded sig- ’\Salng)e Datg‘fase SNRO(dB)
nal. . , D15 D1 5
2 Initialise G, Gr andG y with random nonnegative values. D1.10 D1 10
D2.0 D2 0
itiali ini i D2.5 D2 5
3 Initialise By, Br andB y from the training algorithms. D210 D5 o
4 UpdateG .
5 UpdateGr.
6 UpdateGy. . L .
7 Repeat steps 4-6 until the algorithm converges (or the maxi- Table 2. Acoustic scenarios in the evaluation process.

mum number of iterations is reached).
8 Compute the estimated instrumental spectrogranX as+
Xr. 4.2 Commercial audio restoration products

. . . Three current and well-known commercial audio restora-
The instrumental mask is therefore defined as tion products have been used to evaluate the performance
. . of our proposal:
M, = _ Xa+Xp 9)
J= X+ X7+ Xy e Adobe Audition CS5.5 v4.0.
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e Izotope RX 2 (Declicker, Decrackle, Denoiser and spectral richness of the vinyl noise can be captured with
Hum removal). a reduced number of basis functions. Also, the proposed
_ _ methods achieve better performance for the D2 database

 Waves V8 (X-Click, X-Crackle, X-Hum and Z-Noise). majinly because the hum noise is the most stable in fre-

_ i guency. Finally, we can state that our approach is compet-
Both Waves and Izotope plugins were used in Wavelab jiye in relation to the commercial audio restoration soft-
6 audio editing and mastering suite from Steinberg [22]. |\ 4re.

Each audio restoration product has been manually tuned to
provide the best results according to noise reduction and Name _Input _Audition _Izotope Waves P10 __UP10__P100__UP100

; P D1.0 3.2 7.5 5.1 8.6 9.0 9.6 8.4 9.2
qua“ty of the target audio. D15 8.3 11.8 11.2 11.7 124 129 114 12.2
D110 131 16.2 13.3 16,5 146 151 13.1 14.1
H D20 4.7 -2.2 3.0 6.5 11.2 118 9.9 10.5
4.3 Experlmental Setup D25 9.7 -2.0 5.1 7.7 139 144 124 13.0

. D2.10 14.6 -1.9 5.6 8.5 15.8 16.3 13.9 14.6
The proposed method has been evaluated by using the fol=

lowing parameters: frame size ®ms, hop size o82ms, Table 3. Denoised guitar SDR results idB for D1 and D2
frequency sampling rate af41100H z , 100 iterations for databases.

NMF algorithm, number of transient basis functians=

10 and number of vinyl noise basis functioRs= {10, 100} The SIR results for the denoised guitar signals when us-
(see the following section). Sound source separation ap-ing the D1 and D2 databases at different SNRs are given
plications based on NMF algorithms usually adopt loga- in Table4. These results inform about the amount of noise
rithmic frequency discretization. For example, uniformly present in the cleaned guitar. In all cases, the denoised
spaced subbands on the Equivalent Rectangular Bandwidtlsignals with the proposed methods have less interferences
(ERB) scale are assumed in [23]. In our method, we usefrom the vinyl noise.

the resolution of a quarter semitone by directly integrating

the bins of the STFT simi|ary to []_0]_ Name Input Audition Izotope Waves P10 UP10 P100 UP100
D10 3.3 8.7 8.7 11.7 115 123 11.1 12.3
D15 8.5 13.3 15.2 14.2 16.3 17.0 16.1 17.0

4.4 Results D110 133 183 206 200 206 211 204 212
D20 9.7 9.7 12.2 20.8 214 215 20.5 21.2

For an objective evaluation of the performance of the sep- D55 167 123 176 218 208 o s %
aration method we use the metrics implemented in [23].

These metrics are commonly accepted by the specialisedlable 4. Denoised guitar SIR results idB for D1 and D2
scientific community, and therefore facilitate a fair evalua- databases.

tion of the method. The metrics for each separated signal

are theSource to Distortion Rati¢(SDR), theSource to In- The SIR results for the estimated vinyl noise component
terference RatiqSIR), and theSource to Artifacts Ratio ~ When using the D1 and D2 databases at different SNRs
(SAR). are given in Tablé. Now, the amount of original guitar

In an NMF framework, the unknown parameters are ini- eliminated from the denoised guitar is shown. On the con-
tialized randomly. Therefore, the spectra resulting from trary, in this case Audition and Waves approaches obtain
separation are different at each execution, giving different Much better results than the proposed approach for the D1
metric results per execution. Thus, the proposed methogdatabase.
has been performeil) times per audio file to demonstrate

Name Audition Izotope Waves P10 UP10 P100 UP100

the statistical significance of the metrics. T#&%o con- D10 18.1 17 172 106 114 83 101
i i i D15 19.8 6.7 23.4 5.5 6.4 3.1 4.9
fldencg interval for the metrics was always smaller than 7> 2% 18 186 o6 17 19 o1
1.1dB in the proposed method. D10  -116 85 18 32 37 06 24

The SDR results for the denoised guitar signals when us- 025 -0 -107 70 -17 -11 -4l 24
ing the D1 and D2 databases at different SNRs are given in B . L. . .

Table3. The proposed methods are: P10 proposed methodrable 5. Estimated vinyl noise SIR resultsdd for D1 and D2

with R = 10 noise basis functions, UP10 unrealistic pro- databases.

posed method witl® = 10 noise basis functions (the noise

is directly trained from the same noise added to the de- In order to give the reader the opportunity of listening
graded signal which is an unrealistic situation), P100 pro- the material a webpage for the results has been created.
posed method witlR = 100 noise basis functions and On this page, some audio examples (mixed, separated gui-
UP100 unrealistic proposed method with= 100 noise tar and separated noise) from database D1 and D2 can
basis functions. The unrealistic approaches are used for esbe heard by the reader. The web page can be found at
timating the loss produced in separation performance whenhttp://dl.dropbox.com/u/22448214/SMC%202013/index.htm|
training the vinyl noise in an implementation different from
the real noise. The SDR value of the original input signal
is also presented. As can be seen, Waves software obtains
the best separation measures from the commercial restorak this work, a denoising technique based on an excitation-
tion products. In our approach, the usefof= 10 bases  filter model for harmonic instruments is proposed. The
is better than using® = 100, so we can conclude that the instrumental part of the degraded signal is divided into

5. CONCLUSIONS AND FUTURE WORK
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harmonic and transient components and trained from thg8] G. Cabras, S. Canazza, P. Montessoro, and R. Rinaldo,
RWC database. The vinyl noise is trained from public “The restoration of low-quality audio recordings based
recordings. Basis functions are fixed from the training al- on non-negative matrix factorization and perceptual as-
gorithms and in the separation process the activation gains sessment by means of the ebu mushra test method,”
for each componentare estimated following an NMF frame-  in Proc. of ACM Multimedia International Conference
work. The results show that the proposed approach are  Firenze, Italy, 2010, pp. 19-24.

competitive in comparison with some commercial audio
restoration softwares.

The main problem of the proposed approach is the simi-
larity of the transient basis functions for the instrument and
the spectral patterns of the localized degradations such as
click, crackle and scratch noise. In our opinion, this is-
sue causes the presence of instrument interferences in f1®] J. Carabias, T. Virtanen, P. Vera, N. Ruiz, and
estimated noise and, consequently, the loss of instrument F  Canadas, “Musical instrument sound multi-
signal in the denoised instrumental audio. This problem excitation model for non-negative spectrogram
also occurs when training the vinyl noise from the original factorization,” IEEE Journal of Selected Topics in
noise (UP10 and UP100 approaches). Signal Processingvol. 5, no. 6, pp. 1144-1158, 2011.

For future work, an interesting idea to solve the inter- ) ) o
ference problems can be the definition of sparseness ahtit] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka,

smoothness constraints [18] in the basis functions and ac- RWC music database: Music genre database and mu-
tivations gains of the signal factorization. sical instrument sound database,” Pmoceedings of

the 4th International Conference on Music Information
Retrieva) 2003, pp. 229-230.

[9] N. Bertin, R. Badeau, and E. Vincent, “Enforcing har-
monicity and smoothness in bayesian nonnegative ma-
trix factorization applied to polyphonic music tran-
scription,”|EEE Trans. Audio, Speech, Lang. Process-
ing, vol. 18, no. 3, pp. 538-549, 2010.
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